|  | /* | 
|  | * Copyright 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <compositionengine/DisplayColorProfile.h> | 
|  | #include <compositionengine/LayerFE.h> | 
|  | #include <compositionengine/LayerFECompositionState.h> | 
|  | #include <compositionengine/Output.h> | 
|  | #include <compositionengine/impl/OutputCompositionState.h> | 
|  | #include <compositionengine/impl/OutputLayer.h> | 
|  | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic push | 
|  | #pragma clang diagnostic ignored "-Wconversion" | 
|  |  | 
|  | #include "DisplayHardware/HWComposer.h" | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic pop // ignored "-Wconversion" | 
|  |  | 
|  | namespace android::compositionengine { | 
|  |  | 
|  | OutputLayer::~OutputLayer() = default; | 
|  |  | 
|  | namespace impl { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | FloatRect reduce(const FloatRect& win, const Region& exclude) { | 
|  | if (CC_LIKELY(exclude.isEmpty())) { | 
|  | return win; | 
|  | } | 
|  | // Convert through Rect (by rounding) for lack of FloatRegion | 
|  | return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output, | 
|  | const sp<compositionengine::LayerFE>& layerFE) { | 
|  | return createOutputLayerTemplated<OutputLayer>(output, layerFE); | 
|  | } | 
|  |  | 
|  | OutputLayer::~OutputLayer() = default; | 
|  |  | 
|  | void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) { | 
|  | auto& state = editState(); | 
|  | if (hwcLayer) { | 
|  | state.hwc.emplace(std::move(hwcLayer)); | 
|  | } else { | 
|  | state.hwc.reset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Rect OutputLayer::calculateInitialCrop() const { | 
|  | const auto& layerState = *getLayerFE().getCompositionState(); | 
|  |  | 
|  | // apply the projection's clipping to the window crop in | 
|  | // layerstack space, and convert-back to layer space. | 
|  | // if there are no window scaling involved, this operation will map to full | 
|  | // pixels in the buffer. | 
|  |  | 
|  | FloatRect activeCropFloat = | 
|  | reduce(layerState.geomLayerBounds, layerState.transparentRegionHint); | 
|  |  | 
|  | const Rect& viewport = getOutput().getState().layerStackSpace.content; | 
|  | const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
|  | const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
|  | // Transform to screen space. | 
|  | activeCropFloat = layerTransform.transform(activeCropFloat); | 
|  | activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); | 
|  | // Back to layer space to work with the content crop. | 
|  | activeCropFloat = inverseLayerTransform.transform(activeCropFloat); | 
|  |  | 
|  | // This needs to be here as transform.transform(Rect) computes the | 
|  | // transformed rect and then takes the bounding box of the result before | 
|  | // returning. This means | 
|  | // transform.inverse().transform(transform.transform(Rect)) != Rect | 
|  | // in which case we need to make sure the final rect is clipped to the | 
|  | // display bounds. | 
|  | Rect activeCrop{activeCropFloat}; | 
|  | if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | return activeCrop; | 
|  | } | 
|  |  | 
|  | FloatRect OutputLayer::calculateOutputSourceCrop() const { | 
|  | const auto& layerState = *getLayerFE().getCompositionState(); | 
|  | const auto& outputState = getOutput().getState(); | 
|  |  | 
|  | if (!layerState.geomUsesSourceCrop) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // the content crop is the area of the content that gets scaled to the | 
|  | // layer's size. This is in buffer space. | 
|  | FloatRect crop = layerState.geomContentCrop.toFloatRect(); | 
|  |  | 
|  | // In addition there is a WM-specified crop we pull from our drawing state. | 
|  | Rect activeCrop = calculateInitialCrop(); | 
|  | const Rect& bufferSize = layerState.geomBufferSize; | 
|  |  | 
|  | int winWidth = bufferSize.getWidth(); | 
|  | int winHeight = bufferSize.getHeight(); | 
|  |  | 
|  | // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) | 
|  | // if display frame hasn't been set and the parent is an unbounded layer. | 
|  | if (winWidth < 0 && winHeight < 0) { | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | // Transform the window crop to match the buffer coordinate system, | 
|  | // which means using the inverse of the current transform set on the | 
|  | // SurfaceFlingerConsumer. | 
|  | uint32_t invTransform = layerState.geomBufferTransform; | 
|  | if (layerState.geomBufferUsesDisplayInverseTransform) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to the | 
|  | * buffer | 
|  | */ | 
|  | uint32_t invTransformOrient = outputState.orientation; | 
|  | // calculate the inverse transform | 
|  | if (invTransformOrient & HAL_TRANSFORM_ROT_90) { | 
|  | invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
|  | } | 
|  | // and apply to the current transform | 
|  | invTransform = | 
|  | (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); | 
|  | } | 
|  |  | 
|  | if (invTransform & HAL_TRANSFORM_ROT_90) { | 
|  | // If the activeCrop has been rotate the ends are rotated but not | 
|  | // the space itself so when transforming ends back we can't rely on | 
|  | // a modification of the axes of rotation. To account for this we | 
|  | // need to reorient the inverse rotation in terms of the current | 
|  | // axes of rotation. | 
|  | bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; | 
|  | bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; | 
|  | if (isHFlipped == isVFlipped) { | 
|  | invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
|  | } | 
|  | std::swap(winWidth, winHeight); | 
|  | } | 
|  | const Rect winCrop = | 
|  | activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); | 
|  |  | 
|  | // below, crop is intersected with winCrop expressed in crop's coordinate space | 
|  | const float xScale = crop.getWidth() / float(winWidth); | 
|  | const float yScale = crop.getHeight() / float(winHeight); | 
|  |  | 
|  | const float insetLeft = winCrop.left * xScale; | 
|  | const float insetTop = winCrop.top * yScale; | 
|  | const float insetRight = (winWidth - winCrop.right) * xScale; | 
|  | const float insetBottom = (winHeight - winCrop.bottom) * yScale; | 
|  |  | 
|  | crop.left += insetLeft; | 
|  | crop.top += insetTop; | 
|  | crop.right -= insetRight; | 
|  | crop.bottom -= insetBottom; | 
|  |  | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | Rect OutputLayer::calculateOutputDisplayFrame() const { | 
|  | const auto& layerState = *getLayerFE().getCompositionState(); | 
|  | const auto& outputState = getOutput().getState(); | 
|  |  | 
|  | // apply the layer's transform, followed by the display's global transform | 
|  | // here we're guaranteed that the layer's transform preserves rects | 
|  | Region activeTransparentRegion = layerState.transparentRegionHint; | 
|  | const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
|  | const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
|  | const Rect& bufferSize = layerState.geomBufferSize; | 
|  | Rect activeCrop = layerState.geomCrop; | 
|  | if (!activeCrop.isEmpty() && bufferSize.isValid()) { | 
|  | activeCrop = layerTransform.transform(activeCrop); | 
|  | if (!activeCrop.intersect(outputState.layerStackSpace.content, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | activeCrop = inverseLayerTransform.transform(activeCrop, true); | 
|  | // This needs to be here as transform.transform(Rect) computes the | 
|  | // transformed rect and then takes the bounding box of the result before | 
|  | // returning. This means | 
|  | // transform.inverse().transform(transform.transform(Rect)) != Rect | 
|  | // in which case we need to make sure the final rect is clipped to the | 
|  | // display bounds. | 
|  | if (!activeCrop.intersect(bufferSize, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | // mark regions outside the crop as transparent | 
|  | activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); | 
|  | activeTransparentRegion.orSelf( | 
|  | Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); | 
|  | activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); | 
|  | activeTransparentRegion.orSelf( | 
|  | Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); | 
|  | } | 
|  |  | 
|  | // reduce uses a FloatRect to provide more accuracy during the | 
|  | // transformation. We then round upon constructing 'frame'. | 
|  | Rect frame{ | 
|  | layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))}; | 
|  | if (!frame.intersect(outputState.layerStackSpace.content, &frame)) { | 
|  | frame.clear(); | 
|  | } | 
|  | const ui::Transform displayTransform{outputState.transform}; | 
|  |  | 
|  | return displayTransform.transform(frame); | 
|  | } | 
|  |  | 
|  | uint32_t OutputLayer::calculateOutputRelativeBufferTransform( | 
|  | uint32_t internalDisplayRotationFlags) const { | 
|  | const auto& layerState = *getLayerFE().getCompositionState(); | 
|  | const auto& outputState = getOutput().getState(); | 
|  |  | 
|  | /* | 
|  | * Transformations are applied in this order: | 
|  | * 1) buffer orientation/flip/mirror | 
|  | * 2) state transformation (window manager) | 
|  | * 3) layer orientation (screen orientation) | 
|  | * (NOTE: the matrices are multiplied in reverse order) | 
|  | */ | 
|  | const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
|  | const ui::Transform displayTransform{outputState.transform}; | 
|  | const ui::Transform bufferTransform{layerState.geomBufferTransform}; | 
|  | ui::Transform transform(displayTransform * layerTransform * bufferTransform); | 
|  |  | 
|  | if (layerState.geomBufferUsesDisplayInverseTransform) { | 
|  | /* | 
|  | * We must apply the internal display's inverse transform to the buffer | 
|  | * transform, and not the one for the output this layer is on. | 
|  | */ | 
|  | uint32_t invTransform = internalDisplayRotationFlags; | 
|  |  | 
|  | // calculate the inverse transform | 
|  | if (invTransform & HAL_TRANSFORM_ROT_90) { | 
|  | invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we cancel out the orientation component of the WM transform. | 
|  | * The scaling and translate components are already included in our bounds | 
|  | * computation so it's enough to just omit it in the composition. | 
|  | * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. | 
|  | */ | 
|  | transform = ui::Transform(invTransform) * displayTransform * bufferTransform; | 
|  | } | 
|  |  | 
|  | // this gives us only the "orientation" component of the transform | 
|  | return transform.getOrientation(); | 
|  | } | 
|  |  | 
|  | void OutputLayer::updateCompositionState( | 
|  | bool includeGeometry, bool forceClientComposition, | 
|  | ui::Transform::RotationFlags internalDisplayRotationFlags) { | 
|  | const auto* layerFEState = getLayerFE().getCompositionState(); | 
|  | if (!layerFEState) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto& outputState = getOutput().getState(); | 
|  | const auto& profile = *getOutput().getDisplayColorProfile(); | 
|  | auto& state = editState(); | 
|  |  | 
|  | if (includeGeometry) { | 
|  | // Clear the forceClientComposition flag before it is set for any | 
|  | // reason. Note that since it can be set by some checks below when | 
|  | // updating the geometry state, we only clear it when updating the | 
|  | // geometry since those conditions for forcing client composition won't | 
|  | // go away otherwise. | 
|  | state.forceClientComposition = false; | 
|  |  | 
|  | state.displayFrame = calculateOutputDisplayFrame(); | 
|  | state.sourceCrop = calculateOutputSourceCrop(); | 
|  | state.bufferTransform = static_cast<Hwc2::Transform>( | 
|  | calculateOutputRelativeBufferTransform(internalDisplayRotationFlags)); | 
|  |  | 
|  | if ((layerFEState->isSecure && !outputState.isSecure) || | 
|  | (state.bufferTransform & ui::Transform::ROT_INVALID)) { | 
|  | state.forceClientComposition = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the output dependent dataspace for this layer. If it is | 
|  | // colorspace agnostic, it just uses the dataspace chosen for the output to | 
|  | // avoid the need for color conversion. | 
|  | state.dataspace = layerFEState->isColorspaceAgnostic && | 
|  | outputState.targetDataspace != ui::Dataspace::UNKNOWN | 
|  | ? outputState.targetDataspace | 
|  | : layerFEState->dataspace; | 
|  |  | 
|  | // These are evaluated every frame as they can potentially change at any | 
|  | // time. | 
|  | if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) || | 
|  | forceClientComposition) { | 
|  | state.forceClientComposition = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeStateToHWC(bool includeGeometry) { | 
|  | const auto& state = getState(); | 
|  | // Skip doing this if there is no HWC interface | 
|  | if (!state.hwc) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto& hwcLayer = (*state.hwc).hwcLayer; | 
|  | if (!hwcLayer) { | 
|  | ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", | 
|  | getLayerFE().getDebugName(), getOutput().getName().c_str()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto* outputIndependentState = getLayerFE().getCompositionState(); | 
|  | if (!outputIndependentState) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto requestedCompositionType = outputIndependentState->compositionType; | 
|  |  | 
|  | if (includeGeometry) { | 
|  | writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType); | 
|  | writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState); | 
|  | } | 
|  |  | 
|  | writeOutputDependentPerFrameStateToHWC(hwcLayer.get()); | 
|  | writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState); | 
|  |  | 
|  | writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType); | 
|  |  | 
|  | // Always set the layer color after setting the composition type. | 
|  | writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState); | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeOutputDependentGeometryStateToHWC( | 
|  | HWC2::Layer* hwcLayer, hal::Composition requestedCompositionType) { | 
|  | const auto& outputDependentState = getState(); | 
|  |  | 
|  | if (auto error = hwcLayer->setDisplayFrame(outputDependentState.displayFrame); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", | 
|  | getLayerFE().getDebugName(), outputDependentState.displayFrame.left, | 
|  | outputDependentState.displayFrame.top, outputDependentState.displayFrame.right, | 
|  | outputDependentState.displayFrame.bottom, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setSourceCrop(outputDependentState.sourceCrop); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " | 
|  | "%s (%d)", | 
|  | getLayerFE().getDebugName(), outputDependentState.sourceCrop.left, | 
|  | outputDependentState.sourceCrop.top, outputDependentState.sourceCrop.right, | 
|  | outputDependentState.sourceCrop.bottom, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setZOrder(outputDependentState.z); error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), | 
|  | outputDependentState.z, to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | // Solid-color layers should always use an identity transform. | 
|  | const auto bufferTransform = requestedCompositionType != hal::Composition::SOLID_COLOR | 
|  | ? outputDependentState.bufferTransform | 
|  | : static_cast<hal::Transform>(0); | 
|  | if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform)); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(), | 
|  | toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeOutputIndependentGeometryStateToHWC( | 
|  | HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { | 
|  | if (auto error = hwcLayer->setBlendMode(outputIndependentState.blendMode); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(), | 
|  | toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), | 
|  | outputIndependentState.alpha, to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setInfo(static_cast<uint32_t>(outputIndependentState.type), | 
|  | static_cast<uint32_t>(outputIndependentState.appId)); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set info %s (%d)", getLayerFE().getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | for (const auto& [name, entry] : outputIndependentState.metadata) { | 
|  | if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(), | 
|  | name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) { | 
|  | const auto& outputDependentState = getState(); | 
|  |  | 
|  | // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry | 
|  | // state and should not change every frame. | 
|  | if (auto error = hwcLayer->setVisibleRegion(outputDependentState.outputSpaceVisibleRegion); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | outputDependentState.outputSpaceVisibleRegion.dump(LOG_TAG); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setDataspace(outputDependentState.dataspace); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), | 
|  | outputDependentState.dataspace, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeOutputIndependentPerFrameStateToHWC( | 
|  | HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { | 
|  | switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) { | 
|  | case hal::Error::NONE: | 
|  | break; | 
|  | case hal::Error::UNSUPPORTED: | 
|  | editState().forceClientComposition = true; | 
|  | break; | 
|  | default: | 
|  | ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setSurfaceDamage(outputIndependentState.surfaceDamage); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | outputIndependentState.surfaceDamage.dump(LOG_TAG); | 
|  | } | 
|  |  | 
|  | // Content-specific per-frame state | 
|  | switch (outputIndependentState.compositionType) { | 
|  | case hal::Composition::SOLID_COLOR: | 
|  | // For compatibility, should be written AFTER the composition type. | 
|  | break; | 
|  | case hal::Composition::SIDEBAND: | 
|  | writeSidebandStateToHWC(hwcLayer, outputIndependentState); | 
|  | break; | 
|  | case hal::Composition::CURSOR: | 
|  | case hal::Composition::DEVICE: | 
|  | writeBufferStateToHWC(hwcLayer, outputIndependentState); | 
|  | break; | 
|  | case hal::Composition::INVALID: | 
|  | case hal::Composition::CLIENT: | 
|  | // Ignored | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer, | 
|  | const LayerFECompositionState& outputIndependentState) { | 
|  | if (outputIndependentState.compositionType != hal::Composition::SOLID_COLOR) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | hal::Color color = {static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.r)), | 
|  | static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.g)), | 
|  | static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.b)), | 
|  | 255}; | 
|  |  | 
|  | if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer, | 
|  | const LayerFECompositionState& outputIndependentState) { | 
|  | if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle()); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(), | 
|  | outputIndependentState.sidebandStream->handle(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer, | 
|  | const LayerFECompositionState& outputIndependentState) { | 
|  | auto supportedPerFrameMetadata = | 
|  | getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata(); | 
|  | if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, | 
|  | outputIndependentState.hdrMetadata); | 
|  | error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) { | 
|  | ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | uint32_t hwcSlot = 0; | 
|  | sp<GraphicBuffer> hwcBuffer; | 
|  | // We need access to the output-dependent state for the buffer cache there, | 
|  | // though otherwise the buffer is not output-dependent. | 
|  | editState().hwc->hwcBufferCache.getHwcBuffer(outputIndependentState.bufferSlot, | 
|  | outputIndependentState.buffer, &hwcSlot, | 
|  | &hwcBuffer); | 
|  |  | 
|  | if (auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, outputIndependentState.acquireFence); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(), | 
|  | outputIndependentState.buffer->handle, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer, | 
|  | hal::Composition requestedCompositionType) { | 
|  | auto& outputDependentState = editState(); | 
|  |  | 
|  | // If we are forcing client composition, we need to tell the HWC | 
|  | if (outputDependentState.forceClientComposition) { | 
|  | requestedCompositionType = hal::Composition::CLIENT; | 
|  | } | 
|  |  | 
|  | // Set the requested composition type with the HWC whenever it changes | 
|  | if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType) { | 
|  | outputDependentState.hwc->hwcCompositionType = requestedCompositionType; | 
|  |  | 
|  | if (auto error = hwcLayer->setCompositionType(requestedCompositionType); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(), | 
|  | toString(requestedCompositionType).c_str(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeCursorPositionToHWC() const { | 
|  | // Skip doing this if there is no HWC interface | 
|  | auto hwcLayer = getHwcLayer(); | 
|  | if (!hwcLayer) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto* layerFEState = getLayerFE().getCompositionState(); | 
|  | if (!layerFEState) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto& outputState = getOutput().getState(); | 
|  |  | 
|  | Rect frame = layerFEState->cursorFrame; | 
|  | frame.intersect(outputState.layerStackSpace.content, &frame); | 
|  | Rect position = outputState.transform.transform(frame); | 
|  |  | 
|  | if (auto error = hwcLayer->setCursorPosition(position.left, position.top); | 
|  | error != hal::Error::NONE) { | 
|  | ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)", | 
|  | getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | HWC2::Layer* OutputLayer::getHwcLayer() const { | 
|  | const auto& state = getState(); | 
|  | return state.hwc ? state.hwc->hwcLayer.get() : nullptr; | 
|  | } | 
|  |  | 
|  | bool OutputLayer::requiresClientComposition() const { | 
|  | const auto& state = getState(); | 
|  | return !state.hwc || state.hwc->hwcCompositionType == hal::Composition::CLIENT; | 
|  | } | 
|  |  | 
|  | bool OutputLayer::isHardwareCursor() const { | 
|  | const auto& state = getState(); | 
|  | return state.hwc && state.hwc->hwcCompositionType == hal::Composition::CURSOR; | 
|  | } | 
|  |  | 
|  | void OutputLayer::detectDisallowedCompositionTypeChange(hal::Composition from, | 
|  | hal::Composition to) const { | 
|  | bool result = false; | 
|  | switch (from) { | 
|  | case hal::Composition::INVALID: | 
|  | case hal::Composition::CLIENT: | 
|  | result = false; | 
|  | break; | 
|  |  | 
|  | case hal::Composition::DEVICE: | 
|  | case hal::Composition::SOLID_COLOR: | 
|  | result = (to == hal::Composition::CLIENT); | 
|  | break; | 
|  |  | 
|  | case hal::Composition::CURSOR: | 
|  | case hal::Composition::SIDEBAND: | 
|  | result = (to == hal::Composition::CLIENT || to == hal::Composition::DEVICE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!result) { | 
|  | ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)", | 
|  | getLayerFE().getDebugName(), toString(from).c_str(), static_cast<int>(from), | 
|  | toString(to).c_str(), static_cast<int>(to)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::applyDeviceCompositionTypeChange(hal::Composition compositionType) { | 
|  | auto& state = editState(); | 
|  | LOG_FATAL_IF(!state.hwc); | 
|  | auto& hwcState = *state.hwc; | 
|  |  | 
|  | detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType); | 
|  |  | 
|  | hwcState.hwcCompositionType = compositionType; | 
|  | } | 
|  |  | 
|  | void OutputLayer::prepareForDeviceLayerRequests() { | 
|  | auto& state = editState(); | 
|  | state.clearClientTarget = false; | 
|  | } | 
|  |  | 
|  | void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) { | 
|  | auto& state = editState(); | 
|  | switch (request) { | 
|  | case hal::LayerRequest::CLEAR_CLIENT_TARGET: | 
|  | state.clearClientTarget = true; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(), | 
|  | toString(request).c_str(), static_cast<int>(request)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool OutputLayer::needsFiltering() const { | 
|  | const auto& state = getState(); | 
|  | const auto& displayFrame = state.displayFrame; | 
|  | const auto& sourceCrop = state.sourceCrop; | 
|  | return sourceCrop.getHeight() != displayFrame.getHeight() || | 
|  | sourceCrop.getWidth() != displayFrame.getWidth(); | 
|  | } | 
|  |  | 
|  | void OutputLayer::dump(std::string& out) const { | 
|  | using android::base::StringAppendF; | 
|  |  | 
|  | StringAppendF(&out, "  - Output Layer %p(%s)\n", this, getLayerFE().getDebugName()); | 
|  | dumpState(out); | 
|  | } | 
|  |  | 
|  | } // namespace impl | 
|  | } // namespace android::compositionengine |