| /* | 
 |  * Copyright 2019 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <DisplayHardware/Hal.h> | 
 | #include <android-base/stringprintf.h> | 
 | #include <compositionengine/DisplayColorProfile.h> | 
 | #include <compositionengine/LayerFECompositionState.h> | 
 | #include <compositionengine/Output.h> | 
 | #include <compositionengine/impl/HwcBufferCache.h> | 
 | #include <compositionengine/impl/OutputCompositionState.h> | 
 | #include <compositionengine/impl/OutputLayer.h> | 
 | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
 | #include <cstdint> | 
 | #include "system/graphics-base-v1.0.h" | 
 |  | 
 | #include <ui/DataspaceUtils.h> | 
 |  | 
 | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
 | #pragma clang diagnostic push | 
 | #pragma clang diagnostic ignored "-Wconversion" | 
 |  | 
 | #include "DisplayHardware/HWComposer.h" | 
 |  | 
 | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
 | #pragma clang diagnostic pop // ignored "-Wconversion" | 
 |  | 
 | using aidl::android::hardware::graphics::composer3::Composition; | 
 |  | 
 | namespace android::compositionengine { | 
 |  | 
 | OutputLayer::~OutputLayer() = default; | 
 |  | 
 | namespace impl { | 
 |  | 
 | namespace { | 
 |  | 
 | FloatRect reduce(const FloatRect& win, const Region& exclude) { | 
 |     if (CC_LIKELY(exclude.isEmpty())) { | 
 |         return win; | 
 |     } | 
 |     // Convert through Rect (by rounding) for lack of FloatRegion | 
 |     return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output, | 
 |                                                const sp<compositionengine::LayerFE>& layerFE) { | 
 |     return createOutputLayerTemplated<OutputLayer>(output, layerFE); | 
 | } | 
 |  | 
 | OutputLayer::~OutputLayer() = default; | 
 |  | 
 | void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) { | 
 |     auto& state = editState(); | 
 |     if (hwcLayer) { | 
 |         state.hwc.emplace(std::move(hwcLayer)); | 
 |     } else { | 
 |         state.hwc.reset(); | 
 |     } | 
 | } | 
 |  | 
 | Rect OutputLayer::calculateInitialCrop() const { | 
 |     const auto& layerState = *getLayerFE().getCompositionState(); | 
 |  | 
 |     // apply the projection's clipping to the window crop in | 
 |     // layerstack space, and convert-back to layer space. | 
 |     // if there are no window scaling involved, this operation will map to full | 
 |     // pixels in the buffer. | 
 |  | 
 |     FloatRect activeCropFloat = | 
 |             reduce(layerState.geomLayerBounds, layerState.transparentRegionHint); | 
 |  | 
 |     const Rect& viewport = getOutput().getState().layerStackSpace.getContent(); | 
 |     const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
 |     const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
 |     // Transform to screen space. | 
 |     activeCropFloat = layerTransform.transform(activeCropFloat); | 
 |     activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); | 
 |     // Back to layer space to work with the content crop. | 
 |     activeCropFloat = inverseLayerTransform.transform(activeCropFloat); | 
 |  | 
 |     // This needs to be here as transform.transform(Rect) computes the | 
 |     // transformed rect and then takes the bounding box of the result before | 
 |     // returning. This means | 
 |     // transform.inverse().transform(transform.transform(Rect)) != Rect | 
 |     // in which case we need to make sure the final rect is clipped to the | 
 |     // display bounds. | 
 |     Rect activeCrop{activeCropFloat}; | 
 |     if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { | 
 |         activeCrop.clear(); | 
 |     } | 
 |     return activeCrop; | 
 | } | 
 |  | 
 | FloatRect OutputLayer::calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const { | 
 |     const auto& layerState = *getLayerFE().getCompositionState(); | 
 |  | 
 |     if (!layerState.geomUsesSourceCrop) { | 
 |         return {}; | 
 |     } | 
 |  | 
 |     // the content crop is the area of the content that gets scaled to the | 
 |     // layer's size. This is in buffer space. | 
 |     FloatRect crop = layerState.geomContentCrop.toFloatRect(); | 
 |  | 
 |     // In addition there is a WM-specified crop we pull from our drawing state. | 
 |     Rect activeCrop = calculateInitialCrop(); | 
 |     const Rect& bufferSize = layerState.geomBufferSize; | 
 |  | 
 |     int winWidth = bufferSize.getWidth(); | 
 |     int winHeight = bufferSize.getHeight(); | 
 |  | 
 |     // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) | 
 |     // if display frame hasn't been set and the parent is an unbounded layer. | 
 |     if (winWidth < 0 && winHeight < 0) { | 
 |         return crop; | 
 |     } | 
 |  | 
 |     // Transform the window crop to match the buffer coordinate system, | 
 |     // which means using the inverse of the current transform set on the | 
 |     // SurfaceFlingerConsumer. | 
 |     uint32_t invTransform = layerState.geomBufferTransform; | 
 |     if (layerState.geomBufferUsesDisplayInverseTransform) { | 
 |         /* | 
 |          * the code below applies the primary display's inverse transform to the | 
 |          * buffer | 
 |          */ | 
 |         uint32_t invTransformOrient = internalDisplayRotationFlags; | 
 |         // calculate the inverse transform | 
 |         if (invTransformOrient & HAL_TRANSFORM_ROT_90) { | 
 |             invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
 |         } | 
 |         // and apply to the current transform | 
 |         invTransform = | 
 |                 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); | 
 |     } | 
 |  | 
 |     if (invTransform & HAL_TRANSFORM_ROT_90) { | 
 |         // If the activeCrop has been rotate the ends are rotated but not | 
 |         // the space itself so when transforming ends back we can't rely on | 
 |         // a modification of the axes of rotation. To account for this we | 
 |         // need to reorient the inverse rotation in terms of the current | 
 |         // axes of rotation. | 
 |         bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; | 
 |         bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; | 
 |         if (isHFlipped == isVFlipped) { | 
 |             invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
 |         } | 
 |         std::swap(winWidth, winHeight); | 
 |     } | 
 |     const Rect winCrop = | 
 |             activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); | 
 |  | 
 |     // below, crop is intersected with winCrop expressed in crop's coordinate space | 
 |     const float xScale = crop.getWidth() / float(winWidth); | 
 |     const float yScale = crop.getHeight() / float(winHeight); | 
 |  | 
 |     const float insetLeft = winCrop.left * xScale; | 
 |     const float insetTop = winCrop.top * yScale; | 
 |     const float insetRight = (winWidth - winCrop.right) * xScale; | 
 |     const float insetBottom = (winHeight - winCrop.bottom) * yScale; | 
 |  | 
 |     crop.left += insetLeft; | 
 |     crop.top += insetTop; | 
 |     crop.right -= insetRight; | 
 |     crop.bottom -= insetBottom; | 
 |  | 
 |     return crop; | 
 | } | 
 |  | 
 | Rect OutputLayer::calculateOutputDisplayFrame() const { | 
 |     const auto& layerState = *getLayerFE().getCompositionState(); | 
 |     const auto& outputState = getOutput().getState(); | 
 |  | 
 |     // apply the layer's transform, followed by the display's global transform | 
 |     // here we're guaranteed that the layer's transform preserves rects | 
 |     Region activeTransparentRegion = layerState.transparentRegionHint; | 
 |     const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
 |     const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
 |     const Rect& bufferSize = layerState.geomBufferSize; | 
 |     Rect activeCrop = layerState.geomCrop; | 
 |     if (!activeCrop.isEmpty() && bufferSize.isValid()) { | 
 |         activeCrop = layerTransform.transform(activeCrop); | 
 |         if (!activeCrop.intersect(outputState.layerStackSpace.getContent(), &activeCrop)) { | 
 |             activeCrop.clear(); | 
 |         } | 
 |         activeCrop = inverseLayerTransform.transform(activeCrop, true); | 
 |         // This needs to be here as transform.transform(Rect) computes the | 
 |         // transformed rect and then takes the bounding box of the result before | 
 |         // returning. This means | 
 |         // transform.inverse().transform(transform.transform(Rect)) != Rect | 
 |         // in which case we need to make sure the final rect is clipped to the | 
 |         // display bounds. | 
 |         if (!activeCrop.intersect(bufferSize, &activeCrop)) { | 
 |             activeCrop.clear(); | 
 |         } | 
 |         // mark regions outside the crop as transparent | 
 |         activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); | 
 |         activeTransparentRegion.orSelf( | 
 |                 Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); | 
 |         activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); | 
 |         activeTransparentRegion.orSelf( | 
 |                 Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); | 
 |     } | 
 |  | 
 |     // reduce uses a FloatRect to provide more accuracy during the | 
 |     // transformation. We then round upon constructing 'frame'. | 
 |     FloatRect geomLayerBounds = layerState.geomLayerBounds; | 
 |  | 
 |     // Some HWCs may clip client composited input to its displayFrame. Make sure | 
 |     // that this does not cut off the shadow. | 
 |     if (layerState.forceClientComposition && layerState.shadowRadius > 0.0f) { | 
 |         const auto outset = layerState.shadowRadius; | 
 |         geomLayerBounds.left -= outset; | 
 |         geomLayerBounds.top -= outset; | 
 |         geomLayerBounds.right += outset; | 
 |         geomLayerBounds.bottom += outset; | 
 |     } | 
 |     Rect frame{layerTransform.transform(reduce(geomLayerBounds, activeTransparentRegion))}; | 
 |     if (!frame.intersect(outputState.layerStackSpace.getContent(), &frame)) { | 
 |         frame.clear(); | 
 |     } | 
 |     const ui::Transform displayTransform{outputState.transform}; | 
 |  | 
 |     return displayTransform.transform(frame); | 
 | } | 
 |  | 
 | uint32_t OutputLayer::calculateOutputRelativeBufferTransform( | 
 |         uint32_t internalDisplayRotationFlags) const { | 
 |     const auto& layerState = *getLayerFE().getCompositionState(); | 
 |     const auto& outputState = getOutput().getState(); | 
 |  | 
 |     /* | 
 |      * Transformations are applied in this order: | 
 |      * 1) buffer orientation/flip/mirror | 
 |      * 2) state transformation (window manager) | 
 |      * 3) layer orientation (screen orientation) | 
 |      * (NOTE: the matrices are multiplied in reverse order) | 
 |      */ | 
 |     const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
 |     const ui::Transform displayTransform{outputState.transform}; | 
 |     const ui::Transform bufferTransform{layerState.geomBufferTransform}; | 
 |     ui::Transform transform(displayTransform * layerTransform * bufferTransform); | 
 |  | 
 |     if (layerState.geomBufferUsesDisplayInverseTransform) { | 
 |         /* | 
 |          * We must apply the internal display's inverse transform to the buffer | 
 |          * transform, and not the one for the output this layer is on. | 
 |          */ | 
 |         uint32_t invTransform = internalDisplayRotationFlags; | 
 |  | 
 |         // calculate the inverse transform | 
 |         if (invTransform & HAL_TRANSFORM_ROT_90) { | 
 |             invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
 |         } | 
 |  | 
 |         /* | 
 |          * Here we cancel out the orientation component of the WM transform. | 
 |          * The scaling and translate components are already included in our bounds | 
 |          * computation so it's enough to just omit it in the composition. | 
 |          * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. | 
 |          */ | 
 |         transform = ui::Transform(invTransform) * displayTransform * bufferTransform; | 
 |     } | 
 |  | 
 |     // this gives us only the "orientation" component of the transform | 
 |     return transform.getOrientation(); | 
 | } | 
 |  | 
 | void OutputLayer::updateCompositionState( | 
 |         bool includeGeometry, bool forceClientComposition, | 
 |         ui::Transform::RotationFlags internalDisplayRotationFlags) { | 
 |     const auto* layerFEState = getLayerFE().getCompositionState(); | 
 |     if (!layerFEState) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const auto& outputState = getOutput().getState(); | 
 |     const auto& profile = *getOutput().getDisplayColorProfile(); | 
 |     auto& state = editState(); | 
 |  | 
 |     if (includeGeometry) { | 
 |         // Clear the forceClientComposition flag before it is set for any | 
 |         // reason. Note that since it can be set by some checks below when | 
 |         // updating the geometry state, we only clear it when updating the | 
 |         // geometry since those conditions for forcing client composition won't | 
 |         // go away otherwise. | 
 |         state.forceClientComposition = false; | 
 |  | 
 |         state.displayFrame = calculateOutputDisplayFrame(); | 
 |         state.sourceCrop = calculateOutputSourceCrop(internalDisplayRotationFlags); | 
 |         state.bufferTransform = static_cast<Hwc2::Transform>( | 
 |                 calculateOutputRelativeBufferTransform(internalDisplayRotationFlags)); | 
 |  | 
 |         if ((layerFEState->isSecure && !outputState.isSecure) || | 
 |             (state.bufferTransform & ui::Transform::ROT_INVALID)) { | 
 |             state.forceClientComposition = true; | 
 |         } | 
 |     } | 
 |  | 
 |     // Determine the output dependent dataspace for this layer. If it is | 
 |     // colorspace agnostic, it just uses the dataspace chosen for the output to | 
 |     // avoid the need for color conversion. | 
 |     state.dataspace = layerFEState->isColorspaceAgnostic && | 
 |                     outputState.targetDataspace != ui::Dataspace::UNKNOWN | 
 |             ? outputState.targetDataspace | 
 |             : layerFEState->dataspace; | 
 |  | 
 |     // Override the dataspace transfer from 170M to sRGB if the device configuration requests this. | 
 |     // We do this here instead of in buffer info so that dumpsys can still report layers that are | 
 |     // using the 170M transfer. Also we only do this if the colorspace is not agnostic for the | 
 |     // layer, in case the color profile uses a 170M transfer function. | 
 |     if (outputState.treat170mAsSrgb && !layerFEState->isColorspaceAgnostic && | 
 |         (state.dataspace & HAL_DATASPACE_TRANSFER_MASK) == HAL_DATASPACE_TRANSFER_SMPTE_170M) { | 
 |         state.dataspace = static_cast<ui::Dataspace>( | 
 |                 (state.dataspace & HAL_DATASPACE_STANDARD_MASK) | | 
 |                 (state.dataspace & HAL_DATASPACE_RANGE_MASK) | HAL_DATASPACE_TRANSFER_SRGB); | 
 |     } | 
 |  | 
 |     // For hdr content, treat the white point as the display brightness - HDR content should not be | 
 |     // boosted or dimmed. | 
 |     // If the layer explicitly requests to disable dimming, then don't dim either. | 
 |     if (isHdrDataspace(state.dataspace) || | 
 |         getOutput().getState().displayBrightnessNits == getOutput().getState().sdrWhitePointNits || | 
 |         getOutput().getState().displayBrightnessNits == 0.f || !layerFEState->dimmingEnabled) { | 
 |         state.dimmingRatio = 1.f; | 
 |         state.whitePointNits = getOutput().getState().displayBrightnessNits; | 
 |     } else { | 
 |         state.dimmingRatio = std::clamp(getOutput().getState().sdrWhitePointNits / | 
 |                                                 getOutput().getState().displayBrightnessNits, | 
 |                                         0.f, 1.f); | 
 |         state.whitePointNits = getOutput().getState().sdrWhitePointNits; | 
 |     } | 
 |  | 
 |     // These are evaluated every frame as they can potentially change at any | 
 |     // time. | 
 |     if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) || | 
 |         forceClientComposition) { | 
 |         state.forceClientComposition = true; | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z, | 
 |                                   bool zIsOverridden, bool isPeekingThrough) { | 
 |     const auto& state = getState(); | 
 |     // Skip doing this if there is no HWC interface | 
 |     if (!state.hwc) { | 
 |         return; | 
 |     } | 
 |  | 
 |     auto& hwcLayer = (*state.hwc).hwcLayer; | 
 |     if (!hwcLayer) { | 
 |         ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", | 
 |               getLayerFE().getDebugName(), getOutput().getName().c_str()); | 
 |         return; | 
 |     } | 
 |  | 
 |     const auto* outputIndependentState = getLayerFE().getCompositionState(); | 
 |     if (!outputIndependentState) { | 
 |         return; | 
 |     } | 
 |  | 
 |     auto requestedCompositionType = outputIndependentState->compositionType; | 
 |  | 
 |     if (requestedCompositionType == Composition::SOLID_COLOR && state.overrideInfo.buffer) { | 
 |         // this should never happen, as SOLID_COLOR is skipped from caching, b/230073351 | 
 |         requestedCompositionType = Composition::DEVICE; | 
 |     } | 
 |  | 
 |     // TODO(b/181172795): We now update geometry for all flattened layers. We should update it | 
 |     // only when the geometry actually changes | 
 |     const bool isOverridden = | 
 |             state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden; | 
 |     const bool prevOverridden = state.hwc->stateOverridden; | 
 |     if (isOverridden || prevOverridden || skipLayer || includeGeometry) { | 
 |         writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z); | 
 |         writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState, | 
 |                                                  skipLayer); | 
 |     } | 
 |  | 
 |     writeOutputDependentPerFrameStateToHWC(hwcLayer.get()); | 
 |     writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState, | 
 |                                              requestedCompositionType, skipLayer); | 
 |  | 
 |     writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough, | 
 |                               skipLayer); | 
 |  | 
 |     if (requestedCompositionType == Composition::SOLID_COLOR) { | 
 |         writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState); | 
 |     } | 
 |  | 
 |     editState().hwc->stateOverridden = isOverridden; | 
 |     editState().hwc->layerSkipped = skipLayer; | 
 | } | 
 |  | 
 | void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer, | 
 |                                                          Composition requestedCompositionType, | 
 |                                                          uint32_t z) { | 
 |     const auto& outputDependentState = getState(); | 
 |  | 
 |     Rect displayFrame = outputDependentState.displayFrame; | 
 |     FloatRect sourceCrop = outputDependentState.sourceCrop; | 
 |  | 
 |     if (outputDependentState.overrideInfo.buffer != nullptr) { | 
 |         displayFrame = outputDependentState.overrideInfo.displayFrame; | 
 |         sourceCrop = | 
 |                 FloatRect(0.f, 0.f, | 
 |                           static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer() | 
 |                                                      ->getWidth()), | 
 |                           static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer() | 
 |                                                      ->getHeight())); | 
 |     } | 
 |  | 
 |     ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top, | 
 |           displayFrame.right, displayFrame.bottom); | 
 |  | 
 |     if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", | 
 |               getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right, | 
 |               displayFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " | 
 |               "%s (%d)", | 
 |               getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right, | 
 |               sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z, | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     // Solid-color layers and overridden buffers should always use an identity transform. | 
 |     const auto bufferTransform = (requestedCompositionType != Composition::SOLID_COLOR && | 
 |                                   getState().overrideInfo.buffer == nullptr) | 
 |             ? outputDependentState.bufferTransform | 
 |             : static_cast<hal::Transform>(0); | 
 |     if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform)); | 
 |         error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(), | 
 |               toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(), | 
 |               static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeOutputIndependentGeometryStateToHWC( | 
 |         HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState, | 
 |         bool skipLayer) { | 
 |     // If there is a peekThroughLayer, then this layer has a hole in it. We need to use | 
 |     // PREMULTIPLIED so it will peek through. | 
 |     const auto& overrideInfo = getState().overrideInfo; | 
 |     const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer | 
 |             ? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED | 
 |             : outputIndependentState.blendMode; | 
 |     if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(), | 
 |               toString(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     const float alpha = skipLayer | 
 |             ? 0.0f | 
 |             : (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha); | 
 |     ALOGV("Writing alpha %f", alpha); | 
 |  | 
 |     if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha, | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     for (const auto& [name, entry] : outputIndependentState.metadata) { | 
 |         if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value); | 
 |             error != hal::Error::NONE) { | 
 |             ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(), | 
 |                   name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) { | 
 |     const auto& outputDependentState = getState(); | 
 |  | 
 |     // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry | 
 |     // state and should not change every frame. | 
 |     Region visibleRegion = outputDependentState.overrideInfo.buffer | 
 |             ? Region(outputDependentState.overrideInfo.visibleRegion) | 
 |             : outputDependentState.outputSpaceVisibleRegion; | 
 |     if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         visibleRegion.dump(LOG_TAG); | 
 |     } | 
 |  | 
 |     if (auto error = | 
 |                 hwcLayer->setBlockingRegion(outputDependentState.outputSpaceBlockingRegionHint); | 
 |         error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set blocking region: %s (%d)", getLayerFE().getDebugName(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         outputDependentState.outputSpaceBlockingRegionHint.dump(LOG_TAG); | 
 |     } | 
 |  | 
 |     const auto dataspace = outputDependentState.overrideInfo.buffer | 
 |             ? outputDependentState.overrideInfo.dataspace | 
 |             : outputDependentState.dataspace; | 
 |  | 
 |     if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace, | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     // Cached layers are not dimmed, which means that composer should attempt to dim. | 
 |     // Note that if the dimming ratio is large, then this may cause the cached layer | 
 |     // to kick back into GPU composition :( | 
 |     // Also note that this assumes that there are no HDR layers that are able to be cached. | 
 |     // Otherwise, this could cause HDR layers to be dimmed twice. | 
 |     const auto dimmingRatio = outputDependentState.overrideInfo.buffer | 
 |             ? (getOutput().getState().displayBrightnessNits != 0.f | 
 |                        ? std::clamp(getOutput().getState().sdrWhitePointNits / | 
 |                                             getOutput().getState().displayBrightnessNits, | 
 |                                     0.f, 1.f) | 
 |                        : 1.f) | 
 |             : outputDependentState.dimmingRatio; | 
 |  | 
 |     if (auto error = hwcLayer->setBrightness(dimmingRatio); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set brightness %f: %s (%d)", getLayerFE().getDebugName(), | 
 |               dimmingRatio, to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeOutputIndependentPerFrameStateToHWC( | 
 |         HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState, | 
 |         Composition compositionType, bool skipLayer) { | 
 |     switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) { | 
 |         case hal::Error::NONE: | 
 |             break; | 
 |         case hal::Error::UNSUPPORTED: | 
 |             editState().forceClientComposition = true; | 
 |             break; | 
 |         default: | 
 |             ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(), | 
 |                   to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     const Region& surfaceDamage = getState().overrideInfo.buffer | 
 |             ? getState().overrideInfo.damageRegion | 
 |             : (getState().hwc->stateOverridden ? Region::INVALID_REGION | 
 |                                                : outputIndependentState.surfaceDamage); | 
 |  | 
 |     if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         outputIndependentState.surfaceDamage.dump(LOG_TAG); | 
 |     } | 
 |  | 
 |     // Content-specific per-frame state | 
 |     switch (compositionType) { | 
 |         case Composition::SOLID_COLOR: | 
 |             // For compatibility, should be written AFTER the composition type. | 
 |             break; | 
 |         case Composition::SIDEBAND: | 
 |             writeSidebandStateToHWC(hwcLayer, outputIndependentState); | 
 |             break; | 
 |         case Composition::CURSOR: | 
 |         case Composition::DEVICE: | 
 |         case Composition::DISPLAY_DECORATION: | 
 |             writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer); | 
 |             break; | 
 |         case Composition::INVALID: | 
 |         case Composition::CLIENT: | 
 |             // Ignored | 
 |             break; | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer, | 
 |                                             const LayerFECompositionState& outputIndependentState) { | 
 |     aidl::android::hardware::graphics::composer3::Color color = {outputIndependentState.color.r, | 
 |                                                                  outputIndependentState.color.g, | 
 |                                                                  outputIndependentState.color.b, | 
 |                                                                  1.0f}; | 
 |  | 
 |     if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer, | 
 |                                           const LayerFECompositionState& outputIndependentState) { | 
 |     if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle()); | 
 |         error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(), | 
 |               outputIndependentState.sidebandStream->handle(), to_string(error).c_str(), | 
 |               static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer, | 
 |                                         const LayerFECompositionState& outputIndependentState, | 
 |                                         bool skipLayer) { | 
 |     auto supportedPerFrameMetadata = | 
 |             getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata(); | 
 |     if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, | 
 |                                                    outputIndependentState.hdrMetadata); | 
 |         error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) { | 
 |         ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     sp<GraphicBuffer> buffer = outputIndependentState.buffer; | 
 |     sp<Fence> acquireFence = outputIndependentState.acquireFence; | 
 |     int slot = outputIndependentState.bufferSlot; | 
 |     if (getState().overrideInfo.buffer != nullptr && !skipLayer) { | 
 |         buffer = getState().overrideInfo.buffer->getBuffer(); | 
 |         acquireFence = getState().overrideInfo.acquireFence; | 
 |         slot = HwcBufferCache::FLATTENER_CACHING_SLOT; | 
 |     } | 
 |  | 
 |     ALOGV("Writing buffer %p", buffer.get()); | 
 |  | 
 |     uint32_t hwcSlot = 0; | 
 |     sp<GraphicBuffer> hwcBuffer; | 
 |     // We need access to the output-dependent state for the buffer cache there, | 
 |     // though otherwise the buffer is not output-dependent. | 
 |     editState().hwc->hwcBufferCache.getHwcBuffer(slot, buffer, &hwcSlot, &hwcBuffer); | 
 |  | 
 |     if (auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence); | 
 |         error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(), buffer->handle, | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer, | 
 |                                             Composition requestedCompositionType, | 
 |                                             bool isPeekingThrough, bool skipLayer) { | 
 |     auto& outputDependentState = editState(); | 
 |  | 
 |     if (isClientCompositionForced(isPeekingThrough)) { | 
 |         // If we are forcing client composition, we need to tell the HWC | 
 |         requestedCompositionType = Composition::CLIENT; | 
 |     } | 
 |  | 
 |     // Set the requested composition type with the HWC whenever it changes | 
 |     // We also resend the composition type when this layer was previously skipped, to ensure that | 
 |     // the composition type is up-to-date. | 
 |     if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType || | 
 |         (outputDependentState.hwc->layerSkipped && !skipLayer)) { | 
 |         outputDependentState.hwc->hwcCompositionType = requestedCompositionType; | 
 |  | 
 |         if (auto error = hwcLayer->setCompositionType(requestedCompositionType); | 
 |             error != hal::Error::NONE) { | 
 |             ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(), | 
 |                   to_string(requestedCompositionType).c_str(), to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeCursorPositionToHWC() const { | 
 |     // Skip doing this if there is no HWC interface | 
 |     auto hwcLayer = getHwcLayer(); | 
 |     if (!hwcLayer) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const auto* layerFEState = getLayerFE().getCompositionState(); | 
 |     if (!layerFEState) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const auto& outputState = getOutput().getState(); | 
 |  | 
 |     Rect frame = layerFEState->cursorFrame; | 
 |     frame.intersect(outputState.layerStackSpace.getContent(), &frame); | 
 |     Rect position = outputState.transform.transform(frame); | 
 |  | 
 |     if (auto error = hwcLayer->setCursorPosition(position.left, position.top); | 
 |         error != hal::Error::NONE) { | 
 |         ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)", | 
 |               getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(), | 
 |               static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 |  | 
 | HWC2::Layer* OutputLayer::getHwcLayer() const { | 
 |     const auto& state = getState(); | 
 |     return state.hwc ? state.hwc->hwcLayer.get() : nullptr; | 
 | } | 
 |  | 
 | bool OutputLayer::requiresClientComposition() const { | 
 |     const auto& state = getState(); | 
 |     return !state.hwc || state.hwc->hwcCompositionType == Composition::CLIENT; | 
 | } | 
 |  | 
 | bool OutputLayer::isHardwareCursor() const { | 
 |     const auto& state = getState(); | 
 |     return state.hwc && state.hwc->hwcCompositionType == Composition::CURSOR; | 
 | } | 
 |  | 
 | void OutputLayer::detectDisallowedCompositionTypeChange(Composition from, Composition to) const { | 
 |     bool result = false; | 
 |     switch (from) { | 
 |         case Composition::INVALID: | 
 |         case Composition::CLIENT: | 
 |             result = false; | 
 |             break; | 
 |  | 
 |         case Composition::DEVICE: | 
 |         case Composition::SOLID_COLOR: | 
 |             result = (to == Composition::CLIENT); | 
 |             break; | 
 |  | 
 |         case Composition::CURSOR: | 
 |         case Composition::SIDEBAND: | 
 |         case Composition::DISPLAY_DECORATION: | 
 |             result = (to == Composition::CLIENT || to == Composition::DEVICE); | 
 |             break; | 
 |     } | 
 |  | 
 |     if (!result) { | 
 |         ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)", | 
 |               getLayerFE().getDebugName(), to_string(from).c_str(), static_cast<int>(from), | 
 |               to_string(to).c_str(), static_cast<int>(to)); | 
 |     } | 
 | } | 
 |  | 
 | bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const { | 
 |     return getState().forceClientComposition || | 
 |             (!isPeekingThrough && getLayerFE().hasRoundedCorners()); | 
 | } | 
 |  | 
 | void OutputLayer::applyDeviceCompositionTypeChange(Composition compositionType) { | 
 |     auto& state = editState(); | 
 |     LOG_FATAL_IF(!state.hwc); | 
 |     auto& hwcState = *state.hwc; | 
 |  | 
 |     // Only detected disallowed changes if this was not a skip layer, because the | 
 |     // validated composition type may be arbitrary (usually DEVICE, to reflect that there were | 
 |     // fewer GPU layers) | 
 |     if (!hwcState.layerSkipped) { | 
 |         detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType); | 
 |     } | 
 |  | 
 |     hwcState.hwcCompositionType = compositionType; | 
 | } | 
 |  | 
 | void OutputLayer::prepareForDeviceLayerRequests() { | 
 |     auto& state = editState(); | 
 |     state.clearClientTarget = false; | 
 | } | 
 |  | 
 | void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) { | 
 |     auto& state = editState(); | 
 |     switch (request) { | 
 |         case hal::LayerRequest::CLEAR_CLIENT_TARGET: | 
 |             state.clearClientTarget = true; | 
 |             break; | 
 |  | 
 |         default: | 
 |             ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(), | 
 |                   toString(request).c_str(), static_cast<int>(request)); | 
 |             break; | 
 |     } | 
 | } | 
 |  | 
 | bool OutputLayer::needsFiltering() const { | 
 |     const auto& state = getState(); | 
 |     const auto& displayFrame = state.displayFrame; | 
 |     const auto& sourceCrop = state.sourceCrop; | 
 |     return sourceCrop.getHeight() != displayFrame.getHeight() || | 
 |             sourceCrop.getWidth() != displayFrame.getWidth(); | 
 | } | 
 |  | 
 | std::vector<LayerFE::LayerSettings> OutputLayer::getOverrideCompositionList() const { | 
 |     if (getState().overrideInfo.buffer == nullptr) { | 
 |         return {}; | 
 |     } | 
 |  | 
 |     // Compute the geometry boundaries in layer stack space: we need to transform from the | 
 |     // framebuffer space of the override buffer to layer space. | 
 |     const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace; | 
 |     const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace); | 
 |     const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame); | 
 |  | 
 |     LayerFE::LayerSettings settings; | 
 |     settings.geometry = renderengine::Geometry{ | 
 |             .boundaries = boundaries.toFloatRect(), | 
 |     }; | 
 |     settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId(); | 
 |     settings.source = renderengine::PixelSource{ | 
 |             .buffer = renderengine::Buffer{ | 
 |                     .buffer = getState().overrideInfo.buffer, | 
 |                     .fence = getState().overrideInfo.acquireFence, | 
 |                     // If the transform from layer space to display space contains a rotation, we | 
 |                     // need to undo the rotation in the texture transform | 
 |                     .textureTransform = | 
 |                             ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(), | 
 |             }}; | 
 |     settings.sourceDataspace = getState().overrideInfo.dataspace; | 
 |     settings.alpha = 1.0f; | 
 |     settings.whitePointNits = getOutput().getState().sdrWhitePointNits; | 
 |  | 
 |     return {static_cast<LayerFE::LayerSettings>(settings)}; | 
 | } | 
 |  | 
 | void OutputLayer::dump(std::string& out) const { | 
 |     using android::base::StringAppendF; | 
 |  | 
 |     StringAppendF(&out, "  - Output Layer %p(%s)\n", this, getLayerFE().getDebugName()); | 
 |     dumpState(out); | 
 | } | 
 |  | 
 | } // namespace impl | 
 | } // namespace android::compositionengine |