| /* | 
 |  * Copyright 2019 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
 | #pragma clang diagnostic push | 
 | #pragma clang diagnostic ignored "-Wconversion" | 
 |  | 
 | //#define LOG_NDEBUG 0 | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "RegionSamplingThread" | 
 |  | 
 | #include "RegionSamplingThread.h" | 
 |  | 
 | #include <compositionengine/Display.h> | 
 | #include <compositionengine/impl/OutputCompositionState.h> | 
 | #include <cutils/properties.h> | 
 | #include <gui/IRegionSamplingListener.h> | 
 | #include <gui/SyncScreenCaptureListener.h> | 
 | #include <ui/DisplayStatInfo.h> | 
 | #include <utils/Trace.h> | 
 |  | 
 | #include <string> | 
 |  | 
 | #include "DisplayDevice.h" | 
 | #include "DisplayRenderArea.h" | 
 | #include "Layer.h" | 
 | #include "Promise.h" | 
 | #include "Scheduler/VsyncController.h" | 
 | #include "SurfaceFlinger.h" | 
 |  | 
 | namespace android { | 
 | using namespace std::chrono_literals; | 
 |  | 
 | template <typename T> | 
 | struct SpHash { | 
 |     size_t operator()(const sp<T>& p) const { return std::hash<T*>()(p.get()); } | 
 | }; | 
 |  | 
 | constexpr auto lumaSamplingStepTag = "LumaSamplingStep"; | 
 | enum class samplingStep { | 
 |     noWorkNeeded, | 
 |     idleTimerWaiting, | 
 |     waitForQuietFrame, | 
 |     waitForZeroPhase, | 
 |     waitForSamplePhase, | 
 |     sample | 
 | }; | 
 |  | 
 | constexpr auto timeForRegionSampling = 5000000ns; | 
 | constexpr auto maxRegionSamplingSkips = 10; | 
 | constexpr auto defaultRegionSamplingWorkDuration = 3ms; | 
 | constexpr auto defaultRegionSamplingPeriod = 100ms; | 
 | constexpr auto defaultRegionSamplingTimerTimeout = 100ms; | 
 | // TODO: (b/127403193) duration to string conversion could probably be constexpr | 
 | template <typename Rep, typename Per> | 
 | inline std::string toNsString(std::chrono::duration<Rep, Per> t) { | 
 |     return std::to_string(std::chrono::duration_cast<std::chrono::nanoseconds>(t).count()); | 
 | } | 
 |  | 
 | RegionSamplingThread::EnvironmentTimingTunables::EnvironmentTimingTunables() { | 
 |     char value[PROPERTY_VALUE_MAX] = {}; | 
 |  | 
 |     property_get("debug.sf.region_sampling_duration_ns", value, | 
 |                  toNsString(defaultRegionSamplingWorkDuration).c_str()); | 
 |     int const samplingDurationNsRaw = atoi(value); | 
 |  | 
 |     property_get("debug.sf.region_sampling_period_ns", value, | 
 |                  toNsString(defaultRegionSamplingPeriod).c_str()); | 
 |     int const samplingPeriodNsRaw = atoi(value); | 
 |  | 
 |     property_get("debug.sf.region_sampling_timer_timeout_ns", value, | 
 |                  toNsString(defaultRegionSamplingTimerTimeout).c_str()); | 
 |     int const samplingTimerTimeoutNsRaw = atoi(value); | 
 |  | 
 |     if ((samplingPeriodNsRaw < 0) || (samplingTimerTimeoutNsRaw < 0)) { | 
 |         ALOGW("User-specified sampling tuning options nonsensical. Using defaults"); | 
 |         mSamplingDuration = defaultRegionSamplingWorkDuration; | 
 |         mSamplingPeriod = defaultRegionSamplingPeriod; | 
 |         mSamplingTimerTimeout = defaultRegionSamplingTimerTimeout; | 
 |     } else { | 
 |         mSamplingDuration = std::chrono::nanoseconds(samplingDurationNsRaw); | 
 |         mSamplingPeriod = std::chrono::nanoseconds(samplingPeriodNsRaw); | 
 |         mSamplingTimerTimeout = std::chrono::nanoseconds(samplingTimerTimeoutNsRaw); | 
 |     } | 
 | } | 
 |  | 
 | struct SamplingOffsetCallback : VSyncSource::Callback { | 
 |     SamplingOffsetCallback(RegionSamplingThread& samplingThread, Scheduler& scheduler, | 
 |                            std::chrono::nanoseconds targetSamplingWorkDuration) | 
 |           : mRegionSamplingThread(samplingThread), | 
 |             mTargetSamplingWorkDuration(targetSamplingWorkDuration), | 
 |             mVSyncSource(scheduler.makePrimaryDispSyncSource("SamplingThreadDispSyncListener", 0ns, | 
 |                                                              0ns, | 
 |                                                              /*traceVsync=*/false)) { | 
 |         mVSyncSource->setCallback(this); | 
 |     } | 
 |  | 
 |     ~SamplingOffsetCallback() { stopVsyncListener(); } | 
 |  | 
 |     SamplingOffsetCallback(const SamplingOffsetCallback&) = delete; | 
 |     SamplingOffsetCallback& operator=(const SamplingOffsetCallback&) = delete; | 
 |  | 
 |     void startVsyncListener() { | 
 |         std::lock_guard lock(mMutex); | 
 |         if (mVsyncListening) return; | 
 |  | 
 |         mPhaseIntervalSetting = Phase::ZERO; | 
 |         mVSyncSource->setVSyncEnabled(true); | 
 |         mVsyncListening = true; | 
 |     } | 
 |  | 
 |     void stopVsyncListener() { | 
 |         std::lock_guard lock(mMutex); | 
 |         stopVsyncListenerLocked(); | 
 |     } | 
 |  | 
 | private: | 
 |     void stopVsyncListenerLocked() /*REQUIRES(mMutex)*/ { | 
 |         if (!mVsyncListening) return; | 
 |  | 
 |         mVSyncSource->setVSyncEnabled(false); | 
 |         mVsyncListening = false; | 
 |     } | 
 |  | 
 |     void onVSyncEvent(nsecs_t /*when*/, nsecs_t /*expectedVSyncTimestamp*/, | 
 |                       nsecs_t /*deadlineTimestamp*/) final { | 
 |         std::unique_lock<decltype(mMutex)> lock(mMutex); | 
 |  | 
 |         if (mPhaseIntervalSetting == Phase::ZERO) { | 
 |             ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForSamplePhase)); | 
 |             mPhaseIntervalSetting = Phase::SAMPLING; | 
 |             mVSyncSource->setDuration(mTargetSamplingWorkDuration, 0ns); | 
 |             return; | 
 |         } | 
 |  | 
 |         if (mPhaseIntervalSetting == Phase::SAMPLING) { | 
 |             mPhaseIntervalSetting = Phase::ZERO; | 
 |             mVSyncSource->setDuration(0ns, 0ns); | 
 |             stopVsyncListenerLocked(); | 
 |             lock.unlock(); | 
 |             mRegionSamplingThread.notifySamplingOffset(); | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     RegionSamplingThread& mRegionSamplingThread; | 
 |     const std::chrono::nanoseconds mTargetSamplingWorkDuration; | 
 |     mutable std::mutex mMutex; | 
 |     enum class Phase { | 
 |         ZERO, | 
 |         SAMPLING | 
 |     } mPhaseIntervalSetting /*GUARDED_BY(mMutex) macro doesnt work with unique_lock?*/ | 
 |             = Phase::ZERO; | 
 |     bool mVsyncListening /*GUARDED_BY(mMutex)*/ = false; | 
 |     std::unique_ptr<VSyncSource> mVSyncSource; | 
 | }; | 
 |  | 
 | RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler, | 
 |                                            const TimingTunables& tunables) | 
 |       : mFlinger(flinger), | 
 |         mScheduler(scheduler), | 
 |         mTunables(tunables), | 
 |         mIdleTimer( | 
 |                 std::chrono::duration_cast<std::chrono::milliseconds>( | 
 |                         mTunables.mSamplingTimerTimeout), | 
 |                 [] {}, [this] { checkForStaleLuma(); }), | 
 |         mPhaseCallback(std::make_unique<SamplingOffsetCallback>(*this, mScheduler, | 
 |                                                                 tunables.mSamplingDuration)), | 
 |         lastSampleTime(0ns) { | 
 |     mThread = std::thread([this]() { threadMain(); }); | 
 |     pthread_setname_np(mThread.native_handle(), "RegionSamplingThread"); | 
 |     mIdleTimer.start(); | 
 | } | 
 |  | 
 | RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler) | 
 |       : RegionSamplingThread(flinger, scheduler, | 
 |                              TimingTunables{defaultRegionSamplingWorkDuration, | 
 |                                             defaultRegionSamplingPeriod, | 
 |                                             defaultRegionSamplingTimerTimeout}) {} | 
 |  | 
 | RegionSamplingThread::~RegionSamplingThread() { | 
 |     mIdleTimer.stop(); | 
 |  | 
 |     { | 
 |         std::lock_guard lock(mThreadControlMutex); | 
 |         mRunning = false; | 
 |         mCondition.notify_one(); | 
 |     } | 
 |  | 
 |     if (mThread.joinable()) { | 
 |         mThread.join(); | 
 |     } | 
 | } | 
 |  | 
 | void RegionSamplingThread::addListener(const Rect& samplingArea, const wp<Layer>& stopLayer, | 
 |                                        const sp<IRegionSamplingListener>& listener) { | 
 |     sp<IBinder> asBinder = IInterface::asBinder(listener); | 
 |     asBinder->linkToDeath(this); | 
 |     std::lock_guard lock(mSamplingMutex); | 
 |     mDescriptors.emplace(wp<IBinder>(asBinder), Descriptor{samplingArea, stopLayer, listener}); | 
 | } | 
 |  | 
 | void RegionSamplingThread::removeListener(const sp<IRegionSamplingListener>& listener) { | 
 |     std::lock_guard lock(mSamplingMutex); | 
 |     mDescriptors.erase(wp<IBinder>(IInterface::asBinder(listener))); | 
 | } | 
 |  | 
 | void RegionSamplingThread::checkForStaleLuma() { | 
 |     std::lock_guard lock(mThreadControlMutex); | 
 |  | 
 |     if (mDiscardedFrames > 0) { | 
 |         ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForZeroPhase)); | 
 |         mDiscardedFrames = 0; | 
 |         mPhaseCallback->startVsyncListener(); | 
 |     } | 
 | } | 
 |  | 
 | void RegionSamplingThread::notifyNewContent() { | 
 |     doSample(); | 
 | } | 
 |  | 
 | void RegionSamplingThread::notifySamplingOffset() { | 
 |     doSample(); | 
 | } | 
 |  | 
 | void RegionSamplingThread::doSample() { | 
 |     std::lock_guard lock(mThreadControlMutex); | 
 |     auto now = std::chrono::nanoseconds(systemTime(SYSTEM_TIME_MONOTONIC)); | 
 |     if (lastSampleTime + mTunables.mSamplingPeriod > now) { | 
 |         ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::idleTimerWaiting)); | 
 |         if (mDiscardedFrames == 0) mDiscardedFrames++; | 
 |         return; | 
 |     } | 
 |     if (mDiscardedFrames < maxRegionSamplingSkips) { | 
 |         // If there is relatively little time left for surfaceflinger | 
 |         // until the next vsync deadline, defer this sampling work | 
 |         // to a later frame, when hopefully there will be more time. | 
 |         DisplayStatInfo stats; | 
 |         mScheduler.getDisplayStatInfo(&stats, systemTime()); | 
 |         if (std::chrono::nanoseconds(stats.vsyncTime) - now < timeForRegionSampling) { | 
 |             ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForQuietFrame)); | 
 |             mDiscardedFrames++; | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::sample)); | 
 |  | 
 |     mDiscardedFrames = 0; | 
 |     lastSampleTime = now; | 
 |  | 
 |     mIdleTimer.reset(); | 
 |     mPhaseCallback->stopVsyncListener(); | 
 |  | 
 |     mSampleRequested = true; | 
 |     mCondition.notify_one(); | 
 | } | 
 |  | 
 | void RegionSamplingThread::binderDied(const wp<IBinder>& who) { | 
 |     std::lock_guard lock(mSamplingMutex); | 
 |     mDescriptors.erase(who); | 
 | } | 
 |  | 
 | float sampleArea(const uint32_t* data, int32_t width, int32_t height, int32_t stride, | 
 |                  uint32_t orientation, const Rect& sample_area) { | 
 |     if (!sample_area.isValid() || (sample_area.getWidth() > width) || | 
 |         (sample_area.getHeight() > height)) { | 
 |         ALOGE("invalid sampling region requested"); | 
 |         return 0.0f; | 
 |     } | 
 |  | 
 |     // (b/133849373) ROT_90 screencap images produced upside down | 
 |     auto area = sample_area; | 
 |     if (orientation & ui::Transform::ROT_90) { | 
 |         area.top = height - area.top; | 
 |         area.bottom = height - area.bottom; | 
 |         std::swap(area.top, area.bottom); | 
 |  | 
 |         area.left = width - area.left; | 
 |         area.right = width - area.right; | 
 |         std::swap(area.left, area.right); | 
 |     } | 
 |  | 
 |     const uint32_t pixelCount = (area.bottom - area.top) * (area.right - area.left); | 
 |     uint32_t accumulatedLuma = 0; | 
 |  | 
 |     // Calculates luma with approximation of Rec. 709 primaries | 
 |     for (int32_t row = area.top; row < area.bottom; ++row) { | 
 |         const uint32_t* rowBase = data + row * stride; | 
 |         for (int32_t column = area.left; column < area.right; ++column) { | 
 |             uint32_t pixel = rowBase[column]; | 
 |             const uint32_t r = pixel & 0xFF; | 
 |             const uint32_t g = (pixel >> 8) & 0xFF; | 
 |             const uint32_t b = (pixel >> 16) & 0xFF; | 
 |             const uint32_t luma = (r * 7 + b * 2 + g * 23) >> 5; | 
 |             accumulatedLuma += luma; | 
 |         } | 
 |     } | 
 |  | 
 |     return accumulatedLuma / (255.0f * pixelCount); | 
 | } | 
 |  | 
 | std::vector<float> RegionSamplingThread::sampleBuffer( | 
 |         const sp<GraphicBuffer>& buffer, const Point& leftTop, | 
 |         const std::vector<RegionSamplingThread::Descriptor>& descriptors, uint32_t orientation) { | 
 |     void* data_raw = nullptr; | 
 |     buffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, &data_raw); | 
 |     std::shared_ptr<uint32_t> data(reinterpret_cast<uint32_t*>(data_raw), | 
 |                                    [&buffer](auto) { buffer->unlock(); }); | 
 |     if (!data) return {}; | 
 |  | 
 |     const int32_t width = buffer->getWidth(); | 
 |     const int32_t height = buffer->getHeight(); | 
 |     const int32_t stride = buffer->getStride(); | 
 |     std::vector<float> lumas(descriptors.size()); | 
 |     std::transform(descriptors.begin(), descriptors.end(), lumas.begin(), | 
 |                    [&](auto const& descriptor) { | 
 |                        return sampleArea(data.get(), width, height, stride, orientation, | 
 |                                          descriptor.area - leftTop); | 
 |                    }); | 
 |     return lumas; | 
 | } | 
 |  | 
 | void RegionSamplingThread::captureSample() { | 
 |     ATRACE_CALL(); | 
 |     std::lock_guard lock(mSamplingMutex); | 
 |  | 
 |     if (mDescriptors.empty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     wp<const DisplayDevice> displayWeak; | 
 |  | 
 |     ui::LayerStack layerStack; | 
 |     ui::Transform::RotationFlags orientation; | 
 |     ui::Size displaySize; | 
 |  | 
 |     { | 
 |         // TODO(b/159112860): Don't keep sp<DisplayDevice> outside of SF main thread | 
 |         const sp<const DisplayDevice> display = mFlinger.getDefaultDisplayDevice(); | 
 |         displayWeak = display; | 
 |         layerStack = display->getLayerStack(); | 
 |         orientation = ui::Transform::toRotationFlags(display->getOrientation()); | 
 |         displaySize = display->getSize(); | 
 |     } | 
 |  | 
 |     std::vector<RegionSamplingThread::Descriptor> descriptors; | 
 |     Region sampleRegion; | 
 |     for (const auto& [listener, descriptor] : mDescriptors) { | 
 |         sampleRegion.orSelf(descriptor.area); | 
 |         descriptors.emplace_back(descriptor); | 
 |     } | 
 |  | 
 |     auto dx = 0; | 
 |     auto dy = 0; | 
 |     switch (orientation) { | 
 |         case ui::Transform::ROT_90: | 
 |             dx = displaySize.getWidth(); | 
 |             break; | 
 |         case ui::Transform::ROT_180: | 
 |             dx = displaySize.getWidth(); | 
 |             dy = displaySize.getHeight(); | 
 |             break; | 
 |         case ui::Transform::ROT_270: | 
 |             dy = displaySize.getHeight(); | 
 |             break; | 
 |         default: | 
 |             break; | 
 |     } | 
 |  | 
 |     ui::Transform t(orientation); | 
 |     auto screencapRegion = t.transform(sampleRegion); | 
 |     screencapRegion = screencapRegion.translate(dx, dy); | 
 |  | 
 |     const Rect sampledBounds = sampleRegion.bounds(); | 
 |  | 
 |     SurfaceFlinger::RenderAreaFuture renderAreaFuture = promise::defer([=] { | 
 |         return DisplayRenderArea::create(displayWeak, screencapRegion.bounds(), | 
 |                                          sampledBounds.getSize(), ui::Dataspace::V0_SRGB, | 
 |                                          orientation); | 
 |     }); | 
 |  | 
 |     std::unordered_set<sp<IRegionSamplingListener>, SpHash<IRegionSamplingListener>> listeners; | 
 |  | 
 |     auto traverseLayers = [&](const LayerVector::Visitor& visitor) { | 
 |         bool stopLayerFound = false; | 
 |         auto filterVisitor = [&](Layer* layer) { | 
 |             // We don't want to capture any layers beyond the stop layer | 
 |             if (stopLayerFound) return; | 
 |  | 
 |             // Likewise if we just found a stop layer, set the flag and abort | 
 |             for (const auto& [area, stopLayer, listener] : descriptors) { | 
 |                 if (layer == stopLayer.promote().get()) { | 
 |                     stopLayerFound = true; | 
 |                     return; | 
 |                 } | 
 |             } | 
 |  | 
 |             // Compute the layer's position on the screen | 
 |             const Rect bounds = Rect(layer->getBounds()); | 
 |             const ui::Transform transform = layer->getTransform(); | 
 |             constexpr bool roundOutwards = true; | 
 |             Rect transformed = transform.transform(bounds, roundOutwards); | 
 |  | 
 |             // If this layer doesn't intersect with the larger sampledBounds, skip capturing it | 
 |             Rect ignore; | 
 |             if (!transformed.intersect(sampledBounds, &ignore)) return; | 
 |  | 
 |             // If the layer doesn't intersect a sampling area, skip capturing it | 
 |             bool intersectsAnyArea = false; | 
 |             for (const auto& [area, stopLayer, listener] : descriptors) { | 
 |                 if (transformed.intersect(area, &ignore)) { | 
 |                     intersectsAnyArea = true; | 
 |                     listeners.insert(listener); | 
 |                 } | 
 |             } | 
 |             if (!intersectsAnyArea) return; | 
 |  | 
 |             ALOGV("Traversing [%s] [%d, %d, %d, %d]", layer->getDebugName(), bounds.left, | 
 |                   bounds.top, bounds.right, bounds.bottom); | 
 |             visitor(layer); | 
 |         }; | 
 |         mFlinger.traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, filterVisitor); | 
 |     }; | 
 |  | 
 |     sp<GraphicBuffer> buffer = nullptr; | 
 |     if (mCachedBuffer && mCachedBuffer->getWidth() == sampledBounds.getWidth() && | 
 |         mCachedBuffer->getHeight() == sampledBounds.getHeight()) { | 
 |         buffer = mCachedBuffer; | 
 |     } else { | 
 |         const uint32_t usage = | 
 |                 GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE; | 
 |         buffer = new GraphicBuffer(sampledBounds.getWidth(), sampledBounds.getHeight(), | 
 |                                    PIXEL_FORMAT_RGBA_8888, 1, usage, "RegionSamplingThread"); | 
 |     } | 
 |  | 
 |     const sp<SyncScreenCaptureListener> captureListener = new SyncScreenCaptureListener(); | 
 |     mFlinger.captureScreenCommon(std::move(renderAreaFuture), traverseLayers, buffer, | 
 |                                  true /* regionSampling */, captureListener); | 
 |     ScreenCaptureResults captureResults = captureListener->waitForResults(); | 
 |  | 
 |     std::vector<Descriptor> activeDescriptors; | 
 |     for (const auto& descriptor : descriptors) { | 
 |         if (listeners.count(descriptor.listener) != 0) { | 
 |             activeDescriptors.emplace_back(descriptor); | 
 |         } | 
 |     } | 
 |  | 
 |     ALOGV("Sampling %zu descriptors", activeDescriptors.size()); | 
 |     std::vector<float> lumas = | 
 |             sampleBuffer(buffer, sampledBounds.leftTop(), activeDescriptors, orientation); | 
 |     if (lumas.size() != activeDescriptors.size()) { | 
 |         ALOGW("collected %zu median luma values for %zu descriptors", lumas.size(), | 
 |               activeDescriptors.size()); | 
 |         return; | 
 |     } | 
 |  | 
 |     for (size_t d = 0; d < activeDescriptors.size(); ++d) { | 
 |         activeDescriptors[d].listener->onSampleCollected(lumas[d]); | 
 |     } | 
 |  | 
 |     // Extend the lifetime of mCachedBuffer from the previous frame to here to ensure that: | 
 |     // 1) The region sampling thread is the last owner of the buffer, and the freeing of the buffer | 
 |     // happens in this thread, as opposed to the main thread. | 
 |     // 2) The listener(s) receive their notifications prior to freeing the buffer. | 
 |     mCachedBuffer = buffer; | 
 |     ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::noWorkNeeded)); | 
 | } | 
 |  | 
 | // NO_THREAD_SAFETY_ANALYSIS is because std::unique_lock presently lacks thread safety annotations. | 
 | void RegionSamplingThread::threadMain() NO_THREAD_SAFETY_ANALYSIS { | 
 |     std::unique_lock<std::mutex> lock(mThreadControlMutex); | 
 |     while (mRunning) { | 
 |         if (mSampleRequested) { | 
 |             mSampleRequested = false; | 
 |             lock.unlock(); | 
 |             captureSample(); | 
 |             lock.lock(); | 
 |         } | 
 |         mCondition.wait(lock, [this]() REQUIRES(mThreadControlMutex) { | 
 |             return mSampleRequested || !mRunning; | 
 |         }); | 
 |     } | 
 | } | 
 |  | 
 | } // namespace android | 
 |  | 
 | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
 | #pragma clang diagnostic pop // ignored "-Wconversion" |