|  | /* | 
|  | * Copyright (C) 2011 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Hardware Composer Commit Points | 
|  | * | 
|  | * Synopsis | 
|  | *   hwcCommit [options] graphicFormat ... | 
|  | *     options: | 
|  | *       -s [width, height] - Starting dimension | 
|  | *       -v - Verbose | 
|  | * | 
|  | *      graphic formats: | 
|  | *        RGBA8888 (reference frame default) | 
|  | *        RGBX8888 | 
|  | *        RGB888 | 
|  | *        RGB565 | 
|  | *        BGRA8888 | 
|  | *        RGBA5551 | 
|  | *        RGBA4444 | 
|  | *        YV12 | 
|  | * | 
|  | * Description | 
|  | *   The Hardware Composer (HWC) Commit test is a benchmark that | 
|  | *   discovers the points at which the HWC will commit to rendering an | 
|  | *   overlay(s).  Before rendering a set of overlays, the HWC is shown | 
|  | *   the list through a prepare call.  During the prepare call the HWC | 
|  | *   is able to examine the list and specify which overlays it is able | 
|  | *   to handle.  The overlays that it can't handle are typically composited | 
|  | *   by a higher level (e.g. Surface Flinger) and then the original list | 
|  | *   plus a composit of what HWC passed on are provided back to the HWC | 
|  | *   for rendering. | 
|  | * | 
|  | *   Once an implementation of the HWC has been shipped, a regression would | 
|  | *   likely occur if a latter implementation started passing on conditions | 
|  | *   that it used to commit to.  The primary purpose of this benchmark | 
|  | *   is the automated discovery of the commit points, where an implementation | 
|  | *   is on the edge between committing and not committing.  These are commonly | 
|  | *   referred to as commit points.  Between implementations changes to the | 
|  | *   commit points are allowed, as long as they improve what the HWC commits | 
|  | *   to.  Once an implementation of the HWC is shipped, the commit points are | 
|  | *   not allowed to regress in future implementations. | 
|  | * | 
|  | *   This benchmark takes a sampling and then adjusts until it finds a | 
|  | *   commit point.  It doesn't exhaustively check all possible conditions, | 
|  | *   which do to the number of combinations would be impossible.  Instead | 
|  | *   it starts its search from a starting dimension, that can be changed | 
|  | *   via the -s option.  The search is also bounded by a set of search | 
|  | *   limits, that are hard-coded into a structure of constants named | 
|  | *   searchLimits.  Results that happen to reach a searchLimit are prefixed | 
|  | *   with >=, so that it is known that the value could possibly be larger. | 
|  | * | 
|  | *   Measurements are made for each of the graphic formats specified as | 
|  | *   positional parameters on the command-line.  If no graphic formats | 
|  | *   are specified on the command line, then by default measurements are | 
|  | *   made and reported for each of the known graphic format. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "hwcCommitTest" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <assert.h> | 
|  | #include <cerrno> | 
|  | #include <cmath> | 
|  | #include <cstdlib> | 
|  | #include <ctime> | 
|  | #include <iomanip> | 
|  | #include <istream> | 
|  | #include <libgen.h> | 
|  | #include <list> | 
|  | #include <sched.h> | 
|  | #include <sstream> | 
|  | #include <stdint.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  | #include <vector> | 
|  |  | 
|  | #include <sys/syscall.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/wait.h> | 
|  |  | 
|  | #include <EGL/egl.h> | 
|  | #include <EGL/eglext.h> | 
|  | #include <GLES2/gl2.h> | 
|  | #include <GLES2/gl2ext.h> | 
|  |  | 
|  | #include <ui/GraphicBuffer.h> | 
|  |  | 
|  | #include <utils/Log.h> | 
|  | #include <testUtil.h> | 
|  |  | 
|  | #include <hardware/hwcomposer.h> | 
|  |  | 
|  | #include <glTestLib.h> | 
|  | #include "hwcTestLib.h" | 
|  |  | 
|  | using namespace std; | 
|  | using namespace android; | 
|  |  | 
|  | // Defaults | 
|  | const HwcTestDim defaultStartDim = HwcTestDim(100, 100); | 
|  | const bool defaultVerbose = false; | 
|  |  | 
|  | const uint32_t   defaultFormat = HAL_PIXEL_FORMAT_RGBA_8888; | 
|  | const int32_t    defaultTransform = 0; | 
|  | const uint32_t   defaultBlend = HWC_BLENDING_NONE; | 
|  | const ColorFract defaultColor(0.5, 0.5, 0.5); | 
|  | const float      defaultAlpha = 1.0; // Opaque | 
|  | const HwcTestDim defaultSourceDim(1, 1); | 
|  |  | 
|  | // Global Constants | 
|  | const uint32_t printFieldWidth = 2; | 
|  | const struct searchLimits { | 
|  | uint32_t   numOverlays; | 
|  | HwcTestDim sourceCrop; | 
|  | } searchLimits = { | 
|  | 10, | 
|  | HwcTestDim(3000, 2000), | 
|  | }; | 
|  | const struct transformType { | 
|  | const char *desc; | 
|  | uint32_t id; | 
|  | } transformType[] = { | 
|  | {"fliph",  HWC_TRANSFORM_FLIP_H}, | 
|  | {"flipv",  HWC_TRANSFORM_FLIP_V}, | 
|  | {"rot90",  HWC_TRANSFORM_ROT_90}, | 
|  | {"rot180", HWC_TRANSFORM_ROT_180}, | 
|  | {"rot270", HWC_TRANSFORM_ROT_270}, | 
|  | }; | 
|  | const struct blendType { | 
|  | const char *desc; | 
|  | uint32_t id; | 
|  | } blendType[] = { | 
|  | {"none", HWC_BLENDING_NONE}, | 
|  | {"premult", HWC_BLENDING_PREMULT}, | 
|  | {"coverage", HWC_BLENDING_COVERAGE}, | 
|  | }; | 
|  |  | 
|  | // Defines | 
|  | #define MAXCMD               200 | 
|  | #define CMD_STOP_FRAMEWORK   "stop 2>&1" | 
|  | #define CMD_START_FRAMEWORK  "start 2>&1" | 
|  |  | 
|  | // Macros | 
|  | #define NUMA(a) (sizeof(a) / sizeof((a)[0])) // Num elements in an array | 
|  |  | 
|  | // Local types | 
|  | class Rectangle { | 
|  | public: | 
|  | explicit Rectangle(uint32_t graphicFormat = defaultFormat, | 
|  | HwcTestDim dfDim = HwcTestDim(1, 1), | 
|  | HwcTestDim sDim = HwcTestDim(1, 1)); | 
|  | void setSourceDim(HwcTestDim dim); | 
|  |  | 
|  | uint32_t     format; | 
|  | uint32_t     transform; | 
|  | int32_t      blend; | 
|  | ColorFract   color; | 
|  | float        alpha; | 
|  | HwcTestDim   sourceDim; | 
|  | struct hwc_rect   sourceCrop; | 
|  | struct hwc_rect   displayFrame; | 
|  | }; | 
|  |  | 
|  | class Range { | 
|  | public: | 
|  | Range(void) : _l(0), _u(0) {} | 
|  | Range(uint32_t lower, uint32_t upper) : _l(lower), _u(upper) {} | 
|  | uint32_t lower(void) { return _l; } | 
|  | uint32_t upper(void) { return _u; } | 
|  |  | 
|  | operator string(); | 
|  |  | 
|  | private: | 
|  | uint32_t _l; // lower | 
|  | uint32_t _u; // upper | 
|  | }; | 
|  |  | 
|  | Range::operator string() | 
|  | { | 
|  | ostringstream out; | 
|  |  | 
|  | out << '[' << _l << ", " << _u << ']'; | 
|  |  | 
|  | return out.str(); | 
|  | } | 
|  |  | 
|  | class Rational { | 
|  | public: | 
|  | Rational(void) : _n(0), _d(1) {} | 
|  | Rational(uint32_t n, uint32_t d) : _n(n), _d(d) {} | 
|  | uint32_t numerator(void) { return _n; } | 
|  | uint32_t denominator(void) { return _d; } | 
|  | void setNumerator(uint32_t numerator) { _n = numerator; } | 
|  |  | 
|  | bool operator==(const Rational& other) const; | 
|  | bool operator!=(const Rational& other) const { return !(*this == other); } | 
|  | bool operator<(const Rational& other) const; | 
|  | bool operator>(const Rational& other) const { | 
|  | return (!(*this == other) && !(*this < other)); | 
|  | } | 
|  | static void double2Rational(double f, Range nRange, Range dRange, | 
|  | Rational& lower, Rational& upper); | 
|  |  | 
|  | operator string() const; | 
|  | operator double() const { return (double) _n / (double) _d; } | 
|  |  | 
|  |  | 
|  | private: | 
|  | uint32_t _n; | 
|  | uint32_t _d; | 
|  | }; | 
|  |  | 
|  | // Globals | 
|  | static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE | | 
|  | GraphicBuffer::USAGE_SW_WRITE_RARELY; | 
|  | static hwc_composer_device_1_t *hwcDevice; | 
|  | static EGLDisplay dpy; | 
|  | static EGLSurface surface; | 
|  | static EGLint width, height; | 
|  | static size_t maxHeadingLen; | 
|  | static vector<string> formats; | 
|  |  | 
|  | // Measurements | 
|  | struct meas { | 
|  | uint32_t format; | 
|  | uint32_t startDimOverlays; | 
|  | uint32_t maxNonOverlapping; | 
|  | uint32_t maxOverlapping; | 
|  | list<uint32_t> transforms; | 
|  | list<uint32_t> blends; | 
|  | struct displayFrame { | 
|  | uint32_t minWidth; | 
|  | uint32_t minHeight; | 
|  | HwcTestDim minDim; | 
|  | uint32_t maxWidth; | 
|  | uint32_t maxHeight; | 
|  | HwcTestDim maxDim; | 
|  | } df; | 
|  | struct sourceCrop { | 
|  | uint32_t minWidth; | 
|  | uint32_t minHeight; | 
|  | HwcTestDim minDim; | 
|  | uint32_t maxWidth; | 
|  | uint32_t maxHeight; | 
|  | HwcTestDim maxDim; | 
|  | Rational hScale; | 
|  | HwcTestDim hScaleBestDf; | 
|  | HwcTestDim hScaleBestSc; | 
|  | Rational vScale; | 
|  | HwcTestDim vScaleBestDf; | 
|  | HwcTestDim vScaleBestSc; | 
|  | } sc; | 
|  | vector<uint32_t> overlapBlendNone; | 
|  | vector<uint32_t> overlapBlendPremult; | 
|  | vector<uint32_t> overlapBlendCoverage; | 
|  | }; | 
|  | vector<meas> measurements; | 
|  |  | 
|  | // Function prototypes | 
|  | uint32_t numOverlays(list<Rectangle>& rectList); | 
|  | uint32_t maxOverlays(uint32_t format, bool allowOverlap); | 
|  | list<uint32_t> supportedTransforms(uint32_t format); | 
|  | list<uint32_t> supportedBlends(uint32_t format); | 
|  | uint32_t dfMinWidth(uint32_t format); | 
|  | uint32_t dfMinHeight(uint32_t format); | 
|  | uint32_t dfMaxWidth(uint32_t format); | 
|  | uint32_t dfMaxHeight(uint32_t format); | 
|  | HwcTestDim dfMinDim(uint32_t format); | 
|  | HwcTestDim dfMaxDim(uint32_t format); | 
|  | uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim); | 
|  | uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim); | 
|  | uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim); | 
|  | uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim); | 
|  | HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim); | 
|  | HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim); | 
|  | Rational scHScale(uint32_t format, | 
|  | const HwcTestDim& dfMin, const HwcTestDim& dfMax, | 
|  | const HwcTestDim& scMin, const HwcTestDim& scMax, | 
|  | HwcTestDim& outBestDf, HwcTestDim& outBestSc); | 
|  | Rational scVScale(uint32_t format, | 
|  | const HwcTestDim& dfMin, const HwcTestDim& dfMax, | 
|  | const HwcTestDim& scMin, const HwcTestDim& scMax, | 
|  | HwcTestDim& outBestDf, HwcTestDim& outBestSc); | 
|  | uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat, | 
|  | uint32_t backgroundBlend, uint32_t foregroundBlend); | 
|  | string transformList2str(const list<uint32_t>& transformList); | 
|  | string blendList2str(const list<uint32_t>& blendList); | 
|  | void init(void); | 
|  | void printFormatHeadings(size_t indent); | 
|  | void printOverlapLine(size_t indent, const string formatStr, | 
|  | const vector<uint32_t>& results); | 
|  | void printSyntax(const char *cmd); | 
|  |  | 
|  | // Command-line option settings | 
|  | static bool verbose = defaultVerbose; | 
|  | static HwcTestDim startDim = defaultStartDim; | 
|  |  | 
|  | /* | 
|  | * Main | 
|  | * | 
|  | * Performs the following high-level sequence of operations: | 
|  | * | 
|  | *   1. Command-line parsing | 
|  | * | 
|  | *   2. Form a list of command-line specified graphic formats.  If | 
|  | *      no formats are specified, then form a list of all known formats. | 
|  | * | 
|  | *   3. Stop framework | 
|  | *      Only one user at a time is allowed to use the HWC.  Surface | 
|  | *      Flinger uses the HWC and is part of the framework.  Need to | 
|  | *      stop the framework so that Surface Flinger will stop using | 
|  | *      the HWC. | 
|  | * | 
|  | *   4. Initialization | 
|  | * | 
|  | *   5. For each graphic format in the previously formed list perform | 
|  | *      measurements on that format and report the results. | 
|  | * | 
|  | *   6. Start framework | 
|  | */ | 
|  | int | 
|  | main(int argc, char *argv[]) | 
|  | { | 
|  | int     rv, opt; | 
|  | bool    error; | 
|  | string  str; | 
|  | char cmd[MAXCMD]; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | testSetLogCatTag(LOG_TAG); | 
|  |  | 
|  | // Parse command line arguments | 
|  | while ((opt = getopt(argc, argv, "s:v?h")) != -1) { | 
|  | switch (opt) { | 
|  |  | 
|  | case 's': // Start Dimension | 
|  | // Use arguments until next starts with a dash | 
|  | // or current ends with a > or ] | 
|  | str = optarg; | 
|  | while (optind < argc) { | 
|  | if (*argv[optind] == '-') { break; } | 
|  | char endChar = (str.length() > 1) ? str[str.length() - 1] : 0; | 
|  | if ((endChar == '>') || (endChar == ']')) { break; } | 
|  | str += " " + string(argv[optind++]); | 
|  | } | 
|  | { | 
|  | istringstream in(str); | 
|  | startDim = hwcTestParseDim(in, error); | 
|  | // Any parse error or characters not used by parser | 
|  | if (error | 
|  | || (((unsigned int) in.tellg() != in.str().length()) | 
|  | && (in.tellg() != (streampos) -1))) { | 
|  | testPrintE("Invalid command-line specified start " | 
|  | "dimension of: %s", str.c_str()); | 
|  | exit(8); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'v': // Verbose | 
|  | verbose = true; | 
|  | break; | 
|  |  | 
|  | case 'h': // Help | 
|  | case '?': | 
|  | default: | 
|  | printSyntax(basename(argv[0])); | 
|  | exit(((optopt == 0) || (optopt == '?')) ? 0 : 11); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Positional parameters | 
|  | // Positional parameters provide the names of graphic formats that | 
|  | // measurements are to be made on.  Measurements are made on all | 
|  | // known graphic formats when no positional parameters are provided. | 
|  | if (optind == argc) { | 
|  | // No command-line specified graphic formats | 
|  | // Add all graphic formats to the list of formats to be measured | 
|  | for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) { | 
|  | formats.push_back(hwcTestGraphicFormat[n1].desc); | 
|  | } | 
|  | } else { | 
|  | // Add names of command-line specified graphic formats to the | 
|  | // list of formats to be tested | 
|  | for (; argv[optind] != NULL; optind++) { | 
|  | formats.push_back(argv[optind]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine length of longest specified graphic format. | 
|  | // This value is used for output formating | 
|  | for (vector<string>::iterator it = formats.begin(); | 
|  | it != formats.end(); ++it) { | 
|  | maxHeadingLen = max(maxHeadingLen, it->length()); | 
|  | } | 
|  |  | 
|  | // Stop framework | 
|  | rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK); | 
|  | if (rv >= (signed) sizeof(cmd) - 1) { | 
|  | testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK); | 
|  | exit(14); | 
|  | } | 
|  | testExecCmd(cmd); | 
|  | testDelay(1.0); // TODO - needs means to query whether asynchronous stop | 
|  | // framework operation has completed.  For now, just wait | 
|  | // a long time. | 
|  |  | 
|  | testPrintI("startDim: %s", ((string) startDim).c_str()); | 
|  |  | 
|  | init(); | 
|  |  | 
|  | // For each of the graphic formats | 
|  | for (vector<string>::iterator itFormat = formats.begin(); | 
|  | itFormat != formats.end(); ++itFormat) { | 
|  |  | 
|  | // Locate hwcTestLib structure that describes this format | 
|  | const struct hwcTestGraphicFormat *format; | 
|  | format = hwcTestGraphicFormatLookup((*itFormat).c_str()); | 
|  | if (format == NULL) { | 
|  | testPrintE("Unknown graphic format of: %s", (*itFormat).c_str()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // Display format header | 
|  | testPrintI("format: %s", format->desc); | 
|  |  | 
|  | // Create area to hold the measurements | 
|  | struct meas meas; | 
|  | struct meas *measPtr; | 
|  | meas.format = format->format; | 
|  | measurements.push_back(meas); | 
|  | measPtr = &measurements[measurements.size() - 1]; | 
|  |  | 
|  | // Start dimension num overlays | 
|  | Rectangle rect(format->format, startDim); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | measPtr->startDimOverlays = numOverlays(rectList); | 
|  | testPrintI("  startDimOverlays: %u", measPtr->startDimOverlays); | 
|  |  | 
|  | // Skip the rest of the measurements, when the start dimension | 
|  | // doesn't produce an overlay | 
|  | if (measPtr->startDimOverlays == 0) { continue; } | 
|  |  | 
|  | // Max Overlays | 
|  | measPtr->maxNonOverlapping = maxOverlays(format->format, false); | 
|  | testPrintI("  max nonOverlapping overlays: %s%u", | 
|  | (measPtr->maxNonOverlapping == searchLimits.numOverlays) | 
|  | ? ">= " : "", | 
|  | measPtr->maxNonOverlapping); | 
|  | measPtr->maxOverlapping = maxOverlays(format->format, true); | 
|  | testPrintI("  max Overlapping overlays: %s%u", | 
|  | (measPtr->maxOverlapping == searchLimits.numOverlays) | 
|  | ? ">= " : "", | 
|  | measPtr->maxOverlapping); | 
|  |  | 
|  | // Transforms and blends | 
|  | measPtr->transforms = supportedTransforms(format->format); | 
|  | testPrintI("  transforms: %s", | 
|  | transformList2str(measPtr->transforms).c_str()); | 
|  | measPtr->blends = supportedBlends(format->format); | 
|  | testPrintI("  blends: %s", | 
|  | blendList2str(measPtr->blends).c_str()); | 
|  |  | 
|  | // Display frame measurements | 
|  | measPtr->df.minWidth = dfMinWidth(format->format); | 
|  | testPrintI("  dfMinWidth: %u", measPtr->df.minWidth); | 
|  |  | 
|  | measPtr->df.minHeight = dfMinHeight(format->format); | 
|  | testPrintI("  dfMinHeight: %u", measPtr->df.minHeight); | 
|  |  | 
|  | measPtr->df.maxWidth = dfMaxWidth(format->format); | 
|  | testPrintI("  dfMaxWidth: %u", measPtr->df.maxWidth); | 
|  |  | 
|  | measPtr->df.maxHeight = dfMaxHeight(format->format); | 
|  | testPrintI("  dfMaxHeight: %u", measPtr->df.maxHeight); | 
|  |  | 
|  | measPtr->df.minDim = dfMinDim(format->format); | 
|  | testPrintI("  dfMinDim: %s", ((string) measPtr->df.minDim).c_str()); | 
|  |  | 
|  | measPtr->df.maxDim = dfMaxDim(format->format); | 
|  | testPrintI("  dfMaxDim: %s", ((string) measPtr->df.maxDim).c_str()); | 
|  |  | 
|  | // Source crop measurements | 
|  | measPtr->sc.minWidth = scMinWidth(format->format, measPtr->df.minDim); | 
|  | testPrintI("  scMinWidth: %u", measPtr->sc.minWidth); | 
|  |  | 
|  | measPtr->sc.minHeight = scMinHeight(format->format, measPtr->df.minDim); | 
|  | testPrintI("  scMinHeight: %u", measPtr->sc.minHeight); | 
|  |  | 
|  | measPtr->sc.maxWidth = scMaxWidth(format->format, measPtr->df.maxDim); | 
|  | testPrintI("  scMaxWidth: %s%u", (measPtr->sc.maxWidth | 
|  | == searchLimits.sourceCrop.width()) ? ">= " : "", | 
|  | measPtr->sc.maxWidth); | 
|  |  | 
|  | measPtr->sc.maxHeight = scMaxHeight(format->format, measPtr->df.maxDim); | 
|  | testPrintI("  scMaxHeight: %s%u", (measPtr->sc.maxHeight | 
|  | == searchLimits.sourceCrop.height()) ? ">= " : "", | 
|  | measPtr->sc.maxHeight); | 
|  |  | 
|  | measPtr->sc.minDim = scMinDim(format->format, measPtr->df.minDim); | 
|  | testPrintI("  scMinDim: %s", ((string) measPtr->sc.minDim).c_str()); | 
|  |  | 
|  | measPtr->sc.maxDim = scMaxDim(format->format, measPtr->df.maxDim); | 
|  | testPrintI("  scMaxDim: %s%s", ((measPtr->sc.maxDim.width() | 
|  | >= searchLimits.sourceCrop.width()) | 
|  | || (measPtr->sc.maxDim.width() >= | 
|  | searchLimits.sourceCrop.height())) ? ">= " : "", | 
|  | ((string) measPtr->sc.maxDim).c_str()); | 
|  |  | 
|  | measPtr->sc.hScale = scHScale(format->format, | 
|  | measPtr->df.minDim, measPtr->df.maxDim, | 
|  | measPtr->sc.minDim, measPtr->sc.maxDim, | 
|  | measPtr->sc.hScaleBestDf, | 
|  | measPtr->sc.hScaleBestSc); | 
|  | testPrintI("  scHScale: %s%f", | 
|  | (measPtr->sc.hScale | 
|  | >= Rational(searchLimits.sourceCrop.width(), | 
|  | measPtr->df.minDim.width())) ? ">= " : "", | 
|  | (double) measPtr->sc.hScale); | 
|  | testPrintI("    HScale Best Display Frame: %s", | 
|  | ((string) measPtr->sc.hScaleBestDf).c_str()); | 
|  | testPrintI("    HScale Best Source Crop: %s", | 
|  | ((string) measPtr->sc.hScaleBestSc).c_str()); | 
|  |  | 
|  | measPtr->sc.vScale = scVScale(format->format, | 
|  | measPtr->df.minDim, measPtr->df.maxDim, | 
|  | measPtr->sc.minDim, measPtr->sc.maxDim, | 
|  | measPtr->sc.vScaleBestDf, | 
|  | measPtr->sc.vScaleBestSc); | 
|  | testPrintI("  scVScale: %s%f", | 
|  | (measPtr->sc.vScale | 
|  | >= Rational(searchLimits.sourceCrop.height(), | 
|  | measPtr->df.minDim.height())) ? ">= " : "", | 
|  | (double) measPtr->sc.vScale); | 
|  | testPrintI("    VScale Best Display Frame: %s", | 
|  | ((string) measPtr->sc.vScaleBestDf).c_str()); | 
|  | testPrintI("    VScale Best Source Crop: %s", | 
|  | ((string) measPtr->sc.vScaleBestSc).c_str()); | 
|  |  | 
|  | // Overlap two graphic formats and different blends | 
|  | // Results displayed after all overlap measurments with | 
|  | // current format in the foreground | 
|  | // TODO: make measurments with background blend other than | 
|  | //       none.  All of these measurements are done with a | 
|  | //       background blend of HWC_BLENDING_NONE, with the | 
|  | //       blend type of the foregound being varied. | 
|  | uint32_t foregroundFormat = format->format; | 
|  | for (vector<string>::iterator it = formats.begin(); | 
|  | it != formats.end(); ++it) { | 
|  | uint32_t num; | 
|  |  | 
|  | const struct hwcTestGraphicFormat *backgroundFormatPtr | 
|  | = hwcTestGraphicFormatLookup((*it).c_str()); | 
|  | uint32_t backgroundFormat = backgroundFormatPtr->format; | 
|  |  | 
|  | num = numOverlapping(backgroundFormat, foregroundFormat, | 
|  | HWC_BLENDING_NONE, HWC_BLENDING_NONE); | 
|  | measPtr->overlapBlendNone.push_back(num); | 
|  |  | 
|  | num = numOverlapping(backgroundFormat, foregroundFormat, | 
|  | HWC_BLENDING_NONE, HWC_BLENDING_PREMULT); | 
|  | measPtr->overlapBlendPremult.push_back(num); | 
|  |  | 
|  | num = numOverlapping(backgroundFormat, foregroundFormat, | 
|  | HWC_BLENDING_NONE, HWC_BLENDING_COVERAGE); | 
|  | measPtr->overlapBlendCoverage.push_back(num); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // Display overlap results | 
|  | size_t indent = 2; | 
|  | testPrintI("overlapping blend: none"); | 
|  | printFormatHeadings(indent); | 
|  | for (vector<string>::iterator it = formats.begin(); | 
|  | it != formats.end(); ++it) { | 
|  | printOverlapLine(indent, *it, measurements[it | 
|  | - formats.begin()].overlapBlendNone); | 
|  | } | 
|  | testPrintI(""); | 
|  |  | 
|  | testPrintI("overlapping blend: premult"); | 
|  | printFormatHeadings(indent); | 
|  | for (vector<string>::iterator it = formats.begin(); | 
|  | it != formats.end(); ++it) { | 
|  | printOverlapLine(indent, *it, measurements[it | 
|  | - formats.begin()].overlapBlendPremult); | 
|  | } | 
|  | testPrintI(""); | 
|  |  | 
|  | testPrintI("overlapping blend: coverage"); | 
|  | printFormatHeadings(indent); | 
|  | for (vector<string>::iterator it = formats.begin(); | 
|  | it != formats.end(); ++it) { | 
|  | printOverlapLine(indent, *it, measurements[it | 
|  | - formats.begin()].overlapBlendCoverage); | 
|  | } | 
|  | testPrintI(""); | 
|  |  | 
|  | // Start framework | 
|  | rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK); | 
|  | if (rv >= (signed) sizeof(cmd) - 1) { | 
|  | testPrintE("Command too long for: %s", CMD_START_FRAMEWORK); | 
|  | exit(21); | 
|  | } | 
|  | testExecCmd(cmd); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Determine the maximum number of overlays that are all of the same format | 
|  | // that the HWC will commit to.  If allowOverlap is true, then the rectangles | 
|  | // are laid out on a diagonal starting from the upper left corner.  With | 
|  | // each rectangle adjust one pixel to the right and one pixel down. | 
|  | // When allowOverlap is false, the rectangles are tiled in column major | 
|  | // order.  Note, column major ordering is used so that the initial rectangles | 
|  | // are all on different horizontal scan rows.  It is common that hardware | 
|  | // has limits on the number of objects it can handle on any single row. | 
|  | uint32_t maxOverlays(uint32_t format, bool allowOverlap) | 
|  | { | 
|  | unsigned int max = 0; | 
|  |  | 
|  | for (unsigned int numRects = 1; numRects <= searchLimits.numOverlays; | 
|  | numRects++) { | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (unsigned int x = 0; | 
|  | (x + startDim.width()) < (unsigned int) width; | 
|  | x += (allowOverlap) ? 1 : startDim.width()) { | 
|  | for (unsigned int y = 0; | 
|  | (y + startDim.height()) < (unsigned int) height; | 
|  | y += (allowOverlap) ? 1 : startDim.height()) { | 
|  | Rectangle rect(format, startDim, startDim); | 
|  | rect.displayFrame.left = x; | 
|  | rect.displayFrame.top = y; | 
|  | rect.displayFrame.right = x + startDim.width(); | 
|  | rect.displayFrame.bottom = y + startDim.height(); | 
|  |  | 
|  | rectList.push_back(rect); | 
|  |  | 
|  | if (rectList.size() >= numRects) { break; } | 
|  | } | 
|  | if (rectList.size() >= numRects) { break; } | 
|  | } | 
|  |  | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > max) { max = num; } | 
|  | } | 
|  |  | 
|  | return max; | 
|  | } | 
|  |  | 
|  | // Measures what transforms (i.e. flip horizontal, rotate 180) are | 
|  | // supported by the specified format | 
|  | list<uint32_t> supportedTransforms(uint32_t format) | 
|  | { | 
|  | list<uint32_t> rv; | 
|  | list<Rectangle> rectList; | 
|  | Rectangle rect(format, startDim); | 
|  |  | 
|  | // For each of the transform types | 
|  | for (unsigned int idx = 0; idx < NUMA(transformType); idx++) { | 
|  | unsigned int id = transformType[idx].id; | 
|  |  | 
|  | rect.transform = id; | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  |  | 
|  | if (num == 1) { | 
|  | rv.push_back(id); | 
|  | } | 
|  | } | 
|  |  | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | // Determines which types of blends (i.e. none, premult, coverage) are | 
|  | // supported by the specified format | 
|  | list<uint32_t> supportedBlends(uint32_t format) | 
|  | { | 
|  | list<uint32_t> rv; | 
|  | list<Rectangle> rectList; | 
|  | Rectangle rect(format, startDim); | 
|  |  | 
|  | // For each of the blend types | 
|  | for (unsigned int idx = 0; idx < NUMA(blendType); idx++) { | 
|  | unsigned int id = blendType[idx].id; | 
|  |  | 
|  | rect.blend = id; | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  |  | 
|  | if (num == 1) { | 
|  | rv.push_back(id); | 
|  | } | 
|  | } | 
|  |  | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | // Determines the minimum width of any display frame of the given format | 
|  | // that the HWC will commit to. | 
|  | uint32_t dfMinWidth(uint32_t format) | 
|  | { | 
|  | uint32_t w; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (w = 1; w <= startDim.width(); w++) { | 
|  | HwcTestDim dim(w, startDim.height()); | 
|  | Rectangle rect(format, dim); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return w; | 
|  | } | 
|  | } | 
|  | if (w > startDim.width()) { | 
|  | testPrintE("Failed to locate display frame min width"); | 
|  | exit(33); | 
|  | } | 
|  |  | 
|  | return w; | 
|  | } | 
|  |  | 
|  | // Display frame minimum height | 
|  | uint32_t dfMinHeight(uint32_t format) | 
|  | { | 
|  | uint32_t h; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (h = 1; h <= startDim.height(); h++) { | 
|  | HwcTestDim dim(startDim.width(), h); | 
|  | Rectangle rect(format, dim); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return h; | 
|  | } | 
|  | } | 
|  | if (h > startDim.height()) { | 
|  | testPrintE("Failed to locate display frame min height"); | 
|  | exit(34); | 
|  | } | 
|  |  | 
|  | return h; | 
|  | } | 
|  |  | 
|  | // Display frame maximum width | 
|  | uint32_t dfMaxWidth(uint32_t format) | 
|  | { | 
|  | uint32_t w; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (w = width; w >= startDim.width(); w--) { | 
|  | HwcTestDim dim(w, startDim.height()); | 
|  | Rectangle rect(format, dim); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return w; | 
|  | } | 
|  | } | 
|  | if (w < startDim.width()) { | 
|  | testPrintE("Failed to locate display frame max width"); | 
|  | exit(35); | 
|  | } | 
|  |  | 
|  | return w; | 
|  | } | 
|  |  | 
|  | // Display frame maximum height | 
|  | uint32_t dfMaxHeight(uint32_t format) | 
|  | { | 
|  | uint32_t h; | 
|  |  | 
|  | for (h = height; h >= startDim.height(); h--) { | 
|  | HwcTestDim dim(startDim.width(), h); | 
|  | Rectangle rect(format, dim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return h; | 
|  | } | 
|  | } | 
|  | if (h < startDim.height()) { | 
|  | testPrintE("Failed to locate display frame max height"); | 
|  | exit(36); | 
|  | } | 
|  |  | 
|  | return h; | 
|  | } | 
|  |  | 
|  | // Determine the minimum number of pixels that the HWC will ever commit to. | 
|  | // Note, this might be different that dfMinWidth * dfMinHeight, in that this | 
|  | // function adjusts both the width and height from the starting dimension. | 
|  | HwcTestDim dfMinDim(uint32_t format) | 
|  | { | 
|  | uint64_t bestMinPixels = 0; | 
|  | HwcTestDim bestDim; | 
|  | bool bestSet = false; // True when value has been assigned to | 
|  | // bestMinPixels and bestDim | 
|  |  | 
|  | bool origVerbose = verbose;  // Temporarily turn off verbose | 
|  | verbose = false; | 
|  | for (uint32_t w = 1; w <= startDim.width(); w++) { | 
|  | for (uint32_t h = 1; h <= startDim.height(); h++) { | 
|  | if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | HwcTestDim dim(w, h); | 
|  | Rectangle rect(format, dim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | uint64_t pixels = dim.width() * dim.height(); | 
|  | if (!bestSet || (pixels < bestMinPixels)) { | 
|  | bestMinPixels = pixels; | 
|  | bestDim = dim; | 
|  | bestSet = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | verbose = origVerbose; | 
|  |  | 
|  | if (!bestSet) { | 
|  | testPrintE("Unable to locate display frame min dimension"); | 
|  | exit(20); | 
|  | } | 
|  |  | 
|  | return bestDim; | 
|  | } | 
|  |  | 
|  | // Display frame maximum dimension | 
|  | HwcTestDim dfMaxDim(uint32_t format) | 
|  | { | 
|  | uint64_t bestMaxPixels = 0; | 
|  | HwcTestDim bestDim; | 
|  | bool bestSet = false; // True when value has been assigned to | 
|  | // bestMaxPixels and bestDim; | 
|  |  | 
|  | // Potentially increase benchmark performance by first checking | 
|  | // for the common case of supporting a full display frame. | 
|  | HwcTestDim dim(width, height); | 
|  | Rectangle rect(format, dim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num == 1) { return dim; } | 
|  |  | 
|  | // TODO: Use a binary search | 
|  | bool origVerbose = verbose;  // Temporarily turn off verbose | 
|  | verbose = false; | 
|  | for (uint32_t w = startDim.width(); w <= (uint32_t) width; w++) { | 
|  | for (uint32_t h = startDim.height(); h <= (uint32_t) height; h++) { | 
|  | if (bestSet && ((w * h) <= bestMaxPixels)) { continue; } | 
|  |  | 
|  | HwcTestDim dim(w, h); | 
|  | Rectangle rect(format, dim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | uint64_t pixels = dim.width() * dim.height(); | 
|  | if (!bestSet || (pixels > bestMaxPixels)) { | 
|  | bestMaxPixels = pixels; | 
|  | bestDim = dim; | 
|  | bestSet = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | verbose = origVerbose; | 
|  |  | 
|  | if (!bestSet) { | 
|  | testPrintE("Unable to locate display frame max dimension"); | 
|  | exit(21); | 
|  | } | 
|  |  | 
|  | return bestDim; | 
|  | } | 
|  |  | 
|  | // Source crop minimum width | 
|  | uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim) | 
|  | { | 
|  | uint32_t w; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | // Source crop frame min width | 
|  | for (w = 1; w <= dfDim.width(); w++) { | 
|  | Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height())); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return w; | 
|  | } | 
|  | } | 
|  | testPrintE("Failed to locate source crop min width"); | 
|  | exit(35); | 
|  | } | 
|  |  | 
|  | // Source crop minimum height | 
|  | uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim) | 
|  | { | 
|  | uint32_t h; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (h = 1; h <= dfDim.height(); h++) { | 
|  | Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h)); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return h; | 
|  | } | 
|  | } | 
|  | testPrintE("Failed to locate source crop min height"); | 
|  | exit(36); | 
|  | } | 
|  |  | 
|  | // Source crop maximum width | 
|  | uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim) | 
|  | { | 
|  | uint32_t w; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (w = searchLimits.sourceCrop.width(); w >= dfDim.width(); w--) { | 
|  | Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height())); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return w; | 
|  | } | 
|  | } | 
|  | testPrintE("Failed to locate source crop max width"); | 
|  | exit(35); | 
|  | } | 
|  |  | 
|  | // Source crop maximum height | 
|  | uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim) | 
|  | { | 
|  | uint32_t h; | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | for (h = searchLimits.sourceCrop.height(); h >= dfDim.height(); h--) { | 
|  | Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h)); | 
|  | rectList.clear(); | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | return h; | 
|  | } | 
|  | } | 
|  | testPrintE("Failed to locate source crop max height"); | 
|  | exit(36); | 
|  | } | 
|  |  | 
|  | // Source crop minimum dimension | 
|  | // Discovers the source crop with the least number of pixels that the | 
|  | // HWC will commit to.  Note, this may be different from scMinWidth | 
|  | // * scMinHeight, in that this function searches for a combination of | 
|  | // width and height.  While the other routines always keep one of the | 
|  | // dimensions equal to the corresponding start dimension. | 
|  | HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim) | 
|  | { | 
|  | uint64_t bestMinPixels = 0; | 
|  | HwcTestDim bestDim; | 
|  | bool bestSet = false; // True when value has been assigned to | 
|  | // bestMinPixels and bestDim | 
|  |  | 
|  | bool origVerbose = verbose;  // Temporarily turn off verbose | 
|  | verbose = false; | 
|  | for (uint32_t w = 1; w <= dfDim.width(); w++) { | 
|  | for (uint32_t h = 1; h <= dfDim.height(); h++) { | 
|  | if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | HwcTestDim dim(w, h); | 
|  | Rectangle rect(format, dfDim, HwcTestDim(w, h)); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | uint64_t pixels = dim.width() * dim.height(); | 
|  | if (!bestSet || (pixels < bestMinPixels)) { | 
|  | bestMinPixels = pixels; | 
|  | bestDim = dim; | 
|  | bestSet = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | verbose = origVerbose; | 
|  |  | 
|  | if (!bestSet) { | 
|  | testPrintE("Unable to locate source crop min dimension"); | 
|  | exit(20); | 
|  | } | 
|  |  | 
|  | return bestDim; | 
|  | } | 
|  |  | 
|  | // Source crop maximum dimension | 
|  | HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim) | 
|  | { | 
|  | uint64_t bestMaxPixels = 0; | 
|  | HwcTestDim bestDim; | 
|  | bool bestSet = false; // True when value has been assigned to | 
|  | // bestMaxPixels and bestDim; | 
|  |  | 
|  | // Potentially increase benchmark performance by first checking | 
|  | // for the common case of supporting the maximum checked source size | 
|  | HwcTestDim dim = searchLimits.sourceCrop; | 
|  | Rectangle rect(format, dfDim, searchLimits.sourceCrop); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num == 1) { return dim; } | 
|  |  | 
|  | // TODO: Use a binary search | 
|  | bool origVerbose = verbose;  // Temporarily turn off verbose | 
|  | verbose = false; | 
|  | for (uint32_t w = dfDim.width(); | 
|  | w <= searchLimits.sourceCrop.width(); w++) { | 
|  | for (uint32_t h = dfDim.height(); | 
|  | h <= searchLimits.sourceCrop.height(); h++) { | 
|  | if (bestSet && ((w * h) <= bestMaxPixels)) { continue; } | 
|  |  | 
|  | HwcTestDim dim(w, h); | 
|  | Rectangle rect(format, dfDim, dim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  | if (num > 0) { | 
|  | uint64_t pixels = dim.width() * dim.height(); | 
|  | if (!bestSet || (pixels > bestMaxPixels)) { | 
|  | bestMaxPixels = pixels; | 
|  | bestDim = dim; | 
|  | bestSet = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | verbose = origVerbose; | 
|  |  | 
|  | if (!bestSet) { | 
|  | testPrintE("Unable to locate source crop max dimension"); | 
|  | exit(21); | 
|  | } | 
|  |  | 
|  | return bestDim; | 
|  | } | 
|  |  | 
|  | // Source crop horizontal scale | 
|  | // Determines the maximum factor by which the source crop can be larger | 
|  | // that the display frame.  The commit point is discovered through a | 
|  | // binary search of rational numbers.  The numerator in each of the | 
|  | // rational numbers contains the dimension for the source crop, while | 
|  | // the denominator specifies the dimension for the display frame.  On | 
|  | // each pass of the binary search the mid-point between the greatest | 
|  | // point committed to (best) and the smallest point in which a commit | 
|  | // has failed is calculated.  This mid-point is then passed to a function | 
|  | // named double2Rational, which determines the closest rational numbers | 
|  | // just below and above the mid-point.  By default the lower rational | 
|  | // number is used for the scale factor on the next pass of the binary | 
|  | // search.  The upper value is only used when best is already equal | 
|  | // to the lower value.  This only occurs when the lower value has already | 
|  | // been tried. | 
|  | Rational scHScale(uint32_t format, | 
|  | const HwcTestDim& dfMin, const HwcTestDim& dfMax, | 
|  | const HwcTestDim& scMin, const HwcTestDim& scMax, | 
|  | HwcTestDim& outBestDf, HwcTestDim& outBestSc) | 
|  | { | 
|  | HwcTestDim scDim, dfDim; // Source crop and display frame dimension | 
|  | Rational best(0, 1), minBad;  // Current bounds for a binary search | 
|  | // MinGood is set below the lowest | 
|  | // possible scale.  The value of minBad, | 
|  | // will be set by the first pass | 
|  | // of the binary search. | 
|  |  | 
|  | // Perform the passes of the binary search | 
|  | bool firstPass = true; | 
|  | do { | 
|  | // On first pass try the maximum scale within the search limits | 
|  | if (firstPass) { | 
|  | // Try the maximum possible scale, within the search limits | 
|  | scDim = HwcTestDim(searchLimits.sourceCrop.width(), scMin.height()); | 
|  | dfDim = dfMin; | 
|  | } else { | 
|  | // Subsequent pass | 
|  | // Halve the difference between best and minBad. | 
|  | Rational lower, upper, selected; | 
|  |  | 
|  | // Try the closest ratio halfway between minBood and minBad; | 
|  | // TODO: Avoid rounding issue by using Rational type for | 
|  | //       midpoint.  For now will use double, which should | 
|  | //       have more than sufficient resolution. | 
|  | double mid = (double) best | 
|  | + ((double) minBad - (double) best) / 2.0; | 
|  | Rational::double2Rational(mid, | 
|  | Range(scMin.width(), scMax.width()), | 
|  | Range(dfMin.width(), dfMax.width()), | 
|  | lower, upper); | 
|  | if (((lower == best) && (upper == minBad))) { | 
|  | return best; | 
|  | } | 
|  |  | 
|  | // Use lower value unless its already been tried | 
|  | selected = (lower != best) ? lower : upper; | 
|  |  | 
|  | // Assign the size of the source crop and display frame | 
|  | // from the selected ratio of source crop to display frame. | 
|  | scDim = HwcTestDim(selected.numerator(), scMin.height()); | 
|  | dfDim = HwcTestDim(selected.denominator(), dfMin.height()); | 
|  | } | 
|  |  | 
|  | // See if the HWC will commit to this combination | 
|  | Rectangle rect(format, dfDim, scDim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  |  | 
|  | if (verbose) { | 
|  | testPrintI("  scHscale num: %u scale: %f dfDim: %s scDim: %s", | 
|  | num, (float) Rational(scDim.width(), dfDim.width()), | 
|  | ((string) dfDim).c_str(), ((string) scDim).c_str()); | 
|  | } | 
|  | if (num == 1) { | 
|  | // HWC committed to the combination | 
|  | // This is the best scale factor seen so far.  Report the | 
|  | // dimensions to the caller, in case nothing better is seen. | 
|  | outBestDf = dfDim; | 
|  | outBestSc = scDim; | 
|  |  | 
|  | // Success on the first pass means the largest possible scale | 
|  | // is supported, in which case no need to search any further. | 
|  | if (firstPass) { return Rational(scDim.width(), dfDim.width()); } | 
|  |  | 
|  | // Update the lower bound of the binary search | 
|  | best = Rational(scDim.width(), dfDim.width()); | 
|  | } else { | 
|  | // HWC didn't commit to this combination, so update the | 
|  | // upper bound of the binary search. | 
|  | minBad = Rational(scDim.width(), dfDim.width()); | 
|  | } | 
|  |  | 
|  | firstPass = false; | 
|  | } while (best != minBad); | 
|  |  | 
|  | return best; | 
|  | } | 
|  |  | 
|  | // Source crop vertical scale | 
|  | // Determines the maximum factor by which the source crop can be larger | 
|  | // that the display frame.  The commit point is discovered through a | 
|  | // binary search of rational numbers.  The numerator in each of the | 
|  | // rational numbers contains the dimension for the source crop, while | 
|  | // the denominator specifies the dimension for the display frame.  On | 
|  | // each pass of the binary search the mid-point between the greatest | 
|  | // point committed to (best) and the smallest point in which a commit | 
|  | // has failed is calculated.  This mid-point is then passed to a function | 
|  | // named double2Rational, which determines the closest rational numbers | 
|  | // just below and above the mid-point.  By default the lower rational | 
|  | // number is used for the scale factor on the next pass of the binary | 
|  | // search.  The upper value is only used when best is already equal | 
|  | // to the lower value.  This only occurs when the lower value has already | 
|  | // been tried. | 
|  | Rational scVScale(uint32_t format, | 
|  | const HwcTestDim& dfMin, const HwcTestDim& dfMax, | 
|  | const HwcTestDim& scMin, const HwcTestDim& scMax, | 
|  | HwcTestDim& outBestDf, HwcTestDim& outBestSc) | 
|  | { | 
|  | HwcTestDim scDim, dfDim; // Source crop and display frame dimension | 
|  | Rational best(0, 1), minBad;  // Current bounds for a binary search | 
|  | // MinGood is set below the lowest | 
|  | // possible scale.  The value of minBad, | 
|  | // will be set by the first pass | 
|  | // of the binary search. | 
|  |  | 
|  | // Perform the passes of the binary search | 
|  | bool firstPass = true; | 
|  | do { | 
|  | // On first pass try the maximum scale within the search limits | 
|  | if (firstPass) { | 
|  | // Try the maximum possible scale, within the search limits | 
|  | scDim = HwcTestDim(scMin.width(), searchLimits.sourceCrop.height()); | 
|  | dfDim = dfMin; | 
|  | } else { | 
|  | // Subsequent pass | 
|  | // Halve the difference between best and minBad. | 
|  | Rational lower, upper, selected; | 
|  |  | 
|  | // Try the closest ratio halfway between minBood and minBad; | 
|  | // TODO: Avoid rounding issue by using Rational type for | 
|  | //       midpoint.  For now will use double, which should | 
|  | //       have more than sufficient resolution. | 
|  | double mid = (double) best | 
|  | + ((double) minBad - (double) best) / 2.0; | 
|  | Rational::double2Rational(mid, | 
|  | Range(scMin.height(), scMax.height()), | 
|  | Range(dfMin.height(), dfMax.height()), | 
|  | lower, upper); | 
|  | if (((lower == best) && (upper == minBad))) { | 
|  | return best; | 
|  | } | 
|  |  | 
|  | // Use lower value unless its already been tried | 
|  | selected = (lower != best) ? lower : upper; | 
|  |  | 
|  | // Assign the size of the source crop and display frame | 
|  | // from the selected ratio of source crop to display frame. | 
|  | scDim = HwcTestDim(scMin.width(), selected.numerator()); | 
|  | dfDim = HwcTestDim(dfMin.width(), selected.denominator()); | 
|  | } | 
|  |  | 
|  | // See if the HWC will commit to this combination | 
|  | Rectangle rect(format, dfDim, scDim); | 
|  | list<Rectangle> rectList; | 
|  | rectList.push_back(rect); | 
|  | uint32_t num = numOverlays(rectList); | 
|  |  | 
|  | if (verbose) { | 
|  | testPrintI("  scHscale num: %u scale: %f dfDim: %s scDim: %s", | 
|  | num, (float) Rational(scDim.height(), dfDim.height()), | 
|  | ((string) dfDim).c_str(), ((string) scDim).c_str()); | 
|  | } | 
|  | if (num == 1) { | 
|  | // HWC committed to the combination | 
|  | // This is the best scale factor seen so far.  Report the | 
|  | // dimensions to the caller, in case nothing better is seen. | 
|  | outBestDf = dfDim; | 
|  | outBestSc = scDim; | 
|  |  | 
|  | // Success on the first pass means the largest possible scale | 
|  | // is supported, in which case no need to search any further. | 
|  | if (firstPass) { return Rational(scDim.height(), dfDim.height()); } | 
|  |  | 
|  | // Update the lower bound of the binary search | 
|  | best = Rational(scDim.height(), dfDim.height()); | 
|  | } else { | 
|  | // HWC didn't commit to this combination, so update the | 
|  | // upper bound of the binary search. | 
|  | minBad = Rational(scDim.height(), dfDim.height()); | 
|  | } | 
|  |  | 
|  | firstPass = false; | 
|  | } while (best != minBad); | 
|  |  | 
|  | return best; | 
|  | } | 
|  |  | 
|  | uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat, | 
|  | uint32_t backgroundBlend, uint32_t foregroundBlend) | 
|  | { | 
|  | list<Rectangle> rectList; | 
|  |  | 
|  | Rectangle background(backgroundFormat, startDim, startDim); | 
|  | background.blend = backgroundBlend; | 
|  | rectList.push_back(background); | 
|  |  | 
|  | // TODO: Handle cases where startDim is so small that adding 5 | 
|  | //       causes frames not to overlap. | 
|  | // TODO: Handle cases where startDim is so large that adding 5 | 
|  | //       cause a portion or all of the foreground displayFrame | 
|  | //       to be off the display. | 
|  | Rectangle foreground(foregroundFormat, startDim, startDim); | 
|  | foreground.displayFrame.left += 5; | 
|  | foreground.displayFrame.top += 5; | 
|  | foreground.displayFrame.right += 5; | 
|  | foreground.displayFrame.bottom += 5; | 
|  | background.blend = foregroundBlend; | 
|  | rectList.push_back(foreground); | 
|  |  | 
|  | uint32_t num = numOverlays(rectList); | 
|  |  | 
|  | return num; | 
|  | } | 
|  |  | 
|  | Rectangle::Rectangle(uint32_t graphicFormat, HwcTestDim dfDim, | 
|  | HwcTestDim sDim) : | 
|  | format(graphicFormat), transform(defaultTransform), | 
|  | blend(defaultBlend), color(defaultColor), alpha(defaultAlpha), | 
|  | sourceCrop(sDim), displayFrame(dfDim) | 
|  | { | 
|  | // Set source dimension | 
|  | // Can't use a base initializer, because the setting of format | 
|  | // must be done before setting the sourceDimension. | 
|  | setSourceDim(sDim); | 
|  | } | 
|  |  | 
|  | void Rectangle::setSourceDim(HwcTestDim dim) | 
|  | { | 
|  | this->sourceDim = dim; | 
|  |  | 
|  | const struct hwcTestGraphicFormat *attrib; | 
|  | attrib = hwcTestGraphicFormatLookup(this->format); | 
|  | if (attrib != NULL) { | 
|  | if (sourceDim.width() % attrib->wMod) { | 
|  | sourceDim.setWidth(sourceDim.width() + attrib->wMod | 
|  | - (sourceDim.width() % attrib->wMod)); | 
|  | } | 
|  | if (sourceDim.height() % attrib->hMod) { | 
|  | sourceDim.setHeight(sourceDim.height() + attrib->hMod | 
|  | - (sourceDim.height() % attrib->hMod)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rational member functions | 
|  | bool Rational::operator==(const Rational& other) const | 
|  | { | 
|  | if (((uint64_t) _n * other._d) | 
|  | == ((uint64_t) _d * other._n)) { return true; } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Rational::operator<(const Rational& other) const | 
|  | { | 
|  | if (((uint64_t) _n * other._d) | 
|  | < ((uint64_t) _d * other._n)) { return true; } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Rational::operator string() const | 
|  | { | 
|  | ostringstream out; | 
|  |  | 
|  | out << _n << '/' << _d; | 
|  |  | 
|  | return out.str(); | 
|  | } | 
|  |  | 
|  | void Rational::double2Rational(double f, Range nRange, Range dRange, | 
|  | Rational& lower, Rational& upper) | 
|  | { | 
|  | Rational bestLower(nRange.lower(), dRange.upper()); | 
|  | Rational bestUpper(nRange.upper(), dRange.lower()); | 
|  |  | 
|  | // Search for a better solution | 
|  | for (uint32_t d = dRange.lower(); d <= dRange.upper(); d++) { | 
|  | Rational val(d * f, d);  // Lower, because double to int cast truncates | 
|  |  | 
|  | if ((val.numerator() < nRange.lower()) | 
|  | || (val.numerator() > nRange.upper())) { continue; } | 
|  |  | 
|  | if (((double) val > (double) bestLower) && ((double) val <= f)) { | 
|  | bestLower = val; | 
|  | } | 
|  |  | 
|  | val.setNumerator(val.numerator() + 1); | 
|  | if (val.numerator() > nRange.upper()) { continue; } | 
|  |  | 
|  | if (((double) val < (double) bestUpper) && ((double) val >= f)) { | 
|  | bestUpper = val; | 
|  | } | 
|  | } | 
|  |  | 
|  | lower = bestLower; | 
|  | upper = bestUpper; | 
|  | } | 
|  |  | 
|  | // Local functions | 
|  |  | 
|  | // Num Overlays | 
|  | // Given a list of rectangles, determine how many HWC will commit to render | 
|  | uint32_t numOverlays(list<Rectangle>& rectList) | 
|  | { | 
|  | hwc_display_contents_1_t *hwcList; | 
|  | list<sp<GraphicBuffer> > buffers; | 
|  |  | 
|  | hwcList = hwcTestCreateLayerList(rectList.size()); | 
|  | if (hwcList == NULL) { | 
|  | testPrintE("numOverlays create hwcList failed"); | 
|  | exit(30); | 
|  | } | 
|  |  | 
|  | hwc_layer_1_t *layer = &hwcList->hwLayers[0]; | 
|  | for (std::list<Rectangle>::iterator it = rectList.begin(); | 
|  | it != rectList.end(); ++it, ++layer) { | 
|  | // Allocate the texture for the source frame | 
|  | // and push it onto the buffers list, so that it | 
|  | // stays in scope until a return from this function. | 
|  | sp<GraphicBuffer> texture; | 
|  | texture  = new GraphicBuffer(it->sourceDim.width(), | 
|  | it->sourceDim.height(), | 
|  | it->format, texUsage); | 
|  | buffers.push_back(texture); | 
|  |  | 
|  | layer->handle = texture->handle; | 
|  | layer->blending = it->blend; | 
|  | layer->transform = it->transform; | 
|  | layer->sourceCrop = it->sourceCrop; | 
|  | layer->displayFrame = it->displayFrame; | 
|  |  | 
|  | layer->visibleRegionScreen.numRects = 1; | 
|  | layer->visibleRegionScreen.rects = &layer->displayFrame; | 
|  | } | 
|  |  | 
|  | // Perform prepare operation | 
|  | if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(hwcList); } | 
|  | hwcDevice->prepare(hwcDevice, 1, &hwcList); | 
|  | if (verbose) { | 
|  | testPrintI("Post Prepare:"); | 
|  | hwcTestDisplayListPrepareModifiable(hwcList); | 
|  | } | 
|  |  | 
|  | // Count the number of overlays | 
|  | uint32_t total = 0; | 
|  | for (unsigned int n1 = 0; n1 < hwcList->numHwLayers; n1++) { | 
|  | if (hwcList->hwLayers[n1].compositionType == HWC_OVERLAY) { | 
|  | total++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Free the layer list and graphic buffers | 
|  | hwcTestFreeLayerList(hwcList); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | string transformList2str(const list<uint32_t>& transformList) | 
|  | { | 
|  | ostringstream out; | 
|  |  | 
|  | for (list<uint32_t>::const_iterator it = transformList.begin(); | 
|  | it != transformList.end(); ++it) { | 
|  | uint32_t id = *it; | 
|  |  | 
|  | if (it != transformList.begin()) { | 
|  | out << ", "; | 
|  | } | 
|  | out << id; | 
|  |  | 
|  | for (unsigned int idx = 0; idx < NUMA(transformType); idx++) { | 
|  | if (id == transformType[idx].id) { | 
|  | out << " (" << transformType[idx].desc << ')'; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return out.str(); | 
|  | } | 
|  |  | 
|  | string blendList2str(const list<uint32_t>& blendList) | 
|  | { | 
|  | ostringstream out; | 
|  |  | 
|  | for (list<uint32_t>::const_iterator it = blendList.begin(); | 
|  | it != blendList.end(); ++it) { | 
|  | uint32_t id = *it; | 
|  |  | 
|  | if (it != blendList.begin()) { | 
|  | out << ", "; | 
|  | } | 
|  | out << id; | 
|  |  | 
|  | for (unsigned int idx = 0; idx < NUMA(blendType); idx++) { | 
|  | if (id == blendType[idx].id) { | 
|  | out << " (" << blendType[idx].desc << ')'; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return out.str(); | 
|  | } | 
|  |  | 
|  | void init(void) | 
|  | { | 
|  | srand48(0); | 
|  |  | 
|  | hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height); | 
|  |  | 
|  | hwcTestOpenHwc(&hwcDevice); | 
|  | } | 
|  |  | 
|  | void printFormatHeadings(size_t indent) | 
|  | { | 
|  | for (size_t row = 0; row <= maxHeadingLen; row++) { | 
|  | ostringstream line; | 
|  | for(vector<string>::iterator it = formats.begin(); | 
|  | it != formats.end(); ++it) { | 
|  | if ((maxHeadingLen - row) <= it->length()) { | 
|  | if (row != maxHeadingLen) { | 
|  | char ch = (*it)[it->length() - (maxHeadingLen - row)]; | 
|  | line << ' ' << setw(printFieldWidth) << ch; | 
|  | } else { | 
|  | line << ' ' << string(printFieldWidth, '-'); | 
|  | } | 
|  | } else { | 
|  | line << ' ' << setw(printFieldWidth) << ""; | 
|  | } | 
|  | } | 
|  | testPrintI("%*s%s", indent + maxHeadingLen, "", | 
|  | line.str().c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void printOverlapLine(size_t indent, const string formatStr, | 
|  | const vector<uint32_t>& results) | 
|  | { | 
|  | ostringstream line; | 
|  |  | 
|  | line << setw(indent + maxHeadingLen - formatStr.length()) << ""; | 
|  |  | 
|  | line << formatStr; | 
|  |  | 
|  | for (vector<uint32_t>::const_iterator it = results.begin(); | 
|  | it != results.end(); ++it) { | 
|  | line << ' ' << setw(printFieldWidth) << *it; | 
|  | } | 
|  |  | 
|  | testPrintI("%s", line.str().c_str()); | 
|  | } | 
|  |  | 
|  | void printSyntax(const char *cmd) | 
|  | { | 
|  | testPrintE("  %s [options] [graphicFormat] ...", | 
|  | cmd); | 
|  | testPrintE("    options:"); | 
|  | testPrintE("      -s [width, height] - start dimension"); | 
|  | testPrintE("      -v - Verbose"); | 
|  | testPrintE(""); | 
|  | testPrintE("    graphic formats:"); | 
|  | for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) { | 
|  | testPrintE("      %s", hwcTestGraphicFormat[n1].desc); | 
|  | } | 
|  | } |