blob: a9a735a80dbdc5868188380ea93297b77dab6659 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <android-base/stringprintf.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/impl/Output.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <compositionengine/mock/CompositionEngine.h>
#include <compositionengine/mock/DisplayColorProfile.h>
#include <compositionengine/mock/Layer.h>
#include <compositionengine/mock/LayerFE.h>
#include <compositionengine/mock/OutputLayer.h>
#include <compositionengine/mock/RenderSurface.h>
#include <gtest/gtest.h>
#include <renderengine/mock/RenderEngine.h>
#include <ui/Rect.h>
#include <ui/Region.h>
#include "CallOrderStateMachineHelper.h"
#include "MockHWC2.h"
#include "RegionMatcher.h"
#include "TransformMatcher.h"
namespace android::compositionengine {
namespace {
using testing::_;
using testing::ByMove;
using testing::DoAll;
using testing::Eq;
using testing::InSequence;
using testing::Mock;
using testing::Property;
using testing::Ref;
using testing::Return;
using testing::ReturnRef;
using testing::SetArgPointee;
using testing::StrictMock;
constexpr auto TR_IDENT = 0u;
constexpr auto TR_ROT_90 = HAL_TRANSFORM_ROT_90;
const mat4 kIdentity;
const mat4 kNonIdentityHalf = mat4() * 0.5;
const mat4 kNonIdentityQuarter = mat4() * 0.25;
constexpr OutputColorSetting kVendorSpecifiedOutputColorSetting =
static_cast<OutputColorSetting>(0x100);
struct OutputPartialMockBase : public impl::Output {
// compositionengine::Output overrides
const OutputCompositionState& getState() const override { return mState; }
OutputCompositionState& editState() override { return mState; }
// Use mocks for all the remaining virtual functions
// not implemented by the base implementation class.
MOCK_CONST_METHOD0(getOutputLayerCount, size_t());
MOCK_CONST_METHOD1(getOutputLayerOrderedByZByIndex, compositionengine::OutputLayer*(size_t));
MOCK_METHOD3(ensureOutputLayer,
compositionengine::OutputLayer*(std::optional<size_t>,
const std::shared_ptr<compositionengine::Layer>&,
const sp<LayerFE>&));
MOCK_METHOD0(finalizePendingOutputLayers, void());
MOCK_METHOD0(clearOutputLayers, void());
MOCK_CONST_METHOD1(dumpState, void(std::string&));
MOCK_CONST_METHOD0(getCompositionEngine, const CompositionEngine&());
MOCK_METHOD2(injectOutputLayerForTest,
compositionengine::OutputLayer*(const std::shared_ptr<compositionengine::Layer>&,
const sp<LayerFE>&));
MOCK_METHOD1(injectOutputLayerForTest, void(std::unique_ptr<OutputLayer>));
impl::OutputCompositionState mState;
};
struct OutputTest : public testing::Test {
class Output : public impl::Output {
public:
using impl::Output::injectOutputLayerForTest;
virtual void injectOutputLayerForTest(std::unique_ptr<compositionengine::OutputLayer>) = 0;
};
static std::shared_ptr<Output> createOutput(
const compositionengine::CompositionEngine& compositionEngine) {
return impl::createOutputTemplated<Output>(compositionEngine);
}
OutputTest() {
mOutput->setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
mOutput->editState().bounds = kDefaultDisplaySize;
}
static const Rect kDefaultDisplaySize;
StrictMock<mock::CompositionEngine> mCompositionEngine;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
std::shared_ptr<Output> mOutput = createOutput(mCompositionEngine);
};
// Extension of the base test useful for checking interactions with the LayerFE
// functions to latch composition state.
struct OutputLatchFEStateTest : public OutputTest {
OutputLatchFEStateTest() {
EXPECT_CALL(*mOutputLayer1, getLayer()).WillRepeatedly(ReturnRef(mLayer1));
EXPECT_CALL(*mOutputLayer2, getLayer()).WillRepeatedly(ReturnRef(mLayer2));
EXPECT_CALL(*mOutputLayer3, getLayer()).WillRepeatedly(ReturnRef(mLayer3));
EXPECT_CALL(*mOutputLayer1, getLayerFE()).WillRepeatedly(ReturnRef(mLayer1FE));
EXPECT_CALL(*mOutputLayer2, getLayerFE()).WillRepeatedly(ReturnRef(mLayer2FE));
EXPECT_CALL(*mOutputLayer3, getLayerFE()).WillRepeatedly(ReturnRef(mLayer3FE));
EXPECT_CALL(mLayer1, editFEState()).WillRepeatedly(ReturnRef(mLayer1FEState));
EXPECT_CALL(mLayer2, editFEState()).WillRepeatedly(ReturnRef(mLayer2FEState));
EXPECT_CALL(mLayer3, editFEState()).WillRepeatedly(ReturnRef(mLayer3FEState));
}
void injectLayer(std::unique_ptr<mock::OutputLayer> layer) {
mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(layer.release()));
}
std::unique_ptr<mock::OutputLayer> mOutputLayer1{new StrictMock<mock::OutputLayer>};
std::unique_ptr<mock::OutputLayer> mOutputLayer2{new StrictMock<mock::OutputLayer>};
std::unique_ptr<mock::OutputLayer> mOutputLayer3{new StrictMock<mock::OutputLayer>};
StrictMock<mock::Layer> mLayer1;
StrictMock<mock::Layer> mLayer2;
StrictMock<mock::Layer> mLayer3;
StrictMock<mock::LayerFE> mLayer1FE;
StrictMock<mock::LayerFE> mLayer2FE;
StrictMock<mock::LayerFE> mLayer3FE;
LayerFECompositionState mLayer1FEState;
LayerFECompositionState mLayer2FEState;
LayerFECompositionState mLayer3FEState;
};
const Rect OutputTest::kDefaultDisplaySize{100, 200};
using ColorProfile = compositionengine::Output::ColorProfile;
void dumpColorProfile(ColorProfile profile, std::string& result, const char* name) {
android::base::StringAppendF(&result, "%s (%s[%d] %s[%d] %s[%d] %s[%d]) ", name,
toString(profile.mode).c_str(), profile.mode,
toString(profile.dataspace).c_str(), profile.dataspace,
toString(profile.renderIntent).c_str(), profile.renderIntent,
toString(profile.colorSpaceAgnosticDataspace).c_str(),
profile.colorSpaceAgnosticDataspace);
}
// Checks for a ColorProfile match
MATCHER_P(ColorProfileEq, expected, "") {
std::string buf;
buf.append("ColorProfiles are not equal\n");
dumpColorProfile(expected, buf, "expected value");
dumpColorProfile(arg, buf, "actual value");
*result_listener << buf;
return (expected.mode == arg.mode) && (expected.dataspace == arg.dataspace) &&
(expected.renderIntent == arg.renderIntent) &&
(expected.colorSpaceAgnosticDataspace == arg.colorSpaceAgnosticDataspace);
}
/*
* Basic construction
*/
TEST_F(OutputTest, canInstantiateOutput) {
// The validation check checks each required component.
EXPECT_CALL(*mDisplayColorProfile, isValid()).WillOnce(Return(true));
EXPECT_CALL(*mRenderSurface, isValid()).WillOnce(Return(true));
EXPECT_TRUE(mOutput->isValid());
// If we take away the required components, it is no longer valid.
mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>());
EXPECT_CALL(*mDisplayColorProfile, isValid()).WillOnce(Return(true));
EXPECT_FALSE(mOutput->isValid());
}
/*
* Output::setCompositionEnabled()
*/
TEST_F(OutputTest, setCompositionEnabledDoesNothingIfAlreadyEnabled) {
mOutput->editState().isEnabled = true;
mOutput->setCompositionEnabled(true);
EXPECT_TRUE(mOutput->getState().isEnabled);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
TEST_F(OutputTest, setCompositionEnabledSetsEnabledAndDirtiesEntireOutput) {
mOutput->editState().isEnabled = false;
mOutput->setCompositionEnabled(true);
EXPECT_TRUE(mOutput->getState().isEnabled);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputTest, setCompositionEnabledSetsDisabledAndDirtiesEntireOutput) {
mOutput->editState().isEnabled = true;
mOutput->setCompositionEnabled(false);
EXPECT_FALSE(mOutput->getState().isEnabled);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
/*
* Output::setProjection()
*/
TEST_F(OutputTest, setProjectionTriviallyWorks) {
const ui::Transform transform{ui::Transform::ROT_180};
const int32_t orientation = 123;
const Rect frame{1, 2, 3, 4};
const Rect viewport{5, 6, 7, 8};
const Rect scissor{9, 10, 11, 12};
const bool needsFiltering = true;
mOutput->setProjection(transform, orientation, frame, viewport, scissor, needsFiltering);
EXPECT_THAT(mOutput->getState().transform, TransformEq(transform));
EXPECT_EQ(orientation, mOutput->getState().orientation);
EXPECT_EQ(frame, mOutput->getState().frame);
EXPECT_EQ(viewport, mOutput->getState().viewport);
EXPECT_EQ(scissor, mOutput->getState().scissor);
EXPECT_EQ(needsFiltering, mOutput->getState().needsFiltering);
}
/*
* Output::setBounds()
*/
TEST_F(OutputTest, setBoundsSetsSizeAndDirtiesEntireOutput) {
const ui::Size displaySize{200, 400};
EXPECT_CALL(*mRenderSurface, setDisplaySize(displaySize)).Times(1);
EXPECT_CALL(*mRenderSurface, getSize()).WillOnce(ReturnRef(displaySize));
mOutput->setBounds(displaySize);
EXPECT_EQ(Rect(displaySize), mOutput->getState().bounds);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(Rect(displaySize))));
}
/*
* Output::setLayerStackFilter()
*/
TEST_F(OutputTest, setLayerStackFilterSetsFilterAndDirtiesEntireOutput) {
const uint32_t layerStack = 123u;
mOutput->setLayerStackFilter(layerStack, true);
EXPECT_TRUE(mOutput->getState().layerStackInternal);
EXPECT_EQ(layerStack, mOutput->getState().layerStackId);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
/*
* Output::setColorTransform
*/
TEST_F(OutputTest, setColorTransformWithNoChangeFlaggedSkipsUpdates) {
mOutput->editState().colorTransformMatrix = kIdentity;
// If no colorTransformMatrix is set the update should be skipped.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = std::nullopt;
mOutput->setColorTransform(refreshArgs);
// The internal state should be unchanged
EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix);
// No dirty region should be set
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
TEST_F(OutputTest, setColorTransformWithNoActualChangeSkipsUpdates) {
mOutput->editState().colorTransformMatrix = kIdentity;
// Attempting to set the same colorTransformMatrix that is already set should
// also skip the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kIdentity;
mOutput->setColorTransform(refreshArgs);
// The internal state should be unchanged
EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix);
// No dirty region should be set
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
TEST_F(OutputTest, setColorTransformPerformsUpdateToIdentity) {
mOutput->editState().colorTransformMatrix = kNonIdentityHalf;
// Setting a different colorTransformMatrix should perform the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kIdentity;
mOutput->setColorTransform(refreshArgs);
// The internal state should have been updated
EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix);
// The dirtyRegion should be set to the full display size
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputTest, setColorTransformPerformsUpdateForIdentityToHalf) {
mOutput->editState().colorTransformMatrix = kIdentity;
// Setting a different colorTransformMatrix should perform the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kNonIdentityHalf;
mOutput->setColorTransform(refreshArgs);
// The internal state should have been updated
EXPECT_EQ(kNonIdentityHalf, mOutput->getState().colorTransformMatrix);
// The dirtyRegion should be set to the full display size
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputTest, setColorTransformPerformsUpdateForHalfToQuarter) {
mOutput->editState().colorTransformMatrix = kNonIdentityHalf;
// Setting a different colorTransformMatrix should perform the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kNonIdentityQuarter;
mOutput->setColorTransform(refreshArgs);
// The internal state should have been updated
EXPECT_EQ(kNonIdentityQuarter, mOutput->getState().colorTransformMatrix);
// The dirtyRegion should be set to the full display size
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
/*
* Output::setColorProfile
*/
using OutputSetColorProfileTest = OutputTest;
TEST_F(OutputSetColorProfileTest, setsStateAndDirtiesOutputIfChanged) {
using ColorProfile = Output::ColorProfile;
EXPECT_CALL(*mDisplayColorProfile,
getTargetDataspace(ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3,
ui::Dataspace::UNKNOWN))
.WillOnce(Return(ui::Dataspace::UNKNOWN));
EXPECT_CALL(*mRenderSurface, setBufferDataspace(ui::Dataspace::DISPLAY_P3)).Times(1);
mOutput->setColorProfile(ColorProfile{ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3,
ui::RenderIntent::TONE_MAP_COLORIMETRIC,
ui::Dataspace::UNKNOWN});
EXPECT_EQ(ui::ColorMode::DISPLAY_P3, mOutput->getState().colorMode);
EXPECT_EQ(ui::Dataspace::DISPLAY_P3, mOutput->getState().dataspace);
EXPECT_EQ(ui::RenderIntent::TONE_MAP_COLORIMETRIC, mOutput->getState().renderIntent);
EXPECT_EQ(ui::Dataspace::UNKNOWN, mOutput->getState().targetDataspace);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputSetColorProfileTest, doesNothingIfNoChange) {
using ColorProfile = Output::ColorProfile;
EXPECT_CALL(*mDisplayColorProfile,
getTargetDataspace(ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3,
ui::Dataspace::UNKNOWN))
.WillOnce(Return(ui::Dataspace::UNKNOWN));
mOutput->editState().colorMode = ui::ColorMode::DISPLAY_P3;
mOutput->editState().dataspace = ui::Dataspace::DISPLAY_P3;
mOutput->editState().renderIntent = ui::RenderIntent::TONE_MAP_COLORIMETRIC;
mOutput->editState().targetDataspace = ui::Dataspace::UNKNOWN;
mOutput->setColorProfile(ColorProfile{ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3,
ui::RenderIntent::TONE_MAP_COLORIMETRIC,
ui::Dataspace::UNKNOWN});
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
/*
* Output::setRenderSurface()
*/
TEST_F(OutputTest, setRenderSurfaceResetsBounds) {
const ui::Size newDisplaySize{640, 480};
mock::RenderSurface* renderSurface = new StrictMock<mock::RenderSurface>();
EXPECT_CALL(*renderSurface, getSize()).WillOnce(ReturnRef(newDisplaySize));
mOutput->setRenderSurface(std::unique_ptr<RenderSurface>(renderSurface));
EXPECT_EQ(Rect(newDisplaySize), mOutput->getState().bounds);
}
/*
* Output::getDirtyRegion()
*/
TEST_F(OutputTest, getDirtyRegionWithRepaintEverythingTrue) {
const Rect viewport{100, 200};
mOutput->editState().viewport = viewport;
mOutput->editState().dirtyRegion.set(50, 300);
{
Region result = mOutput->getDirtyRegion(true);
EXPECT_THAT(result, RegionEq(Region(viewport)));
}
}
TEST_F(OutputTest, getDirtyRegionWithRepaintEverythingFalse) {
const Rect viewport{100, 200};
mOutput->editState().viewport = viewport;
mOutput->editState().dirtyRegion.set(50, 300);
{
Region result = mOutput->getDirtyRegion(false);
// The dirtyRegion should be clipped to the display bounds.
EXPECT_THAT(result, RegionEq(Region(Rect(50, 200))));
}
}
/*
* Output::belongsInOutput()
*/
TEST_F(OutputTest, belongsInOutputFiltersAsExpected) {
const uint32_t layerStack1 = 123u;
const uint32_t layerStack2 = 456u;
// If the output accepts layerStack1 and internal-only layers....
mOutput->setLayerStackFilter(layerStack1, true);
// A layer with no layerStack does not belong to it, internal-only or not.
EXPECT_FALSE(mOutput->belongsInOutput(std::nullopt, false));
EXPECT_FALSE(mOutput->belongsInOutput(std::nullopt, true));
// Any layer with layerStack1 belongs to it, internal-only or not.
EXPECT_TRUE(mOutput->belongsInOutput(layerStack1, false));
EXPECT_TRUE(mOutput->belongsInOutput(layerStack1, true));
EXPECT_FALSE(mOutput->belongsInOutput(layerStack2, true));
EXPECT_FALSE(mOutput->belongsInOutput(layerStack2, false));
// If the output accepts layerStack21 but not internal-only layers...
mOutput->setLayerStackFilter(layerStack1, false);
// Only non-internal layers with layerStack1 belong to it.
EXPECT_TRUE(mOutput->belongsInOutput(layerStack1, false));
EXPECT_FALSE(mOutput->belongsInOutput(layerStack1, true));
EXPECT_FALSE(mOutput->belongsInOutput(layerStack2, true));
EXPECT_FALSE(mOutput->belongsInOutput(layerStack2, false));
}
TEST_F(OutputTest, belongsInOutputFiltersLayersAsExpected) {
StrictMock<mock::Layer> layer;
LayerFECompositionState layerFEState;
EXPECT_CALL(layer, getFEState()).WillRepeatedly(ReturnRef(layerFEState));
const uint32_t layerStack1 = 123u;
const uint32_t layerStack2 = 456u;
// If the output accepts layerStack1 and internal-only layers....
mOutput->setLayerStackFilter(layerStack1, true);
// A null layer pointer does not belong to the output
EXPECT_FALSE(mOutput->belongsInOutput(nullptr));
// A layer with no layerStack does not belong to it, internal-only or not.
layerFEState.layerStackId = std::nullopt;
layerFEState.internalOnly = false;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = std::nullopt;
layerFEState.internalOnly = true;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
// Any layer with layerStack1 belongs to it, internal-only or not.
layerFEState.layerStackId = layerStack1;
layerFEState.internalOnly = false;
EXPECT_TRUE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = layerStack1;
layerFEState.internalOnly = true;
EXPECT_TRUE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = layerStack2;
layerFEState.internalOnly = true;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = layerStack2;
layerFEState.internalOnly = false;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
// If the output accepts layerStack1 but not internal-only layers...
mOutput->setLayerStackFilter(layerStack1, false);
// A null layer pointer does not belong to the output
EXPECT_FALSE(mOutput->belongsInOutput(nullptr));
// Only non-internal layers with layerStack1 belong to it.
layerFEState.layerStackId = layerStack1;
layerFEState.internalOnly = false;
EXPECT_TRUE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = layerStack1;
layerFEState.internalOnly = true;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = layerStack2;
layerFEState.internalOnly = true;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
layerFEState.layerStackId = layerStack2;
layerFEState.internalOnly = false;
EXPECT_FALSE(mOutput->belongsInOutput(&layer));
}
/*
* Output::getOutputLayerForLayer()
*/
TEST_F(OutputTest, getOutputLayerForLayerWorks) {
mock::OutputLayer* outputLayer1 = new StrictMock<mock::OutputLayer>();
mock::OutputLayer* outputLayer2 = new StrictMock<mock::OutputLayer>();
mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(outputLayer1));
mOutput->injectOutputLayerForTest(nullptr);
mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(outputLayer2));
StrictMock<mock::Layer> layer;
StrictMock<mock::Layer> otherLayer;
// If the input layer matches the first OutputLayer, it will be returned.
EXPECT_CALL(*outputLayer1, getLayer()).WillOnce(ReturnRef(layer));
EXPECT_EQ(outputLayer1, mOutput->getOutputLayerForLayer(&layer));
// If the input layer matches the second OutputLayer, it will be returned.
EXPECT_CALL(*outputLayer1, getLayer()).WillOnce(ReturnRef(otherLayer));
EXPECT_CALL(*outputLayer2, getLayer()).WillOnce(ReturnRef(layer));
EXPECT_EQ(outputLayer2, mOutput->getOutputLayerForLayer(&layer));
// If the input layer does not match an output layer, null will be returned.
EXPECT_CALL(*outputLayer1, getLayer()).WillOnce(ReturnRef(otherLayer));
EXPECT_CALL(*outputLayer2, getLayer()).WillOnce(ReturnRef(otherLayer));
EXPECT_EQ(nullptr, mOutput->getOutputLayerForLayer(&layer));
}
/*
* Output::setReleasedLayers()
*/
using OutputSetReleasedLayersTest = OutputTest;
TEST_F(OutputSetReleasedLayersTest, setReleasedLayersTakesGivenLayers) {
sp<StrictMock<mock::LayerFE>> layer1FE{new StrictMock<mock::LayerFE>()};
sp<StrictMock<mock::LayerFE>> layer2FE{new StrictMock<mock::LayerFE>()};
sp<StrictMock<mock::LayerFE>> layer3FE{new StrictMock<mock::LayerFE>()};
Output::ReleasedLayers layers;
layers.push_back(layer1FE);
layers.push_back(layer2FE);
layers.push_back(layer3FE);
mOutput->setReleasedLayers(std::move(layers));
const auto& setLayers = mOutput->getReleasedLayersForTest();
ASSERT_EQ(3u, setLayers.size());
ASSERT_EQ(layer1FE.get(), setLayers[0].promote().get());
ASSERT_EQ(layer2FE.get(), setLayers[1].promote().get());
ASSERT_EQ(layer3FE.get(), setLayers[2].promote().get());
}
/*
* Output::updateLayerStateFromFE()
*/
using OutputUpdateLayerStateFromFETest = OutputLatchFEStateTest;
TEST_F(OutputUpdateLayerStateFromFETest, handlesNoOutputLayerCase) {
CompositionRefreshArgs refreshArgs;
mOutput->updateLayerStateFromFE(refreshArgs);
}
TEST_F(OutputUpdateLayerStateFromFETest, latchesContentStateForAllContainedLayers) {
EXPECT_CALL(mLayer1FE,
latchCompositionState(Ref(mLayer1FEState), LayerFE::StateSubset::Content));
EXPECT_CALL(mLayer2FE,
latchCompositionState(Ref(mLayer2FEState), LayerFE::StateSubset::Content));
EXPECT_CALL(mLayer3FE,
latchCompositionState(Ref(mLayer3FEState), LayerFE::StateSubset::Content));
// Note: Must be performed after any expectations on these mocks
injectLayer(std::move(mOutputLayer1));
injectLayer(std::move(mOutputLayer2));
injectLayer(std::move(mOutputLayer3));
CompositionRefreshArgs refreshArgs;
refreshArgs.updatingGeometryThisFrame = false;
mOutput->updateLayerStateFromFE(refreshArgs);
}
TEST_F(OutputUpdateLayerStateFromFETest, latchesGeometryAndContentStateForAllContainedLayers) {
EXPECT_CALL(mLayer1FE,
latchCompositionState(Ref(mLayer1FEState),
LayerFE::StateSubset::GeometryAndContent));
EXPECT_CALL(mLayer2FE,
latchCompositionState(Ref(mLayer2FEState),
LayerFE::StateSubset::GeometryAndContent));
EXPECT_CALL(mLayer3FE,
latchCompositionState(Ref(mLayer3FEState),
LayerFE::StateSubset::GeometryAndContent));
// Note: Must be performed after any expectations on these mocks
injectLayer(std::move(mOutputLayer1));
injectLayer(std::move(mOutputLayer2));
injectLayer(std::move(mOutputLayer3));
CompositionRefreshArgs refreshArgs;
refreshArgs.updatingGeometryThisFrame = true;
mOutput->updateLayerStateFromFE(refreshArgs);
}
/*
* Output::updateAndWriteCompositionState()
*/
using OutputUpdateAndWriteCompositionStateTest = OutputLatchFEStateTest;
TEST_F(OutputUpdateAndWriteCompositionStateTest, doesNothingIfLayers) {
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
mOutput->updateAndWriteCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, doesNothingIfOutputNotEnabled) {
mOutput->editState().isEnabled = false;
injectLayer(std::move(mOutputLayer1));
injectLayer(std::move(mOutputLayer2));
injectLayer(std::move(mOutputLayer3));
CompositionRefreshArgs args;
mOutput->updateAndWriteCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, updatesLayerContentForAllLayers) {
EXPECT_CALL(*mOutputLayer1, updateCompositionState(false, false));
EXPECT_CALL(*mOutputLayer1, writeStateToHWC(false));
EXPECT_CALL(*mOutputLayer2, updateCompositionState(false, false));
EXPECT_CALL(*mOutputLayer2, writeStateToHWC(false));
EXPECT_CALL(*mOutputLayer3, updateCompositionState(false, false));
EXPECT_CALL(*mOutputLayer3, writeStateToHWC(false));
injectLayer(std::move(mOutputLayer1));
injectLayer(std::move(mOutputLayer2));
injectLayer(std::move(mOutputLayer3));
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = false;
mOutput->updateAndWriteCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, updatesLayerGeometryAndContentForAllLayers) {
EXPECT_CALL(*mOutputLayer1, updateCompositionState(true, false));
EXPECT_CALL(*mOutputLayer1, writeStateToHWC(true));
EXPECT_CALL(*mOutputLayer2, updateCompositionState(true, false));
EXPECT_CALL(*mOutputLayer2, writeStateToHWC(true));
EXPECT_CALL(*mOutputLayer3, updateCompositionState(true, false));
EXPECT_CALL(*mOutputLayer3, writeStateToHWC(true));
injectLayer(std::move(mOutputLayer1));
injectLayer(std::move(mOutputLayer2));
injectLayer(std::move(mOutputLayer3));
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = true;
args.devOptForceClientComposition = false;
mOutput->updateAndWriteCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, forcesClientCompositionForAllLayers) {
EXPECT_CALL(*mOutputLayer1, updateCompositionState(false, true));
EXPECT_CALL(*mOutputLayer1, writeStateToHWC(false));
EXPECT_CALL(*mOutputLayer2, updateCompositionState(false, true));
EXPECT_CALL(*mOutputLayer2, writeStateToHWC(false));
EXPECT_CALL(*mOutputLayer3, updateCompositionState(false, true));
EXPECT_CALL(*mOutputLayer3, writeStateToHWC(false));
injectLayer(std::move(mOutputLayer1));
injectLayer(std::move(mOutputLayer2));
injectLayer(std::move(mOutputLayer3));
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = true;
mOutput->updateAndWriteCompositionState(args);
}
/*
* Output::prepareFrame()
*/
struct OutputPrepareFrameTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by prepareFrame to use a mock
// implementations.
MOCK_METHOD0(chooseCompositionStrategy, void());
};
OutputPrepareFrameTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
StrictMock<mock::CompositionEngine> mCompositionEngine;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
};
TEST_F(OutputPrepareFrameTest, takesEarlyOutIfNotEnabled) {
mOutput.editState().isEnabled = false;
mOutput.prepareFrame();
}
TEST_F(OutputPrepareFrameTest, delegatesToChooseCompositionStrategyAndRenderSurface) {
mOutput.editState().isEnabled = true;
mOutput.editState().usesClientComposition = false;
mOutput.editState().usesDeviceComposition = true;
EXPECT_CALL(mOutput, chooseCompositionStrategy()).Times(1);
EXPECT_CALL(*mRenderSurface, prepareFrame(false, true));
mOutput.prepareFrame();
}
// Note: Use OutputTest and not OutputPrepareFrameTest, so the real
// base chooseCompositionStrategy() is invoked.
TEST_F(OutputTest, prepareFrameSetsClientCompositionOnlyByDefault) {
mOutput->editState().isEnabled = true;
mOutput->editState().usesClientComposition = false;
mOutput->editState().usesDeviceComposition = true;
EXPECT_CALL(*mRenderSurface, prepareFrame(true, false));
mOutput->prepareFrame();
EXPECT_TRUE(mOutput->getState().usesClientComposition);
EXPECT_FALSE(mOutput->getState().usesDeviceComposition);
}
/*
* Output::present()
*/
struct OutputPresentTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// All child helper functions Output::present() are defined as mocks,
// and those are tested separately, allowing the present() test to
// just cover the high level flow.
MOCK_METHOD1(updateColorProfile, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(updateAndWriteCompositionState,
void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(setColorTransform, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD0(beginFrame, void());
MOCK_METHOD0(prepareFrame, void());
MOCK_METHOD1(devOptRepaintFlash, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(finishFrame, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD0(postFramebuffer, void());
};
StrictMock<OutputPartialMock> mOutput;
};
TEST_F(OutputPresentTest, justInvokesChildFunctionsInSequence) {
CompositionRefreshArgs args;
InSequence seq;
EXPECT_CALL(mOutput, updateColorProfile(Ref(args)));
EXPECT_CALL(mOutput, updateAndWriteCompositionState(Ref(args)));
EXPECT_CALL(mOutput, setColorTransform(Ref(args)));
EXPECT_CALL(mOutput, beginFrame());
EXPECT_CALL(mOutput, prepareFrame());
EXPECT_CALL(mOutput, devOptRepaintFlash(Ref(args)));
EXPECT_CALL(mOutput, finishFrame(Ref(args)));
EXPECT_CALL(mOutput, postFramebuffer());
mOutput.present(args);
}
/*
* Output::updateColorProfile()
*/
struct OutputUpdateColorProfileTest : public testing::Test {
using TestType = OutputUpdateColorProfileTest;
struct OutputPartialMock : public OutputPartialMockBase {
// All child helper functions Output::present() are defined as mocks,
// and those are tested separately, allowing the present() test to
// just cover the high level flow.
MOCK_METHOD1(setColorProfile, void(const ColorProfile&));
};
struct Layer {
Layer() {
EXPECT_CALL(mOutputLayer, getLayer()).WillRepeatedly(ReturnRef(mLayer));
EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(mLayerFE));
EXPECT_CALL(mLayer, getFEState()).WillRepeatedly(ReturnRef(mLayerFEState));
}
StrictMock<mock::OutputLayer> mOutputLayer;
StrictMock<mock::Layer> mLayer;
StrictMock<mock::LayerFE> mLayerFE;
LayerFECompositionState mLayerFEState;
};
OutputUpdateColorProfileTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0))
.WillRepeatedly(Return(&mLayer1.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1))
.WillRepeatedly(Return(&mLayer2.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2))
.WillRepeatedly(Return(&mLayer3.mOutputLayer));
}
struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> {
void execute() { getInstance()->mOutput.updateColorProfile(getInstance()->mRefreshArgs); }
};
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
Layer mLayer1;
Layer mLayer2;
Layer mLayer3;
CompositionRefreshArgs mRefreshArgs;
};
// TODO(b/144522012): Refactor Output::updateColorProfile and the related code
// to make it easier to write unit tests.
TEST_F(OutputUpdateColorProfileTest, setsAColorProfileWhenUnmanaged) {
// When the outputColorSetting is set to kUnmanaged, the implementation sets
// a simple default color profile without looking at anything else.
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3));
EXPECT_CALL(mOutput,
setColorProfile(ColorProfileEq(
ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
ui::RenderIntent::COLORIMETRIC, ui::Dataspace::UNKNOWN})));
mRefreshArgs.outputColorSetting = OutputColorSetting::kUnmanaged;
mRefreshArgs.colorSpaceAgnosticDataspace = ui::Dataspace::UNKNOWN;
mOutput.updateColorProfile(mRefreshArgs);
}
struct OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile
: public OutputUpdateColorProfileTest {
OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile() {
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0));
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mRefreshArgs.colorSpaceAgnosticDataspace = ui::Dataspace::UNKNOWN;
}
struct ExpectBestColorModeCallResultUsedToSetColorProfileState
: public CallOrderStateMachineHelper<
TestType, ExpectBestColorModeCallResultUsedToSetColorProfileState> {
[[nodiscard]] auto expectBestColorModeCallResultUsedToSetColorProfile(
ui::ColorMode colorMode, ui::Dataspace dataspace, ui::RenderIntent renderIntent) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(ui::Dataspace::V0_SRGB, ui::RenderIntent::ENHANCE, _, _,
_))
.WillOnce(DoAll(SetArgPointee<2>(dataspace), SetArgPointee<3>(colorMode),
SetArgPointee<4>(renderIntent)));
EXPECT_CALL(getInstance()->mOutput,
setColorProfile(
ColorProfileEq(ColorProfile{colorMode, dataspace, renderIntent,
ui::Dataspace::UNKNOWN})));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() {
return ExpectBestColorModeCallResultUsedToSetColorProfileState::make(this);
}
};
TEST_F(OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile,
Native_Unknown_Colorimetric_Set) {
verify().expectBestColorModeCallResultUsedToSetColorProfile(ui::ColorMode::NATIVE,
ui::Dataspace::UNKNOWN,
ui::RenderIntent::COLORIMETRIC)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile,
DisplayP3_DisplayP3_Enhance_Set) {
verify().expectBestColorModeCallResultUsedToSetColorProfile(ui::ColorMode::DISPLAY_P3,
ui::Dataspace::DISPLAY_P3,
ui::RenderIntent::ENHANCE)
.execute();
}
struct OutputUpdateColorProfileTest_ColorSpaceAgnosticeDataspaceAffectsSetColorProfile
: public OutputUpdateColorProfileTest {
OutputUpdateColorProfileTest_ColorSpaceAgnosticeDataspaceAffectsSetColorProfile() {
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0));
EXPECT_CALL(*mDisplayColorProfile,
getBestColorMode(ui::Dataspace::V0_SRGB, ui::RenderIntent::ENHANCE, _, _, _))
.WillRepeatedly(DoAll(SetArgPointee<2>(ui::Dataspace::UNKNOWN),
SetArgPointee<3>(ui::ColorMode::NATIVE),
SetArgPointee<4>(ui::RenderIntent::COLORIMETRIC)));
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
}
struct IfColorSpaceAgnosticDataspaceSetToState
: public CallOrderStateMachineHelper<TestType, IfColorSpaceAgnosticDataspaceSetToState> {
[[nodiscard]] auto ifColorSpaceAgnosticDataspaceSetTo(ui::Dataspace dataspace) {
getInstance()->mRefreshArgs.colorSpaceAgnosticDataspace = dataspace;
return nextState<ThenExpectSetColorProfileCallUsesColorSpaceAgnosticDataspaceState>();
}
};
struct ThenExpectSetColorProfileCallUsesColorSpaceAgnosticDataspaceState
: public CallOrderStateMachineHelper<
TestType, ThenExpectSetColorProfileCallUsesColorSpaceAgnosticDataspaceState> {
[[nodiscard]] auto thenExpectSetColorProfileCallUsesColorSpaceAgnosticDataspace(
ui::Dataspace dataspace) {
EXPECT_CALL(getInstance()->mOutput,
setColorProfile(ColorProfileEq(
ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
ui::RenderIntent::COLORIMETRIC, dataspace})));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfColorSpaceAgnosticDataspaceSetToState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_ColorSpaceAgnosticeDataspaceAffectsSetColorProfile, DisplayP3) {
verify().ifColorSpaceAgnosticDataspaceSetTo(ui::Dataspace::DISPLAY_P3)
.thenExpectSetColorProfileCallUsesColorSpaceAgnosticDataspace(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_ColorSpaceAgnosticeDataspaceAffectsSetColorProfile, V0_SRGB) {
verify().ifColorSpaceAgnosticDataspaceSetTo(ui::Dataspace::V0_SRGB)
.thenExpectSetColorProfileCallUsesColorSpaceAgnosticDataspace(ui::Dataspace::V0_SRGB)
.execute();
}
struct OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference
: public OutputUpdateColorProfileTest {
// Internally the implementation looks through the dataspaces of all the
// visible layers. The topmost one that also has an actual dataspace
// preference set is used to drive subsequent choices.
OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mRefreshArgs.colorSpaceAgnosticDataspace = ui::Dataspace::UNKNOWN;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
}
struct IfTopLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, IfTopLayerDataspaceState> {
[[nodiscard]] auto ifTopLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer3.mLayerFEState.dataspace = dataspace;
return nextState<AndIfMiddleLayerDataspaceState>();
}
[[nodiscard]] auto ifTopLayerHasNoPreference() {
return ifTopLayerIs(ui::Dataspace::UNKNOWN);
}
};
struct AndIfMiddleLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, AndIfMiddleLayerDataspaceState> {
[[nodiscard]] auto andIfMiddleLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer2.mLayerFEState.dataspace = dataspace;
return nextState<AndIfBottomLayerDataspaceState>();
}
[[nodiscard]] auto andIfMiddleLayerHasNoPreference() {
return andIfMiddleLayerIs(ui::Dataspace::UNKNOWN);
}
};
struct AndIfBottomLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, AndIfBottomLayerDataspaceState> {
[[nodiscard]] auto andIfBottomLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer1.mLayerFEState.dataspace = dataspace;
return nextState<ThenExpectBestColorModeCallUsesState>();
}
[[nodiscard]] auto andIfBottomLayerHasNoPreference() {
return andIfBottomLayerIs(ui::Dataspace::UNKNOWN);
}
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(dataspace, _, _, _, _));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfTopLayerDataspaceState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
noStrongLayerPrefenceUses_V0_SRGB) {
// If none of the layers indicate a preference, then V0_SRGB is the
// preferred choice (subject to additional checks).
verify().ifTopLayerHasNoPreference()
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerHasNoPreference()
.thenExpectBestColorModeCallUses(ui::Dataspace::V0_SRGB)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifTopmostUses_DisplayP3_Then_DisplayP3_Chosen) {
// If only the topmost layer has a preference, then that is what is chosen.
verify().ifTopLayerIs(ui::Dataspace::DISPLAY_P3)
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerHasNoPreference()
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifMiddleUses_DisplayP3_Then_DisplayP3_Chosen) {
// If only the middle layer has a preference, that that is what is chosen.
verify().ifTopLayerHasNoPreference()
.andIfMiddleLayerIs(ui::Dataspace::DISPLAY_P3)
.andIfBottomLayerHasNoPreference()
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifBottomUses_DisplayP3_Then_DisplayP3_Chosen) {
// If only the middle layer has a preference, that that is what is chosen.
verify().ifTopLayerHasNoPreference()
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerIs(ui::Dataspace::DISPLAY_P3)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifTopUses_DisplayBT2020_AndBottomUses_DisplayP3_Then_DisplayBT2020_Chosen) {
// If multiple layers have a preference, the topmost value is what is used.
verify().ifTopLayerIs(ui::Dataspace::DISPLAY_BT2020)
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerIs(ui::Dataspace::DISPLAY_P3)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_BT2020)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifTopUses_DisplayP3_AndBottomUses_V0_SRGB_Then_DisplayP3_Chosen) {
// If multiple layers have a preference, the topmost value is what is used.
verify().ifTopLayerIs(ui::Dataspace::DISPLAY_P3)
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerIs(ui::Dataspace::DISPLAY_BT2020)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
struct OutputUpdateColorProfileTest_ForceOutputColorOverrides
: public OutputUpdateColorProfileTest {
// If CompositionRefreshArgs::forceOutputColorMode is set to some specific
// values, it overrides the layer dataspace choice.
OutputUpdateColorProfileTest_ForceOutputColorOverrides() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mRefreshArgs.colorSpaceAgnosticDataspace = ui::Dataspace::UNKNOWN;
mLayer1.mLayerFEState.dataspace = ui::Dataspace::DISPLAY_BT2020;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
}
struct IfForceOutputColorModeState
: public CallOrderStateMachineHelper<TestType, IfForceOutputColorModeState> {
[[nodiscard]] auto ifForceOutputColorMode(ui::ColorMode colorMode) {
getInstance()->mRefreshArgs.forceOutputColorMode = colorMode;
return nextState<ThenExpectBestColorModeCallUsesState>();
}
[[nodiscard]] auto ifNoOverride() { return ifForceOutputColorMode(ui::ColorMode::NATIVE); }
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(dataspace, _, _, _, _));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfForceOutputColorModeState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, NoOverride_DoesNotOverride) {
// By default the layer state is used to set the preferred dataspace
verify().ifNoOverride()
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_BT2020)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, SRGB_Override_USES_V0_SRGB) {
// Setting ui::ColorMode::SRGB overrides it with ui::Dataspace::V0_SRGB
verify().ifForceOutputColorMode(ui::ColorMode::SRGB)
.thenExpectBestColorModeCallUses(ui::Dataspace::V0_SRGB)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, DisplayP3_Override_Uses_DisplayP3) {
// Setting ui::ColorMode::DISPLAY_P3 overrides it with ui::Dataspace::DISPLAY_P3
verify().ifForceOutputColorMode(ui::ColorMode::DISPLAY_P3)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
// HDR output requires all layers to be compatible with the chosen HDR
// dataspace, along with there being proper support.
struct OutputUpdateColorProfileTest_Hdr : public OutputUpdateColorProfileTest {
OutputUpdateColorProfileTest_Hdr() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mRefreshArgs.colorSpaceAgnosticDataspace = ui::Dataspace::UNKNOWN;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
}
static constexpr ui::Dataspace kNonHdrDataspace = ui::Dataspace::DISPLAY_P3;
static constexpr ui::Dataspace BT2020_PQ = ui::Dataspace::BT2020_PQ;
static constexpr ui::Dataspace BT2020_HLG = ui::Dataspace::BT2020_HLG;
static constexpr ui::Dataspace DISPLAY_P3 = ui::Dataspace::DISPLAY_P3;
struct IfTopLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, IfTopLayerDataspaceState> {
[[nodiscard]] auto ifTopLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer2.mLayerFEState.dataspace = dataspace;
return nextState<AndTopLayerCompositionTypeState>();
}
[[nodiscard]] auto ifTopLayerIsNotHdr() { return ifTopLayerIs(kNonHdrDataspace); }
};
struct AndTopLayerCompositionTypeState
: public CallOrderStateMachineHelper<TestType, AndTopLayerCompositionTypeState> {
[[nodiscard]] auto andTopLayerIsREComposed(bool renderEngineComposed) {
getInstance()->mLayer2.mLayerFEState.forceClientComposition = renderEngineComposed;
return nextState<AndIfBottomLayerDataspaceState>();
}
};
struct AndIfBottomLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, AndIfBottomLayerDataspaceState> {
[[nodiscard]] auto andIfBottomLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer1.mLayerFEState.dataspace = dataspace;
return nextState<AndBottomLayerCompositionTypeState>();
}
[[nodiscard]] auto andIfBottomLayerIsNotHdr() {
return andIfBottomLayerIs(kNonHdrDataspace);
}
};
struct AndBottomLayerCompositionTypeState
: public CallOrderStateMachineHelper<TestType, AndBottomLayerCompositionTypeState> {
[[nodiscard]] auto andBottomLayerIsREComposed(bool renderEngineComposed) {
getInstance()->mLayer1.mLayerFEState.forceClientComposition = renderEngineComposed;
return nextState<AndIfHasLegacySupportState>();
}
};
struct AndIfHasLegacySupportState
: public CallOrderStateMachineHelper<TestType, AndIfHasLegacySupportState> {
[[nodiscard]] auto andIfLegacySupportFor(ui::Dataspace dataspace, bool legacySupport) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile, hasLegacyHdrSupport(dataspace))
.WillOnce(Return(legacySupport));
return nextState<ThenExpectBestColorModeCallUsesState>();
}
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(dataspace, _, _, _, _));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfTopLayerDataspaceState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_HW_Uses_PQ) {
// If all layers use BT2020_PQ, and there are no other special conditions,
// BT2020_PQ is used.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_PQ is not used if there is only legacy support for it.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_RE_Uses_PQ) {
// BT2020_PQ is still used if the bottom layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_RE_On_PQ_HW_Uses_DisplayP3) {
// BT2020_PQ is not used if the top layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_HW_Uses_PQ) {
// If there is mixed HLG/PQ use, and the topmost layer is PQ, then PQ is used if there
// are no other special conditions.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_PQ is not used if there is only legacy support for it.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_RE_Uses_PQ) {
// BT2020_PQ is used if the bottom HLG layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_RE_On_HLG_HW_Uses_DisplayP3) {
// BT2020_PQ is not used if the top PQ layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_HW_Uses_PQ) {
// If there is mixed HLG/PQ use, and the topmost layer is HLG, then PQ is
// used if there are no other special conditions.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_PQ is not used if there is only legacy support for it.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_RE_Uses_DisplayP3) {
// BT2020_PQ is not used if the bottom PQ layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_RE_On_PQ_HW_Uses_PQ) {
// BT2020_PQ is still used if the top HLG layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_HW_Uses_HLG) {
// If all layers use HLG then HLG is used if there are no other special
// conditions.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_HLG is not used if there is legacy support for it.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_HLG, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_RE_Uses_HLG) {
// BT2020_HLG is used even if the bottom layer is client composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_RE_On_HLG_HW_Uses_HLG) {
// BT2020_HLG is used even if the top layer is client composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_NonHdr_HW_Uses_PQ) {
// Even if there are non-HDR layers present, BT2020_PQ can still be used.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIsNotHdr()
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_NonHdr_RE_Uses_HLG) {
// If all layers use HLG then HLG is used if there are no other special
// conditions.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIsNotHdr()
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
struct OutputUpdateColorProfile_AffectsChosenRenderIntentTest
: public OutputUpdateColorProfileTest {
// The various values for CompositionRefreshArgs::outputColorSetting affect
// the chosen renderIntent, along with whether the preferred dataspace is an
// HDR dataspace or not.
OutputUpdateColorProfile_AffectsChosenRenderIntentTest() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mRefreshArgs.colorSpaceAgnosticDataspace = ui::Dataspace::UNKNOWN;
mLayer1.mLayerFEState.dataspace = ui::Dataspace::BT2020_PQ;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
EXPECT_CALL(*mDisplayColorProfile, hasLegacyHdrSupport(ui::Dataspace::BT2020_PQ))
.WillRepeatedly(Return(false));
}
// The tests here involve enough state and GMock setup that using a mini-DSL
// makes the tests much more readable, and allows the test to focus more on
// the intent than on some of the details.
static constexpr ui::Dataspace kNonHdrDataspace = ui::Dataspace::DISPLAY_P3;
static constexpr ui::Dataspace kHdrDataspace = ui::Dataspace::BT2020_PQ;
struct IfDataspaceChosenState
: public CallOrderStateMachineHelper<TestType, IfDataspaceChosenState> {
[[nodiscard]] auto ifDataspaceChosenIs(ui::Dataspace dataspace) {
getInstance()->mLayer1.mLayerFEState.dataspace = dataspace;
return nextState<AndOutputColorSettingState>();
}
[[nodiscard]] auto ifDataspaceChosenIsNonHdr() {
return ifDataspaceChosenIs(kNonHdrDataspace);
}
[[nodiscard]] auto ifDataspaceChosenIsHdr() { return ifDataspaceChosenIs(kHdrDataspace); }
};
struct AndOutputColorSettingState
: public CallOrderStateMachineHelper<TestType, AndOutputColorSettingState> {
[[nodiscard]] auto andOutputColorSettingIs(OutputColorSetting setting) {
getInstance()->mRefreshArgs.outputColorSetting = setting;
return nextState<ThenExpectBestColorModeCallUsesState>();
}
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::RenderIntent intent) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(getInstance()->mLayer1.mLayerFEState.dataspace, intent, _,
_, _));
return nextState<ExecuteState>();
}
};
// Tests call one of these two helper member functions to start using the
// mini-DSL defined above.
[[nodiscard]] auto verify() { return IfDataspaceChosenState::make(this); }
};
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest,
Managed_NonHdr_Prefers_Colorimetric) {
verify().ifDataspaceChosenIsNonHdr()
.andOutputColorSettingIs(OutputColorSetting::kManaged)
.thenExpectBestColorModeCallUses(ui::RenderIntent::COLORIMETRIC)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest,
Managed_Hdr_Prefers_ToneMapColorimetric) {
verify().ifDataspaceChosenIsHdr()
.andOutputColorSettingIs(OutputColorSetting::kManaged)
.thenExpectBestColorModeCallUses(ui::RenderIntent::TONE_MAP_COLORIMETRIC)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Enhanced_NonHdr_Prefers_Enhance) {
verify().ifDataspaceChosenIsNonHdr()
.andOutputColorSettingIs(OutputColorSetting::kEnhanced)
.thenExpectBestColorModeCallUses(ui::RenderIntent::ENHANCE)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest,
Enhanced_Hdr_Prefers_ToneMapEnhance) {
verify().ifDataspaceChosenIsHdr()
.andOutputColorSettingIs(OutputColorSetting::kEnhanced)
.thenExpectBestColorModeCallUses(ui::RenderIntent::TONE_MAP_ENHANCE)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Vendor_NonHdr_Prefers_Vendor) {
verify().ifDataspaceChosenIsNonHdr()
.andOutputColorSettingIs(kVendorSpecifiedOutputColorSetting)
.thenExpectBestColorModeCallUses(
static_cast<ui::RenderIntent>(kVendorSpecifiedOutputColorSetting))
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Vendor_Hdr_Prefers_Vendor) {
verify().ifDataspaceChosenIsHdr()
.andOutputColorSettingIs(kVendorSpecifiedOutputColorSetting)
.thenExpectBestColorModeCallUses(
static_cast<ui::RenderIntent>(kVendorSpecifiedOutputColorSetting))
.execute();
}
/*
* Output::beginFrame()
*/
struct OutputBeginFrameTest : public ::testing::Test {
using TestType = OutputBeginFrameTest;
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by begiNFrame to use a mock
// implementations.
MOCK_CONST_METHOD1(getDirtyRegion, Region(bool));
};
OutputBeginFrameTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
struct IfGetDirtyRegionExpectationState
: public CallOrderStateMachineHelper<TestType, IfGetDirtyRegionExpectationState> {
[[nodiscard]] auto ifGetDirtyRegionReturns(Region dirtyRegion) {
EXPECT_CALL(getInstance()->mOutput, getDirtyRegion(false))
.WillOnce(Return(dirtyRegion));
return nextState<AndIfGetOutputLayerCountExpectationState>();
}
};
struct AndIfGetOutputLayerCountExpectationState
: public CallOrderStateMachineHelper<TestType, AndIfGetOutputLayerCountExpectationState> {
[[nodiscard]] auto andIfGetOutputLayerCountReturns(size_t layerCount) {
EXPECT_CALL(getInstance()->mOutput, getOutputLayerCount()).WillOnce(Return(layerCount));
return nextState<AndIfLastCompositionHadVisibleLayersState>();
}
};
struct AndIfLastCompositionHadVisibleLayersState
: public CallOrderStateMachineHelper<TestType,
AndIfLastCompositionHadVisibleLayersState> {
[[nodiscard]] auto andIfLastCompositionHadVisibleLayersIs(bool hadOutputLayers) {
getInstance()->mOutput.mState.lastCompositionHadVisibleLayers = hadOutputLayers;
return nextState<ThenExpectRenderSurfaceBeginFrameCallState>();
}
};
struct ThenExpectRenderSurfaceBeginFrameCallState
: public CallOrderStateMachineHelper<TestType,
ThenExpectRenderSurfaceBeginFrameCallState> {
[[nodiscard]] auto thenExpectRenderSurfaceBeginFrameCall(bool mustRecompose) {
EXPECT_CALL(*getInstance()->mRenderSurface, beginFrame(mustRecompose));
return nextState<ExecuteState>();
}
};
struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> {
[[nodiscard]] auto execute() {
getInstance()->mOutput.beginFrame();
return nextState<CheckPostconditionHadVisibleLayersState>();
}
};
struct CheckPostconditionHadVisibleLayersState
: public CallOrderStateMachineHelper<TestType, CheckPostconditionHadVisibleLayersState> {
void checkPostconditionHadVisibleLayers(bool expected) {
EXPECT_EQ(expected, getInstance()->mOutput.mState.lastCompositionHadVisibleLayers);
}
};
// Tests call one of these two helper member functions to start using the
// mini-DSL defined above.
[[nodiscard]] auto verify() { return IfGetDirtyRegionExpectationState::make(this); }
static const Region kEmptyRegion;
static const Region kNotEmptyRegion;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
};
const Region OutputBeginFrameTest::kEmptyRegion{Rect{0, 0, 0, 0}};
const Region OutputBeginFrameTest::kNotEmptyRegion{Rect{0, 0, 1, 1}};
TEST_F(OutputBeginFrameTest, hasDirtyHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(true)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, hasDirtyNotHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(true)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
TEST_F(OutputBeginFrameTest, hasDirtyHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(true)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, hasDirtyNotHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
TEST_F(OutputBeginFrameTest, notHasDirtyHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, notHasDirtyNotHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, notHasDirtyHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
TEST_F(OutputBeginFrameTest, notHasDirtyNotHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
/*
* Output::devOptRepaintFlash()
*/
struct OutputDevOptRepaintFlashTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by composeSurfaces to use a mock
// implementations.
MOCK_CONST_METHOD1(getDirtyRegion, Region(bool));
MOCK_METHOD1(composeSurfaces, std::optional<base::unique_fd>(const Region&));
MOCK_METHOD0(postFramebuffer, void());
MOCK_METHOD0(prepareFrame, void());
};
OutputDevOptRepaintFlashTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
static const Region kEmptyRegion;
static const Region kNotEmptyRegion;
StrictMock<OutputPartialMock> mOutput;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
CompositionRefreshArgs mRefreshArgs;
};
const Region OutputDevOptRepaintFlashTest::kEmptyRegion{Rect{0, 0, 0, 0}};
const Region OutputDevOptRepaintFlashTest::kNotEmptyRegion{Rect{0, 0, 1, 1}};
TEST_F(OutputDevOptRepaintFlashTest, doesNothingIfFlashDelayNotSet) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = {};
mRefreshArgs.repaintEverything = true;
mOutput.mState.isEnabled = true;
mOutput.devOptRepaintFlash(mRefreshArgs);
}
TEST_F(OutputDevOptRepaintFlashTest, postsAndPreparesANewFrameIfNotEnabled) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1);
mRefreshArgs.repaintEverything = true;
mOutput.mState.isEnabled = false;
InSequence seq;
EXPECT_CALL(mOutput, postFramebuffer());
EXPECT_CALL(mOutput, prepareFrame());
mOutput.devOptRepaintFlash(mRefreshArgs);
}
TEST_F(OutputDevOptRepaintFlashTest, postsAndPreparesANewFrameIfNotDirty) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1);
mRefreshArgs.repaintEverything = true;
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, getDirtyRegion(true)).WillOnce(Return(kEmptyRegion));
EXPECT_CALL(mOutput, postFramebuffer());
EXPECT_CALL(mOutput, prepareFrame());
mOutput.devOptRepaintFlash(mRefreshArgs);
}
TEST_F(OutputDevOptRepaintFlashTest, alsoComposesSurfacesAndQueuesABufferIfDirty) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1);
mRefreshArgs.repaintEverything = false;
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, getDirtyRegion(false)).WillOnce(Return(kNotEmptyRegion));
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(kNotEmptyRegion)));
EXPECT_CALL(*mRenderSurface, queueBuffer(_));
EXPECT_CALL(mOutput, postFramebuffer());
EXPECT_CALL(mOutput, prepareFrame());
mOutput.devOptRepaintFlash(mRefreshArgs);
}
// TODO(b/144060211) - Add coverage
/*
* Output::finishFrame()
*/
struct OutputFinishFrameTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by composeSurfaces to use a mock
// implementations.
MOCK_METHOD1(composeSurfaces, std::optional<base::unique_fd>(const Region&));
MOCK_METHOD0(postFramebuffer, void());
};
OutputFinishFrameTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
StrictMock<OutputPartialMock> mOutput;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
CompositionRefreshArgs mRefreshArgs;
};
TEST_F(OutputFinishFrameTest, ifNotEnabledDoesNothing) {
mOutput.mState.isEnabled = false;
mOutput.finishFrame(mRefreshArgs);
}
TEST_F(OutputFinishFrameTest, takesEarlyOutifComposeSurfacesReturnsNoFence) {
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION)));
mOutput.finishFrame(mRefreshArgs);
}
TEST_F(OutputFinishFrameTest, queuesBufferIfComposeSurfacesReturnsAFence) {
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION)))
.WillOnce(Return(ByMove(base::unique_fd())));
EXPECT_CALL(*mRenderSurface, queueBuffer(_));
mOutput.finishFrame(mRefreshArgs);
}
/*
* Output::postFramebuffer()
*/
struct OutputPostFramebufferTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by composeSurfaces to use a mock
// implementations.
MOCK_METHOD0(presentAndGetFrameFences, compositionengine::Output::FrameFences());
};
struct Layer {
Layer() {
EXPECT_CALL(outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(layerFE));
EXPECT_CALL(outputLayer, getHwcLayer()).WillRepeatedly(Return(&hwc2Layer));
}
StrictMock<mock::OutputLayer> outputLayer;
StrictMock<mock::LayerFE> layerFE;
StrictMock<HWC2::mock::Layer> hwc2Layer;
};
OutputPostFramebufferTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&mLayer1.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&mLayer2.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2u))
.WillRepeatedly(Return(&mLayer3.outputLayer));
}
StrictMock<OutputPartialMock> mOutput;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
Layer mLayer1;
Layer mLayer2;
Layer mLayer3;
};
TEST_F(OutputPostFramebufferTest, ifNotEnabledDoesNothing) {
mOutput.mState.isEnabled = false;
mOutput.postFramebuffer();
}
TEST_F(OutputPostFramebufferTest, ifEnabledMustFlipThenPresentThenSendPresentCompleted) {
mOutput.mState.isEnabled = true;
compositionengine::Output::FrameFences frameFences;
// This should happen even if there are no output layers.
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
// For this test in particular we want to make sure the call expectations
// setup below are satisfied in the specific order.
InSequence seq;
EXPECT_CALL(*mRenderSurface, flip());
EXPECT_CALL(mOutput, presentAndGetFrameFences()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
mOutput.postFramebuffer();
}
TEST_F(OutputPostFramebufferTest, releaseFencesAreSentToLayerFE) {
// Simulate getting release fences from each layer, and ensure they are passed to the
// front-end layer interface for each layer correctly.
mOutput.mState.isEnabled = true;
// Create three unique fence instances
sp<Fence> layer1Fence = new Fence();
sp<Fence> layer2Fence = new Fence();
sp<Fence> layer3Fence = new Fence();
compositionengine::Output::FrameFences frameFences;
frameFences.layerFences.emplace(&mLayer1.hwc2Layer, layer1Fence);
frameFences.layerFences.emplace(&mLayer2.hwc2Layer, layer2Fence);
frameFences.layerFences.emplace(&mLayer3.hwc2Layer, layer3Fence);
EXPECT_CALL(*mRenderSurface, flip());
EXPECT_CALL(mOutput, presentAndGetFrameFences()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
// Compare the pointers values of each fence to make sure the correct ones
// are passed. This happens to work with the current implementation, but
// would not survive certain calls like Fence::merge() which would return a
// new instance.
EXPECT_CALL(mLayer1.layerFE,
onLayerDisplayed(Property(&sp<Fence>::get, Eq(layer1Fence.get()))));
EXPECT_CALL(mLayer2.layerFE,
onLayerDisplayed(Property(&sp<Fence>::get, Eq(layer2Fence.get()))));
EXPECT_CALL(mLayer3.layerFE,
onLayerDisplayed(Property(&sp<Fence>::get, Eq(layer3Fence.get()))));
mOutput.postFramebuffer();
}
TEST_F(OutputPostFramebufferTest, releaseFencesIncludeClientTargetAcquireFence) {
mOutput.mState.isEnabled = true;
mOutput.mState.usesClientComposition = true;
sp<Fence> clientTargetAcquireFence = new Fence();
sp<Fence> layer1Fence = new Fence();
sp<Fence> layer2Fence = new Fence();
sp<Fence> layer3Fence = new Fence();
compositionengine::Output::FrameFences frameFences;
frameFences.clientTargetAcquireFence = clientTargetAcquireFence;
frameFences.layerFences.emplace(&mLayer1.hwc2Layer, layer1Fence);
frameFences.layerFences.emplace(&mLayer2.hwc2Layer, layer2Fence);
frameFences.layerFences.emplace(&mLayer3.hwc2Layer, layer3Fence);
EXPECT_CALL(*mRenderSurface, flip());
EXPECT_CALL(mOutput, presentAndGetFrameFences()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
// Fence::merge is called, and since none of the fences are actually valid,
// Fence::NO_FENCE is returned and passed to each onLayerDisplayed() call.
// This is the best we can do without creating a real kernel fence object.
EXPECT_CALL(mLayer1.layerFE, onLayerDisplayed(Fence::NO_FENCE));
EXPECT_CALL(mLayer2.layerFE, onLayerDisplayed(Fence::NO_FENCE));
EXPECT_CALL(mLayer3.layerFE, onLayerDisplayed(Fence::NO_FENCE));
mOutput.postFramebuffer();
}
TEST_F(OutputPostFramebufferTest, releasedLayersSentPresentFence) {
mOutput.mState.isEnabled = true;
mOutput.mState.usesClientComposition = true;
// This should happen even if there are no (current) output layers.
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
// Load up the released layers with some mock instances
sp<StrictMock<mock::LayerFE>> releasedLayer1{new StrictMock<mock::LayerFE>()};
sp<StrictMock<mock::LayerFE>> releasedLayer2{new StrictMock<mock::LayerFE>()};
sp<StrictMock<mock::LayerFE>> releasedLayer3{new StrictMock<mock::LayerFE>()};
Output::ReleasedLayers layers;
layers.push_back(releasedLayer1);
layers.push_back(releasedLayer2);
layers.push_back(releasedLayer3);
mOutput.setReleasedLayers(std::move(layers));
// Set up a fake present fence
sp<Fence> presentFence = new Fence();
compositionengine::Output::FrameFences frameFences;
frameFences.presentFence = presentFence;
EXPECT_CALL(*mRenderSurface, flip());
EXPECT_CALL(mOutput, presentAndGetFrameFences()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
// Each released layer should be given the presentFence.
EXPECT_CALL(*releasedLayer1,
onLayerDisplayed(Property(&sp<Fence>::get, Eq(presentFence.get()))));
EXPECT_CALL(*releasedLayer2,
onLayerDisplayed(Property(&sp<Fence>::get, Eq(presentFence.get()))));
EXPECT_CALL(*releasedLayer3,
onLayerDisplayed(Property(&sp<Fence>::get, Eq(presentFence.get()))));
mOutput.postFramebuffer();
// After the call the list of released layers should have been cleared.
EXPECT_TRUE(mOutput.getReleasedLayersForTest().empty());
}
/*
* Output::composeSurfaces()
*/
struct OutputComposeSurfacesTest : public testing::Test {
static constexpr uint32_t kDefaultOutputOrientation = TR_IDENT;
static constexpr ui::Dataspace kDefaultOutputDataspace = ui::Dataspace::DISPLAY_P3;
static const Rect kDefaultOutputFrame;
static const Rect kDefaultOutputViewport;
static const Rect kDefaultOutputScissor;
static const mat4 kDefaultColorTransformMat;
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by composeSurfaces to use a mock
// implementations.
MOCK_CONST_METHOD0(getSkipColorTransform, bool());
MOCK_METHOD2(generateClientCompositionRequests,
std::vector<renderengine::LayerSettings>(bool, Region&));
MOCK_METHOD2(appendRegionFlashRequests,
void(const Region&, std::vector<renderengine::LayerSettings>&));
MOCK_METHOD1(setExpensiveRenderingExpected, void(bool));
};
OutputComposeSurfacesTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
mOutput.editState().frame = kDefaultOutputFrame;
mOutput.editState().viewport = kDefaultOutputViewport;
mOutput.editState().scissor = kDefaultOutputScissor;
mOutput.editState().transform = ui::Transform{kDefaultOutputOrientation};
mOutput.editState().orientation = kDefaultOutputOrientation;
mOutput.editState().dataspace = kDefaultOutputDataspace;
mOutput.editState().colorTransformMatrix = kDefaultColorTransformMat;
mOutput.editState().isSecure = true;
mOutput.editState().needsFiltering = false;
mOutput.editState().usesClientComposition = true;
mOutput.editState().usesDeviceComposition = false;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&mOutputLayer1));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&mOutputLayer2));
EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine));
EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine));
}
StrictMock<mock::CompositionEngine> mCompositionEngine;
StrictMock<renderengine::mock::RenderEngine> mRenderEngine;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<mock::OutputLayer> mOutputLayer1;
StrictMock<mock::OutputLayer> mOutputLayer2;
StrictMock<OutputPartialMock> mOutput;
sp<GraphicBuffer> mOutputBuffer = new GraphicBuffer();
};
const Rect OutputComposeSurfacesTest::kDefaultOutputFrame{1001, 1002, 1003, 1004};
const Rect OutputComposeSurfacesTest::kDefaultOutputViewport{1005, 1006, 1007, 1008};
const Rect OutputComposeSurfacesTest::kDefaultOutputScissor{1009, 1010, 1011, 1012};
const mat4 OutputComposeSurfacesTest::kDefaultColorTransformMat{mat4() * 0.5};
// TODO(b/121291683): Expand unit test coverage for composeSurfaces beyond these
// basic tests.
TEST_F(OutputComposeSurfacesTest, doesNothingIfNoClientComposition) {
mOutput.editState().usesClientComposition = false;
Region debugRegion;
std::optional<base::unique_fd> readyFence = mOutput.composeSurfaces(debugRegion);
EXPECT_TRUE(readyFence);
}
TEST_F(OutputComposeSurfacesTest, worksIfNoClientLayersQueued) {
const Region kDebugRegion{Rect{100, 101, 102, 103}};
constexpr float kDefaultMaxLuminance = 1.0f;
constexpr float kDefaultAvgLuminance = 0.7f;
constexpr float kDefaultMinLuminance = 0.1f;
HdrCapabilities HdrCapabilities{{},
kDefaultMaxLuminance,
kDefaultAvgLuminance,
kDefaultMinLuminance};
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillOnce(Return(false));
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, true, _, _)).Times(1);
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillOnce(Return(true));
EXPECT_CALL(*mDisplayColorProfile, getHdrCapabilities()).WillOnce(ReturnRef(HdrCapabilities));
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(mOutputBuffer));
EXPECT_CALL(mOutput, getSkipColorTransform()).WillOnce(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(false, _)).Times(1);
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)).Times(1);
EXPECT_CALL(mOutput, setExpensiveRenderingExpected(true)).Times(1);
EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false)).Times(1);
std::optional<base::unique_fd> readyFence = mOutput.composeSurfaces(kDebugRegion);
EXPECT_TRUE(readyFence);
}
/*
* Output::generateClientCompositionRequests()
*/
struct GenerateClientCompositionRequestsTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// compositionengine::Output overrides
std::vector<renderengine::LayerSettings> generateClientCompositionRequests(
bool supportsProtectedContent, Region& clearRegion) override {
return impl::Output::generateClientCompositionRequests(supportsProtectedContent,
clearRegion);
}
};
GenerateClientCompositionRequestsTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
};
// TODO(b/121291683): Add more unit test coverage for generateClientCompositionRequests
TEST_F(GenerateClientCompositionRequestsTest, worksForLandscapeModeSplitScreen) {
// In split-screen landscape mode, the screen is rotated 90 degrees, with
// one layer on the left covering the left side of the output, and one layer
// on the right covering that side of the output.
StrictMock<mock::OutputLayer> leftOutputLayer;
StrictMock<mock::OutputLayer> rightOutputLayer;
StrictMock<mock::Layer> leftLayer;
StrictMock<mock::LayerFE> leftLayerFE;
StrictMock<mock::Layer> rightLayer;
StrictMock<mock::LayerFE> rightLayerFE;
impl::OutputLayerCompositionState leftOutputLayerState;
leftOutputLayerState.clearClientTarget = false;
leftOutputLayerState.visibleRegion = Region{Rect{0, 0, 1000, 1000}};
LayerFECompositionState leftLayerFEState;
leftLayerFEState.isOpaque = true;
const half3 leftLayerColor{1.f, 0.f, 0.f};
renderengine::LayerSettings leftLayerRESettings;
leftLayerRESettings.source.solidColor = leftLayerColor;
impl::OutputLayerCompositionState rightOutputLayerState;
rightOutputLayerState.clearClientTarget = false;
rightOutputLayerState.visibleRegion = Region{Rect{1000, 0, 2000, 1000}};
LayerFECompositionState rightLayerFEState;
rightLayerFEState.isOpaque = true;
const half3 rightLayerColor{0.f, 1.f, 0.f};
renderengine::LayerSettings rightLayerRESettings;
rightLayerRESettings.source.solidColor = rightLayerColor;
EXPECT_CALL(leftOutputLayer, getState()).WillRepeatedly(ReturnRef(leftOutputLayerState));
EXPECT_CALL(leftOutputLayer, getLayer()).WillRepeatedly(ReturnRef(leftLayer));
EXPECT_CALL(leftOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(leftLayerFE));
EXPECT_CALL(leftOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(leftOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(leftLayer, getFEState()).WillRepeatedly(ReturnRef(leftLayerFEState));
EXPECT_CALL(leftLayerFE, prepareClientComposition(_)).WillOnce(Return(leftLayerRESettings));
EXPECT_CALL(leftOutputLayer, editState()).WillRepeatedly(ReturnRef(leftOutputLayerState));
EXPECT_CALL(rightOutputLayer, getState()).WillRepeatedly(ReturnRef(rightOutputLayerState));
EXPECT_CALL(rightOutputLayer, getLayer()).WillRepeatedly(ReturnRef(rightLayer));
EXPECT_CALL(rightOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(rightLayerFE));
EXPECT_CALL(rightOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(rightOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(rightLayer, getFEState()).WillRepeatedly(ReturnRef(rightLayerFEState));
EXPECT_CALL(rightLayerFE, prepareClientComposition(_)).WillOnce(Return(rightLayerRESettings));
EXPECT_CALL(rightOutputLayer, editState()).WillRepeatedly(ReturnRef(rightOutputLayerState));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&leftOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&rightOutputLayer));
const Rect kPortraitFrame(0, 0, 1000, 2000);
const Rect kPortraitViewport(0, 0, 2000, 1000);
const Rect kPortraitScissor(0, 0, 1000, 2000);
const uint32_t kPortraitOrientation = TR_ROT_90;
mOutput.editState().frame = kPortraitFrame;
mOutput.editState().viewport = kPortraitViewport;
mOutput.editState().scissor = kPortraitScissor;
mOutput.editState().transform = ui::Transform{kPortraitOrientation};
mOutput.editState().orientation = kPortraitOrientation;
mOutput.editState().needsFiltering = true;
mOutput.editState().isSecure = false;
constexpr bool supportsProtectedContent = false;
Region clearRegion;
auto requests =
mOutput.generateClientCompositionRequests(supportsProtectedContent, clearRegion);
ASSERT_EQ(2u, requests.size());
EXPECT_EQ(leftLayerColor, requests[0].source.solidColor);
EXPECT_EQ(rightLayerColor, requests[1].source.solidColor);
}
TEST_F(GenerateClientCompositionRequestsTest, ignoresLayersThatDoNotIntersectWithViewport) {
// Layers whose visible region does not intersect with the viewport will be
// skipped when generating client composition request state.
StrictMock<mock::OutputLayer> outputLayer;
StrictMock<mock::Layer> layer;
StrictMock<mock::LayerFE> layerFE;
impl::OutputLayerCompositionState outputLayerState;
outputLayerState.clearClientTarget = false;
outputLayerState.visibleRegion = Region{Rect{3000, 0, 4000, 1000}};
LayerFECompositionState layerFEState;
layerFEState.isOpaque = true;
EXPECT_CALL(outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(outputLayer, getLayer()).WillRepeatedly(ReturnRef(layer));
EXPECT_CALL(outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(layerFE));
EXPECT_CALL(outputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(outputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(layer, getFEState()).WillRepeatedly(ReturnRef(layerFEState));
EXPECT_CALL(layerFE, prepareClientComposition(_)).Times(0);
EXPECT_CALL(outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u)).WillRepeatedly(Return(&outputLayer));
const Rect kPortraitFrame(0, 0, 1000, 2000);
const Rect kPortraitViewport(0, 0, 2000, 1000);
const Rect kPortraitScissor(0, 0, 1000, 2000);
const uint32_t kPortraitOrientation = TR_ROT_90;
mOutput.editState().frame = kPortraitFrame;
mOutput.editState().viewport = kPortraitViewport;
mOutput.editState().scissor = kPortraitScissor;
mOutput.editState().transform = ui::Transform{kPortraitOrientation};
mOutput.editState().orientation = kPortraitOrientation;
mOutput.editState().needsFiltering = true;
mOutput.editState().isSecure = false;
constexpr bool supportsProtectedContent = false;
Region clearRegion;
auto requests =
mOutput.generateClientCompositionRequests(supportsProtectedContent, clearRegion);
EXPECT_EQ(0u, requests.size());
}
TEST_F(GenerateClientCompositionRequestsTest, clearsDeviceLayesAfterFirst) {
// If client composition is performed with some layers set to use device
// composition, device layers after the first layer (device or client) will
// clear the frame buffer if they are opaque and if that layer has a flag
// set to do so. The first layer is skipped as the frame buffer is already
// expected to be clear.
StrictMock<mock::OutputLayer> leftOutputLayer;
StrictMock<mock::OutputLayer> rightOutputLayer;
StrictMock<mock::Layer> leftLayer;
StrictMock<mock::LayerFE> leftLayerFE;
StrictMock<mock::Layer> rightLayer;
StrictMock<mock::LayerFE> rightLayerFE;
impl::OutputLayerCompositionState leftOutputLayerState;
leftOutputLayerState.clearClientTarget = true;
leftOutputLayerState.visibleRegion = Region{Rect{0, 0, 1000, 1000}};
LayerFECompositionState leftLayerFEState;
leftLayerFEState.isOpaque = true;
impl::OutputLayerCompositionState rightOutputLayerState;
rightOutputLayerState.clearClientTarget = true;
rightOutputLayerState.visibleRegion = Region{Rect{1000, 0, 2000, 1000}};
LayerFECompositionState rightLayerFEState;
rightLayerFEState.isOpaque = true;
const half3 rightLayerColor{0.f, 1.f, 0.f};
renderengine::LayerSettings rightLayerRESettings;
rightLayerRESettings.geometry.boundaries = FloatRect{456, 0, 0, 0};
rightLayerRESettings.source.solidColor = rightLayerColor;
EXPECT_CALL(leftOutputLayer, getState()).WillRepeatedly(ReturnRef(leftOutputLayerState));
EXPECT_CALL(leftOutputLayer, getLayer()).WillRepeatedly(ReturnRef(leftLayer));
EXPECT_CALL(leftOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(leftLayerFE));
EXPECT_CALL(leftOutputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(leftOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(leftLayer, getFEState()).WillRepeatedly(ReturnRef(leftLayerFEState));
EXPECT_CALL(leftOutputLayer, editState()).WillRepeatedly(ReturnRef(leftOutputLayerState));
EXPECT_CALL(rightOutputLayer, getState()).WillRepeatedly(ReturnRef(rightOutputLayerState));
EXPECT_CALL(rightOutputLayer, getLayer()).WillRepeatedly(ReturnRef(rightLayer));
EXPECT_CALL(rightOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(rightLayerFE));
EXPECT_CALL(rightOutputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(rightOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(rightLayer, getFEState()).WillRepeatedly(ReturnRef(rightLayerFEState));
EXPECT_CALL(rightLayerFE, prepareClientComposition(_)).WillOnce(Return(rightLayerRESettings));
EXPECT_CALL(rightOutputLayer, editState()).WillRepeatedly(ReturnRef(rightOutputLayerState));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&leftOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&rightOutputLayer));
const Rect kPortraitFrame(0, 0, 1000, 2000);
const Rect kPortraitViewport(0, 0, 2000, 1000);
const Rect kPortraitScissor(0, 0, 1000, 2000);
const uint32_t kPortraitOrientation = TR_ROT_90;
mOutput.editState().frame = kPortraitFrame;
mOutput.editState().viewport = kPortraitViewport;
mOutput.editState().scissor = kPortraitScissor;
mOutput.editState().transform = ui::Transform{kPortraitOrientation};
mOutput.editState().orientation = kPortraitOrientation;
mOutput.editState().needsFiltering = true;
mOutput.editState().isSecure = false;
constexpr bool supportsProtectedContent = false;
Region clearRegion;
auto requests =
mOutput.generateClientCompositionRequests(supportsProtectedContent, clearRegion);
const half3 clearColor{0.f, 0.f, 0.f};
ASSERT_EQ(1u, requests.size());
EXPECT_EQ(456.f, requests[0].geometry.boundaries.left);
EXPECT_EQ(clearColor, requests[0].source.solidColor);
}
} // namespace
} // namespace android::compositionengine