|  | /* | 
|  | * Copyright 2013 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #include "EGL/egl.h" | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "RenderEngine" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include <sched.h> | 
|  | #include <cmath> | 
|  | #include <fstream> | 
|  | #include <sstream> | 
|  | #include <unordered_set> | 
|  |  | 
|  | #include <GLES2/gl2.h> | 
|  | #include <GLES2/gl2ext.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <gui/DebugEGLImageTracker.h> | 
|  | #include <renderengine/Mesh.h> | 
|  | #include <renderengine/Texture.h> | 
|  | #include <renderengine/private/Description.h> | 
|  | #include <sync/sync.h> | 
|  | #include <ui/ColorSpace.h> | 
|  | #include <ui/DebugUtils.h> | 
|  | #include <ui/GraphicBuffer.h> | 
|  | #include <ui/Rect.h> | 
|  | #include <ui/Region.h> | 
|  | #include <utils/KeyedVector.h> | 
|  | #include <utils/Trace.h> | 
|  | #include "GLESRenderEngine.h" | 
|  | #include "GLExtensions.h" | 
|  | #include "GLFramebuffer.h" | 
|  | #include "GLImage.h" | 
|  | #include "GLShadowVertexGenerator.h" | 
|  | #include "Program.h" | 
|  | #include "ProgramCache.h" | 
|  | #include "filters/BlurFilter.h" | 
|  |  | 
|  | bool checkGlError(const char* op, int lineNumber) { | 
|  | bool errorFound = false; | 
|  | GLint error = glGetError(); | 
|  | while (error != GL_NO_ERROR) { | 
|  | errorFound = true; | 
|  | error = glGetError(); | 
|  | ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error); | 
|  | } | 
|  | return errorFound; | 
|  | } | 
|  |  | 
|  | static constexpr bool outputDebugPPMs = false; | 
|  |  | 
|  | void writePPM(const char* basename, GLuint width, GLuint height) { | 
|  | ALOGV("writePPM #%s: %d x %d", basename, width, height); | 
|  |  | 
|  | std::vector<GLubyte> pixels(width * height * 4); | 
|  | std::vector<GLubyte> outBuffer(width * height * 3); | 
|  |  | 
|  | // TODO(courtneygo): We can now have float formats, need | 
|  | // to remove this code or update to support. | 
|  | // Make returned pixels fit in uint32_t, one byte per component | 
|  | glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); | 
|  | if (checkGlError(__FUNCTION__, __LINE__)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::string filename(basename); | 
|  | filename.append(".ppm"); | 
|  | std::ofstream file(filename.c_str(), std::ios::binary); | 
|  | if (!file.is_open()) { | 
|  | ALOGE("Unable to open file: %s", filename.c_str()); | 
|  | ALOGE("You may need to do: \"adb shell setenforce 0\" to enable " | 
|  | "surfaceflinger to write debug images"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | file << "P6\n"; | 
|  | file << width << "\n"; | 
|  | file << height << "\n"; | 
|  | file << 255 << "\n"; | 
|  |  | 
|  | auto ptr = reinterpret_cast<char*>(pixels.data()); | 
|  | auto outPtr = reinterpret_cast<char*>(outBuffer.data()); | 
|  | for (int y = height - 1; y >= 0; y--) { | 
|  | char* data = ptr + y * width * sizeof(uint32_t); | 
|  |  | 
|  | for (GLuint x = 0; x < width; x++) { | 
|  | // Only copy R, G and B components | 
|  | outPtr[0] = data[0]; | 
|  | outPtr[1] = data[1]; | 
|  | outPtr[2] = data[2]; | 
|  | data += sizeof(uint32_t); | 
|  | outPtr += 3; | 
|  | } | 
|  | } | 
|  | file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size()); | 
|  | } | 
|  |  | 
|  | namespace android { | 
|  | namespace renderengine { | 
|  | namespace gl { | 
|  |  | 
|  | class BindNativeBufferAsFramebuffer { | 
|  | public: | 
|  | BindNativeBufferAsFramebuffer(GLESRenderEngine& engine, ANativeWindowBuffer* buffer, | 
|  | const bool useFramebufferCache) | 
|  | : mEngine(engine), mFramebuffer(mEngine.getFramebufferForDrawing()), mStatus(NO_ERROR) { | 
|  | mStatus = mFramebuffer->setNativeWindowBuffer(buffer, mEngine.isProtected(), | 
|  | useFramebufferCache) | 
|  | ? mEngine.bindFrameBuffer(mFramebuffer) | 
|  | : NO_MEMORY; | 
|  | } | 
|  | ~BindNativeBufferAsFramebuffer() { | 
|  | mFramebuffer->setNativeWindowBuffer(nullptr, false, /*arbitrary*/ true); | 
|  | mEngine.unbindFrameBuffer(mFramebuffer); | 
|  | } | 
|  | status_t getStatus() const { return mStatus; } | 
|  |  | 
|  | private: | 
|  | GLESRenderEngine& mEngine; | 
|  | Framebuffer* mFramebuffer; | 
|  | status_t mStatus; | 
|  | }; | 
|  |  | 
|  | using base::StringAppendF; | 
|  | using ui::Dataspace; | 
|  |  | 
|  | static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute, | 
|  | EGLint wanted, EGLConfig* outConfig) { | 
|  | EGLint numConfigs = -1, n = 0; | 
|  | eglGetConfigs(dpy, nullptr, 0, &numConfigs); | 
|  | std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR); | 
|  | eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n); | 
|  | configs.resize(n); | 
|  |  | 
|  | if (!configs.empty()) { | 
|  | if (attribute != EGL_NONE) { | 
|  | for (EGLConfig config : configs) { | 
|  | EGLint value = 0; | 
|  | eglGetConfigAttrib(dpy, config, attribute, &value); | 
|  | if (wanted == value) { | 
|  | *outConfig = config; | 
|  | return NO_ERROR; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // just pick the first one | 
|  | *outConfig = configs[0]; | 
|  | return NO_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType, | 
|  | EGLConfig* config) { | 
|  | // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if | 
|  | // it is to be used with WIFI displays | 
|  | status_t err; | 
|  | EGLint wantedAttribute; | 
|  | EGLint wantedAttributeValue; | 
|  |  | 
|  | std::vector<EGLint> attribs; | 
|  | if (renderableType) { | 
|  | const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format); | 
|  | const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102; | 
|  |  | 
|  | // Default to 8 bits per channel. | 
|  | const EGLint tmpAttribs[] = { | 
|  | EGL_RENDERABLE_TYPE, | 
|  | renderableType, | 
|  | EGL_RECORDABLE_ANDROID, | 
|  | EGL_TRUE, | 
|  | EGL_SURFACE_TYPE, | 
|  | EGL_WINDOW_BIT | EGL_PBUFFER_BIT, | 
|  | EGL_FRAMEBUFFER_TARGET_ANDROID, | 
|  | EGL_TRUE, | 
|  | EGL_RED_SIZE, | 
|  | is1010102 ? 10 : 8, | 
|  | EGL_GREEN_SIZE, | 
|  | is1010102 ? 10 : 8, | 
|  | EGL_BLUE_SIZE, | 
|  | is1010102 ? 10 : 8, | 
|  | EGL_ALPHA_SIZE, | 
|  | is1010102 ? 2 : 8, | 
|  | EGL_NONE, | 
|  | }; | 
|  | std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)), | 
|  | std::back_inserter(attribs)); | 
|  | wantedAttribute = EGL_NONE; | 
|  | wantedAttributeValue = EGL_NONE; | 
|  | } else { | 
|  | // if no renderable type specified, fallback to a simplified query | 
|  | wantedAttribute = EGL_NATIVE_VISUAL_ID; | 
|  | wantedAttributeValue = format; | 
|  | } | 
|  |  | 
|  | err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue, | 
|  | config); | 
|  | if (err == NO_ERROR) { | 
|  | EGLint caveat; | 
|  | if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat)) | 
|  | ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!"); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | std::optional<RenderEngine::ContextPriority> GLESRenderEngine::createContextPriority( | 
|  | const RenderEngineCreationArgs& args) { | 
|  | if (!GLExtensions::getInstance().hasContextPriority()) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | switch (args.contextPriority) { | 
|  | case RenderEngine::ContextPriority::REALTIME: | 
|  | if (gl::GLExtensions::getInstance().hasRealtimePriority()) { | 
|  | return RenderEngine::ContextPriority::REALTIME; | 
|  | } else { | 
|  | ALOGI("Realtime priority unsupported, degrading gracefully to high priority"); | 
|  | return RenderEngine::ContextPriority::HIGH; | 
|  | } | 
|  | case RenderEngine::ContextPriority::HIGH: | 
|  | case RenderEngine::ContextPriority::MEDIUM: | 
|  | case RenderEngine::ContextPriority::LOW: | 
|  | return args.contextPriority; | 
|  | default: | 
|  | return std::nullopt; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GLESRenderEngine> GLESRenderEngine::create(const RenderEngineCreationArgs& args) { | 
|  | // initialize EGL for the default display | 
|  | EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); | 
|  | if (!eglInitialize(display, nullptr, nullptr)) { | 
|  | LOG_ALWAYS_FATAL("failed to initialize EGL. EGL error=0x%x", eglGetError()); | 
|  | } | 
|  |  | 
|  | const auto eglVersion = eglQueryString(display, EGL_VERSION); | 
|  | if (!eglVersion) { | 
|  | checkGlError(__FUNCTION__, __LINE__); | 
|  | LOG_ALWAYS_FATAL("eglQueryString(EGL_VERSION) failed"); | 
|  | } | 
|  |  | 
|  | // Use the Android impl to grab EGL_NV_context_priority_realtime | 
|  | const auto eglExtensions = eglQueryString(display, EGL_EXTENSIONS); | 
|  | if (!eglExtensions) { | 
|  | checkGlError(__FUNCTION__, __LINE__); | 
|  | LOG_ALWAYS_FATAL("eglQueryString(EGL_EXTENSIONS) failed"); | 
|  | } | 
|  |  | 
|  | GLExtensions& extensions = GLExtensions::getInstance(); | 
|  | extensions.initWithEGLStrings(eglVersion, eglExtensions); | 
|  |  | 
|  | // The code assumes that ES2 or later is available if this extension is | 
|  | // supported. | 
|  | EGLConfig config = EGL_NO_CONFIG; | 
|  | if (!extensions.hasNoConfigContext()) { | 
|  | config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true); | 
|  | } | 
|  |  | 
|  | const std::optional<RenderEngine::ContextPriority> priority = createContextPriority(args); | 
|  | EGLContext protectedContext = EGL_NO_CONTEXT; | 
|  | if (args.enableProtectedContext && extensions.hasProtectedContent()) { | 
|  | protectedContext = | 
|  | createEglContext(display, config, nullptr, priority, Protection::PROTECTED); | 
|  | ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context"); | 
|  | } | 
|  |  | 
|  | EGLContext ctxt = | 
|  | createEglContext(display, config, protectedContext, priority, Protection::UNPROTECTED); | 
|  |  | 
|  | // if can't create a GL context, we can only abort. | 
|  | LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed"); | 
|  |  | 
|  | EGLSurface stub = EGL_NO_SURFACE; | 
|  | if (!extensions.hasSurfacelessContext()) { | 
|  | stub = createStubEglPbufferSurface(display, config, args.pixelFormat, | 
|  | Protection::UNPROTECTED); | 
|  | LOG_ALWAYS_FATAL_IF(stub == EGL_NO_SURFACE, "can't create stub pbuffer"); | 
|  | } | 
|  | EGLBoolean success = eglMakeCurrent(display, stub, stub, ctxt); | 
|  | LOG_ALWAYS_FATAL_IF(!success, "can't make stub pbuffer current"); | 
|  | extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER), | 
|  | glGetString(GL_VERSION), glGetString(GL_EXTENSIONS)); | 
|  |  | 
|  | EGLSurface protectedStub = EGL_NO_SURFACE; | 
|  | if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) { | 
|  | protectedStub = createStubEglPbufferSurface(display, config, args.pixelFormat, | 
|  | Protection::PROTECTED); | 
|  | ALOGE_IF(protectedStub == EGL_NO_SURFACE, "can't create protected stub pbuffer"); | 
|  | } | 
|  |  | 
|  | // now figure out what version of GL did we actually get | 
|  | GlesVersion version = parseGlesVersion(extensions.getVersion()); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(args.supportsBackgroundBlur && version < GLES_VERSION_3_0, | 
|  | "Blurs require OpenGL ES 3.0. Please unset ro.surface_flinger.supports_background_blur"); | 
|  |  | 
|  | // initialize the renderer while GL is current | 
|  | std::unique_ptr<GLESRenderEngine> engine; | 
|  | switch (version) { | 
|  | case GLES_VERSION_1_0: | 
|  | case GLES_VERSION_1_1: | 
|  | LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run."); | 
|  | break; | 
|  | case GLES_VERSION_2_0: | 
|  | case GLES_VERSION_3_0: | 
|  | engine = std::make_unique<GLESRenderEngine>(args, display, config, ctxt, stub, | 
|  | protectedContext, protectedStub); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ALOGI("OpenGL ES informations:"); | 
|  | ALOGI("vendor    : %s", extensions.getVendor()); | 
|  | ALOGI("renderer  : %s", extensions.getRenderer()); | 
|  | ALOGI("version   : %s", extensions.getVersion()); | 
|  | ALOGI("extensions: %s", extensions.getExtensions()); | 
|  | ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize()); | 
|  | ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims()); | 
|  | return engine; | 
|  | } | 
|  |  | 
|  | EGLConfig GLESRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) { | 
|  | status_t err; | 
|  | EGLConfig config; | 
|  |  | 
|  | // First try to get an ES3 config | 
|  | err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config); | 
|  | if (err != NO_ERROR) { | 
|  | // If ES3 fails, try to get an ES2 config | 
|  | err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config); | 
|  | if (err != NO_ERROR) { | 
|  | // If ES2 still doesn't work, probably because we're on the emulator. | 
|  | // try a simplified query | 
|  | ALOGW("no suitable EGLConfig found, trying a simpler query"); | 
|  | err = selectEGLConfig(display, format, 0, &config); | 
|  | if (err != NO_ERROR) { | 
|  | // this EGL is too lame for android | 
|  | LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (logConfig) { | 
|  | // print some debugging info | 
|  | EGLint r, g, b, a; | 
|  | eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r); | 
|  | eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g); | 
|  | eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b); | 
|  | eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a); | 
|  | ALOGI("EGL information:"); | 
|  | ALOGI("vendor    : %s", eglQueryString(display, EGL_VENDOR)); | 
|  | ALOGI("version   : %s", eglQueryString(display, EGL_VERSION)); | 
|  | ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS)); | 
|  | ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported"); | 
|  | ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config); | 
|  | } | 
|  |  | 
|  | return config; | 
|  | } | 
|  |  | 
|  | GLESRenderEngine::GLESRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display, | 
|  | EGLConfig config, EGLContext ctxt, EGLSurface stub, | 
|  | EGLContext protectedContext, EGLSurface protectedStub) | 
|  | : RenderEngine(args.renderEngineType), | 
|  | mEGLDisplay(display), | 
|  | mEGLConfig(config), | 
|  | mEGLContext(ctxt), | 
|  | mStubSurface(stub), | 
|  | mProtectedEGLContext(protectedContext), | 
|  | mProtectedStubSurface(protectedStub), | 
|  | mVpWidth(0), | 
|  | mVpHeight(0), | 
|  | mFramebufferImageCacheSize(args.imageCacheSize), | 
|  | mUseColorManagement(args.useColorManagement), | 
|  | mPrecacheToneMapperShaderOnly(args.precacheToneMapperShaderOnly) { | 
|  | glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); | 
|  | glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); | 
|  |  | 
|  | glPixelStorei(GL_UNPACK_ALIGNMENT, 4); | 
|  | glPixelStorei(GL_PACK_ALIGNMENT, 4); | 
|  |  | 
|  | // Initialize protected EGL Context. | 
|  | if (mProtectedEGLContext != EGL_NO_CONTEXT) { | 
|  | EGLBoolean success = eglMakeCurrent(display, mProtectedStubSurface, mProtectedStubSurface, | 
|  | mProtectedEGLContext); | 
|  | ALOGE_IF(!success, "can't make protected context current"); | 
|  | glPixelStorei(GL_UNPACK_ALIGNMENT, 4); | 
|  | glPixelStorei(GL_PACK_ALIGNMENT, 4); | 
|  | success = eglMakeCurrent(display, mStubSurface, mStubSurface, mEGLContext); | 
|  | LOG_ALWAYS_FATAL_IF(!success, "can't make default context current"); | 
|  | } | 
|  |  | 
|  | // mColorBlindnessCorrection = M; | 
|  |  | 
|  | if (mUseColorManagement) { | 
|  | const ColorSpace srgb(ColorSpace::sRGB()); | 
|  | const ColorSpace displayP3(ColorSpace::DisplayP3()); | 
|  | const ColorSpace bt2020(ColorSpace::BT2020()); | 
|  |  | 
|  | // no chromatic adaptation needed since all color spaces use D65 for their white points. | 
|  | mSrgbToXyz = mat4(srgb.getRGBtoXYZ()); | 
|  | mDisplayP3ToXyz = mat4(displayP3.getRGBtoXYZ()); | 
|  | mBt2020ToXyz = mat4(bt2020.getRGBtoXYZ()); | 
|  | mXyzToSrgb = mat4(srgb.getXYZtoRGB()); | 
|  | mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB()); | 
|  | mXyzToBt2020 = mat4(bt2020.getXYZtoRGB()); | 
|  |  | 
|  | // Compute sRGB to Display P3 and BT2020 transform matrix. | 
|  | // NOTE: For now, we are limiting output wide color space support to | 
|  | // Display-P3 and BT2020 only. | 
|  | mSrgbToDisplayP3 = mXyzToDisplayP3 * mSrgbToXyz; | 
|  | mSrgbToBt2020 = mXyzToBt2020 * mSrgbToXyz; | 
|  |  | 
|  | // Compute Display P3 to sRGB and BT2020 transform matrix. | 
|  | mDisplayP3ToSrgb = mXyzToSrgb * mDisplayP3ToXyz; | 
|  | mDisplayP3ToBt2020 = mXyzToBt2020 * mDisplayP3ToXyz; | 
|  |  | 
|  | // Compute BT2020 to sRGB and Display P3 transform matrix | 
|  | mBt2020ToSrgb = mXyzToSrgb * mBt2020ToXyz; | 
|  | mBt2020ToDisplayP3 = mXyzToDisplayP3 * mBt2020ToXyz; | 
|  | } | 
|  |  | 
|  | char value[PROPERTY_VALUE_MAX]; | 
|  | property_get("debug.egl.traceGpuCompletion", value, "0"); | 
|  | if (atoi(value)) { | 
|  | mTraceGpuCompletion = true; | 
|  | mFlushTracer = std::make_unique<FlushTracer>(this); | 
|  | } | 
|  |  | 
|  | if (args.supportsBackgroundBlur) { | 
|  | mBlurFilter = new BlurFilter(*this); | 
|  | checkErrors("BlurFilter creation"); | 
|  | } | 
|  |  | 
|  | mImageManager = std::make_unique<ImageManager>(this); | 
|  | mImageManager->initThread(); | 
|  | mDrawingBuffer = createFramebuffer(); | 
|  | sp<GraphicBuffer> buf = | 
|  | new GraphicBuffer(1, 1, PIXEL_FORMAT_RGBA_8888, 1, | 
|  | GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE, "placeholder"); | 
|  |  | 
|  | const status_t err = buf->initCheck(); | 
|  | if (err != OK) { | 
|  | ALOGE("Error allocating placeholder buffer: %d", err); | 
|  | return; | 
|  | } | 
|  | mPlaceholderBuffer = buf.get(); | 
|  | EGLint attributes[] = { | 
|  | EGL_NONE, | 
|  | }; | 
|  | mPlaceholderImage = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, | 
|  | mPlaceholderBuffer, attributes); | 
|  | ALOGE_IF(mPlaceholderImage == EGL_NO_IMAGE_KHR, "Failed to create placeholder image: %#x", | 
|  | eglGetError()); | 
|  |  | 
|  | mShadowTexture = std::make_unique<GLShadowTexture>(); | 
|  | } | 
|  |  | 
|  | GLESRenderEngine::~GLESRenderEngine() { | 
|  | // Destroy the image manager first. | 
|  | mImageManager = nullptr; | 
|  | mShadowTexture = nullptr; | 
|  | cleanFramebufferCache(); | 
|  | ProgramCache::getInstance().purgeCaches(); | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | glDisableVertexAttribArray(Program::position); | 
|  | unbindFrameBuffer(mDrawingBuffer.get()); | 
|  | mDrawingBuffer = nullptr; | 
|  | eglDestroyImageKHR(mEGLDisplay, mPlaceholderImage); | 
|  | mImageCache.clear(); | 
|  | if (mStubSurface != EGL_NO_SURFACE) { | 
|  | eglDestroySurface(mEGLDisplay, mStubSurface); | 
|  | } | 
|  | if (mProtectedStubSurface != EGL_NO_SURFACE) { | 
|  | eglDestroySurface(mEGLDisplay, mProtectedStubSurface); | 
|  | } | 
|  | if (mEGLContext != EGL_NO_CONTEXT) { | 
|  | eglDestroyContext(mEGLDisplay, mEGLContext); | 
|  | } | 
|  | if (mProtectedEGLContext != EGL_NO_CONTEXT) { | 
|  | eglDestroyContext(mEGLDisplay, mProtectedEGLContext); | 
|  | } | 
|  | eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); | 
|  | eglTerminate(mEGLDisplay); | 
|  | eglReleaseThread(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Framebuffer> GLESRenderEngine::createFramebuffer() { | 
|  | return std::make_unique<GLFramebuffer>(*this); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Image> GLESRenderEngine::createImage() { | 
|  | return std::make_unique<GLImage>(*this); | 
|  | } | 
|  |  | 
|  | Framebuffer* GLESRenderEngine::getFramebufferForDrawing() { | 
|  | return mDrawingBuffer.get(); | 
|  | } | 
|  |  | 
|  | std::future<void> GLESRenderEngine::primeCache() { | 
|  | ProgramCache::getInstance().primeCache(mInProtectedContext ? mProtectedEGLContext : mEGLContext, | 
|  | mUseColorManagement, mPrecacheToneMapperShaderOnly); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | base::unique_fd GLESRenderEngine::flush() { | 
|  | ATRACE_CALL(); | 
|  | if (!GLExtensions::getInstance().hasNativeFenceSync()) { | 
|  | return base::unique_fd(); | 
|  | } | 
|  |  | 
|  | EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr); | 
|  | if (sync == EGL_NO_SYNC_KHR) { | 
|  | ALOGW("failed to create EGL native fence sync: %#x", eglGetError()); | 
|  | return base::unique_fd(); | 
|  | } | 
|  |  | 
|  | // native fence fd will not be populated until flush() is done. | 
|  | glFlush(); | 
|  |  | 
|  | // get the fence fd | 
|  | base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync)); | 
|  | eglDestroySyncKHR(mEGLDisplay, sync); | 
|  | if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { | 
|  | ALOGW("failed to dup EGL native fence sync: %#x", eglGetError()); | 
|  | } | 
|  |  | 
|  | // Only trace if we have a valid fence, as current usage falls back to | 
|  | // calling finish() if the fence fd is invalid. | 
|  | if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer) && fenceFd.get() >= 0) { | 
|  | mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr)); | 
|  | } | 
|  |  | 
|  | return fenceFd; | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::finish() { | 
|  | ATRACE_CALL(); | 
|  | if (!GLExtensions::getInstance().hasFenceSync()) { | 
|  | ALOGW("no synchronization support"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr); | 
|  | if (sync == EGL_NO_SYNC_KHR) { | 
|  | ALOGW("failed to create EGL fence sync: %#x", eglGetError()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer)) { | 
|  | mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr)); | 
|  | } | 
|  |  | 
|  | return waitSync(sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR); | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::waitSync(EGLSyncKHR sync, EGLint flags) { | 
|  | EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, flags, 2000000000 /*2 sec*/); | 
|  | EGLint error = eglGetError(); | 
|  | eglDestroySyncKHR(mEGLDisplay, sync); | 
|  | if (result != EGL_CONDITION_SATISFIED_KHR) { | 
|  | if (result == EGL_TIMEOUT_EXPIRED_KHR) { | 
|  | ALOGW("fence wait timed out"); | 
|  | } else { | 
|  | ALOGW("error waiting on EGL fence: %#x", error); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::waitFence(base::unique_fd fenceFd) { | 
|  | if (!GLExtensions::getInstance().hasNativeFenceSync() || | 
|  | !GLExtensions::getInstance().hasWaitSync()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // release the fd and transfer the ownership to EGLSync | 
|  | EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE}; | 
|  | EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); | 
|  | if (sync == EGL_NO_SYNC_KHR) { | 
|  | ALOGE("failed to create EGL native fence sync: %#x", eglGetError()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // XXX: The spec draft is inconsistent as to whether this should return an | 
|  | // EGLint or void.  Ignore the return value for now, as it's not strictly | 
|  | // needed. | 
|  | eglWaitSyncKHR(mEGLDisplay, sync, 0); | 
|  | EGLint error = eglGetError(); | 
|  | eglDestroySyncKHR(mEGLDisplay, sync); | 
|  | if (error != EGL_SUCCESS) { | 
|  | ALOGE("failed to wait for EGL native fence sync: %#x", error); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::clearWithColor(float red, float green, float blue, float alpha) { | 
|  | ATRACE_CALL(); | 
|  | glDisable(GL_BLEND); | 
|  | glClearColor(red, green, blue, alpha); | 
|  | glClear(GL_COLOR_BUFFER_BIT); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::fillRegionWithColor(const Region& region, float red, float green, float blue, | 
|  | float alpha) { | 
|  | size_t c; | 
|  | Rect const* r = region.getArray(&c); | 
|  | Mesh mesh = Mesh::Builder() | 
|  | .setPrimitive(Mesh::TRIANGLES) | 
|  | .setVertices(c * 6 /* count */, 2 /* size */) | 
|  | .build(); | 
|  | Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
|  | for (size_t i = 0; i < c; i++, r++) { | 
|  | position[i * 6 + 0].x = r->left; | 
|  | position[i * 6 + 0].y = r->top; | 
|  | position[i * 6 + 1].x = r->left; | 
|  | position[i * 6 + 1].y = r->bottom; | 
|  | position[i * 6 + 2].x = r->right; | 
|  | position[i * 6 + 2].y = r->bottom; | 
|  | position[i * 6 + 3].x = r->left; | 
|  | position[i * 6 + 3].y = r->top; | 
|  | position[i * 6 + 4].x = r->right; | 
|  | position[i * 6 + 4].y = r->bottom; | 
|  | position[i * 6 + 5].x = r->right; | 
|  | position[i * 6 + 5].y = r->top; | 
|  | } | 
|  | setupFillWithColor(red, green, blue, alpha); | 
|  | drawMesh(mesh); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setScissor(const Rect& region) { | 
|  | glScissor(region.left, region.top, region.getWidth(), region.getHeight()); | 
|  | glEnable(GL_SCISSOR_TEST); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::disableScissor() { | 
|  | glDisable(GL_SCISSOR_TEST); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::genTextures(size_t count, uint32_t* names) { | 
|  | glGenTextures(count, names); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::deleteTextures(size_t count, uint32_t const* names) { | 
|  | for (int i = 0; i < count; ++i) { | 
|  | mTextureView.erase(names[i]); | 
|  | } | 
|  | glDeleteTextures(count, names); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::bindExternalTextureImage(uint32_t texName, const Image& image) { | 
|  | ATRACE_CALL(); | 
|  | const GLImage& glImage = static_cast<const GLImage&>(image); | 
|  | const GLenum target = GL_TEXTURE_EXTERNAL_OES; | 
|  |  | 
|  | glBindTexture(target, texName); | 
|  | if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) { | 
|  | glEGLImageTargetTexture2DOES(target, static_cast<GLeglImageOES>(glImage.getEGLImage())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::bindExternalTextureBuffer(uint32_t texName, const sp<GraphicBuffer>& buffer, | 
|  | const sp<Fence>& bufferFence) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | bool found = false; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | auto cachedImage = mImageCache.find(buffer->getId()); | 
|  | found = (cachedImage != mImageCache.end()); | 
|  | } | 
|  |  | 
|  | // If we couldn't find the image in the cache at this time, then either | 
|  | // SurfaceFlinger messed up registering the buffer ahead of time or we got | 
|  | // backed up creating other EGLImages. | 
|  | if (!found) { | 
|  | status_t cacheResult = mImageManager->cache(buffer); | 
|  | if (cacheResult != NO_ERROR) { | 
|  | ALOGE("Error with caching buffer: %d", cacheResult); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Whether or not we needed to cache, re-check mImageCache to make sure that | 
|  | // there's an EGLImage. The current threading model guarantees that we don't | 
|  | // destroy a cached image until it's really not needed anymore (i.e. this | 
|  | // function should not be called), so the only possibility is that something | 
|  | // terrible went wrong and we should just bind something and move on. | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | auto cachedImage = mImageCache.find(buffer->getId()); | 
|  |  | 
|  | if (cachedImage == mImageCache.end()) { | 
|  | // We failed creating the image if we got here, so bail out. | 
|  | ALOGE("Failed to create an EGLImage when rendering"); | 
|  | bindExternalTextureImage(texName, *createImage()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bindExternalTextureImage(texName, *cachedImage->second); | 
|  | mTextureView.insert_or_assign(texName, buffer->getId()); | 
|  | } | 
|  |  | 
|  | // Wait for the new buffer to be ready. | 
|  | if (bufferFence != nullptr && bufferFence->isValid()) { | 
|  | if (GLExtensions::getInstance().hasWaitSync()) { | 
|  | base::unique_fd fenceFd(bufferFence->dup()); | 
|  | if (fenceFd == -1) { | 
|  | ALOGE("error dup'ing fence fd: %d", errno); | 
|  | return; | 
|  | } | 
|  | if (!waitFence(std::move(fenceFd))) { | 
|  | ALOGE("failed to wait on fence fd"); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | status_t err = bufferFence->waitForever("RenderEngine::bindExternalTextureBuffer"); | 
|  | if (err != NO_ERROR) { | 
|  | ALOGE("error waiting for fence: %d", err); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::mapExternalTextureBuffer(const sp<GraphicBuffer>& buffer, | 
|  | bool /*isRenderable*/) { | 
|  | ATRACE_CALL(); | 
|  | mImageManager->cacheAsync(buffer, nullptr); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::cacheExternalTextureBufferForTesting( | 
|  | const sp<GraphicBuffer>& buffer) { | 
|  | auto barrier = std::make_shared<ImageManager::Barrier>(); | 
|  | mImageManager->cacheAsync(buffer, barrier); | 
|  | return barrier; | 
|  | } | 
|  |  | 
|  | status_t GLESRenderEngine::cacheExternalTextureBufferInternal(const sp<GraphicBuffer>& buffer) { | 
|  | if (buffer == nullptr) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | if (mImageCache.count(buffer->getId()) > 0) { | 
|  | // If there's already an image then fail fast here. | 
|  | return NO_ERROR; | 
|  | } | 
|  | } | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | // Create the image without holding a lock so that we don't block anything. | 
|  | std::unique_ptr<Image> newImage = createImage(); | 
|  |  | 
|  | bool created = newImage->setNativeWindowBuffer(buffer->getNativeBuffer(), | 
|  | buffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
|  | if (!created) { | 
|  | ALOGE("Failed to create image. id=%" PRIx64 " size=%ux%u st=%u usage=%#" PRIx64 " fmt=%d", | 
|  | buffer->getId(), buffer->getWidth(), buffer->getHeight(), buffer->getStride(), | 
|  | buffer->getUsage(), buffer->getPixelFormat()); | 
|  | return NO_INIT; | 
|  | } | 
|  |  | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | if (mImageCache.count(buffer->getId()) > 0) { | 
|  | // In theory it's possible for another thread to recache the image, | 
|  | // so bail out if another thread won. | 
|  | return NO_ERROR; | 
|  | } | 
|  | mImageCache.insert(std::make_pair(buffer->getId(), std::move(newImage))); | 
|  | } | 
|  |  | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::unmapExternalTextureBuffer(const sp<GraphicBuffer>& buffer) { | 
|  | mImageManager->releaseAsync(buffer->getId(), nullptr); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::unbindExternalTextureBufferForTesting( | 
|  | uint64_t bufferId) { | 
|  | auto barrier = std::make_shared<ImageManager::Barrier>(); | 
|  | mImageManager->releaseAsync(bufferId, barrier); | 
|  | return barrier; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::unbindExternalTextureBufferInternal(uint64_t bufferId) { | 
|  | std::unique_ptr<Image> image; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | const auto& cachedImage = mImageCache.find(bufferId); | 
|  |  | 
|  | if (cachedImage != mImageCache.end()) { | 
|  | ALOGV("Destroying image for buffer: %" PRIu64, bufferId); | 
|  | // Move the buffer out of cache first, so that we can destroy | 
|  | // without holding the cache's lock. | 
|  | image = std::move(cachedImage->second); | 
|  | mImageCache.erase(bufferId); | 
|  | return; | 
|  | } | 
|  | } | 
|  | ALOGV("Failed to find image for buffer: %" PRIu64, bufferId); | 
|  | } | 
|  |  | 
|  | int GLESRenderEngine::getContextPriority() { | 
|  | int value; | 
|  | eglQueryContext(mEGLDisplay, mEGLContext, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | FloatRect GLESRenderEngine::setupLayerCropping(const LayerSettings& layer, Mesh& mesh) { | 
|  | // Translate win by the rounded corners rect coordinates, to have all values in | 
|  | // layer coordinate space. | 
|  | FloatRect cropWin = layer.geometry.boundaries; | 
|  | const FloatRect& roundedCornersCrop = layer.geometry.roundedCornersCrop; | 
|  | cropWin.left -= roundedCornersCrop.left; | 
|  | cropWin.right -= roundedCornersCrop.left; | 
|  | cropWin.top -= roundedCornersCrop.top; | 
|  | cropWin.bottom -= roundedCornersCrop.top; | 
|  | Mesh::VertexArray<vec2> cropCoords(mesh.getCropCoordArray<vec2>()); | 
|  | cropCoords[0] = vec2(cropWin.left, cropWin.top); | 
|  | cropCoords[1] = vec2(cropWin.left, cropWin.top + cropWin.getHeight()); | 
|  | cropCoords[2] = vec2(cropWin.right, cropWin.top + cropWin.getHeight()); | 
|  | cropCoords[3] = vec2(cropWin.right, cropWin.top); | 
|  |  | 
|  | setupCornerRadiusCropSize(roundedCornersCrop.getWidth(), roundedCornersCrop.getHeight()); | 
|  | return cropWin; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::handleRoundedCorners(const DisplaySettings& display, | 
|  | const LayerSettings& layer, const Mesh& mesh) { | 
|  | // We separate the layer into 3 parts essentially, such that we only turn on blending for the | 
|  | // top rectangle and the bottom rectangle, and turn off blending for the middle rectangle. | 
|  | FloatRect bounds = layer.geometry.roundedCornersCrop; | 
|  |  | 
|  | // Explicitly compute the transform from the clip rectangle to the physical | 
|  | // display. Normally, this is done in glViewport but we explicitly compute | 
|  | // it here so that we can get the scissor bounds correct. | 
|  | const Rect& source = display.clip; | 
|  | const Rect& destination = display.physicalDisplay; | 
|  | // Here we compute the following transform: | 
|  | // 1. Translate the top left corner of the source clip to (0, 0) | 
|  | // 2. Rotate the clip rectangle about the origin in accordance with the | 
|  | // orientation flag | 
|  | // 3. Translate the top left corner back to the origin. | 
|  | // 4. Scale the clip rectangle to the destination rectangle dimensions | 
|  | // 5. Translate the top left corner to the destination rectangle's top left | 
|  | // corner. | 
|  | const mat4 translateSource = mat4::translate(vec4(-source.left, -source.top, 0, 1)); | 
|  | mat4 rotation; | 
|  | int displacementX = 0; | 
|  | int displacementY = 0; | 
|  | float destinationWidth = static_cast<float>(destination.getWidth()); | 
|  | float destinationHeight = static_cast<float>(destination.getHeight()); | 
|  | float sourceWidth = static_cast<float>(source.getWidth()); | 
|  | float sourceHeight = static_cast<float>(source.getHeight()); | 
|  | const float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f; | 
|  | switch (display.orientation) { | 
|  | case ui::Transform::ROT_90: | 
|  | rotation = mat4::rotate(rot90InRadians, vec3(0, 0, 1)); | 
|  | displacementX = source.getHeight(); | 
|  | std::swap(sourceHeight, sourceWidth); | 
|  | break; | 
|  | case ui::Transform::ROT_180: | 
|  | rotation = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)); | 
|  | displacementY = source.getHeight(); | 
|  | displacementX = source.getWidth(); | 
|  | break; | 
|  | case ui::Transform::ROT_270: | 
|  | rotation = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)); | 
|  | displacementY = source.getWidth(); | 
|  | std::swap(sourceHeight, sourceWidth); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | const mat4 intermediateTranslation = mat4::translate(vec4(displacementX, displacementY, 0, 1)); | 
|  | const mat4 scale = mat4::scale( | 
|  | vec4(destinationWidth / sourceWidth, destinationHeight / sourceHeight, 1, 1)); | 
|  | const mat4 translateDestination = | 
|  | mat4::translate(vec4(destination.left, destination.top, 0, 1)); | 
|  | const mat4 globalTransform = | 
|  | translateDestination * scale * intermediateTranslation * rotation * translateSource; | 
|  |  | 
|  | const mat4 transformMatrix = globalTransform * layer.geometry.positionTransform; | 
|  | const vec4 leftTopCoordinate(bounds.left, bounds.top, 1.0, 1.0); | 
|  | const vec4 rightBottomCoordinate(bounds.right, bounds.bottom, 1.0, 1.0); | 
|  | const vec4 leftTopCoordinateInBuffer = transformMatrix * leftTopCoordinate; | 
|  | const vec4 rightBottomCoordinateInBuffer = transformMatrix * rightBottomCoordinate; | 
|  | bounds = FloatRect(std::min(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]), | 
|  | std::min(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1]), | 
|  | std::max(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]), | 
|  | std::max(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1])); | 
|  |  | 
|  | // Finally, we cut the layer into 3 parts, with top and bottom parts having rounded corners | 
|  | // and the middle part without rounded corners. | 
|  | const int32_t radius = ceil(layer.geometry.roundedCornersRadius); | 
|  | const Rect topRect(bounds.left, bounds.top, bounds.right, bounds.top + radius); | 
|  | setScissor(topRect); | 
|  | drawMesh(mesh); | 
|  | const Rect bottomRect(bounds.left, bounds.bottom - radius, bounds.right, bounds.bottom); | 
|  | setScissor(bottomRect); | 
|  | drawMesh(mesh); | 
|  |  | 
|  | // The middle part of the layer can turn off blending. | 
|  | if (topRect.bottom < bottomRect.top) { | 
|  | const Rect middleRect(bounds.left, bounds.top + radius, bounds.right, | 
|  | bounds.bottom - radius); | 
|  | setScissor(middleRect); | 
|  | mState.cornerRadius = 0.0; | 
|  | disableBlending(); | 
|  | drawMesh(mesh); | 
|  | } | 
|  | disableScissor(); | 
|  | } | 
|  |  | 
|  | status_t GLESRenderEngine::bindFrameBuffer(Framebuffer* framebuffer) { | 
|  | ATRACE_CALL(); | 
|  | GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(framebuffer); | 
|  | EGLImageKHR eglImage = glFramebuffer->getEGLImage(); | 
|  | uint32_t textureName = glFramebuffer->getTextureName(); | 
|  | uint32_t framebufferName = glFramebuffer->getFramebufferName(); | 
|  |  | 
|  | // Bind the texture and turn our EGLImage into a texture | 
|  | glBindTexture(GL_TEXTURE_2D, textureName); | 
|  | glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage); | 
|  |  | 
|  | // Bind the Framebuffer to render into | 
|  | glBindFramebuffer(GL_FRAMEBUFFER, framebufferName); | 
|  | glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureName, 0); | 
|  |  | 
|  | uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER); | 
|  | ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES, "glCheckFramebufferStatusOES error %d", | 
|  | glStatus); | 
|  |  | 
|  | return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::unbindFrameBuffer(Framebuffer* /*framebuffer*/) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | // back to main framebuffer | 
|  | glBindFramebuffer(GL_FRAMEBUFFER, 0); | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::canSkipPostRenderCleanup() const { | 
|  | return mPriorResourcesCleaned || | 
|  | (mLastDrawFence != nullptr && mLastDrawFence->getStatus() != Fence::Status::Signaled); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::cleanupPostRender() { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (canSkipPostRenderCleanup()) { | 
|  | // If we don't have a prior frame needing cleanup, then don't do anything. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bind the texture to placeholder so that backing image data can be freed. | 
|  | GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(getFramebufferForDrawing()); | 
|  | glFramebuffer->allocateBuffers(1, 1, mPlaceholderDrawBuffer); | 
|  |  | 
|  | // Release the cached fence here, so that we don't churn reallocations when | 
|  | // we could no-op repeated calls of this method instead. | 
|  | mLastDrawFence = nullptr; | 
|  | mPriorResourcesCleaned = true; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::cleanFramebufferCache() { | 
|  | std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
|  | // Bind the texture to placeholder so that backing image data can be freed. | 
|  | GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(getFramebufferForDrawing()); | 
|  | glFramebuffer->allocateBuffers(1, 1, mPlaceholderDrawBuffer); | 
|  |  | 
|  | while (!mFramebufferImageCache.empty()) { | 
|  | EGLImageKHR expired = mFramebufferImageCache.front().second; | 
|  | mFramebufferImageCache.pop_front(); | 
|  | eglDestroyImageKHR(mEGLDisplay, expired); | 
|  | DEBUG_EGL_IMAGE_TRACKER_DESTROY(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::checkErrors() const { | 
|  | checkErrors(nullptr); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::checkErrors(const char* tag) const { | 
|  | do { | 
|  | // there could be more than one error flag | 
|  | GLenum error = glGetError(); | 
|  | if (error == GL_NO_ERROR) break; | 
|  | if (tag == nullptr) { | 
|  | ALOGE("GL error 0x%04x", int(error)); | 
|  | } else { | 
|  | ALOGE("GL error: %s -> 0x%04x", tag, int(error)); | 
|  | } | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::supportsProtectedContent() const { | 
|  | return mProtectedEGLContext != EGL_NO_CONTEXT; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::useProtectedContext(bool useProtectedContext) { | 
|  | if (useProtectedContext == mInProtectedContext || | 
|  | (useProtectedContext && !supportsProtectedContent())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const EGLSurface surface = useProtectedContext ? mProtectedStubSurface : mStubSurface; | 
|  | const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext; | 
|  | if (eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE) { | 
|  | mInProtectedContext = useProtectedContext; | 
|  | } | 
|  | } | 
|  | EGLImageKHR GLESRenderEngine::createFramebufferImageIfNeeded(ANativeWindowBuffer* nativeBuffer, | 
|  | bool isProtected, | 
|  | bool useFramebufferCache) { | 
|  | sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(nativeBuffer); | 
|  | if (useFramebufferCache) { | 
|  | std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
|  | for (const auto& image : mFramebufferImageCache) { | 
|  | if (image.first == graphicBuffer->getId()) { | 
|  | return image.second; | 
|  | } | 
|  | } | 
|  | } | 
|  | EGLint attributes[] = { | 
|  | isProtected ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE, | 
|  | isProtected ? EGL_TRUE : EGL_NONE, | 
|  | EGL_NONE, | 
|  | }; | 
|  | EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, | 
|  | nativeBuffer, attributes); | 
|  | if (useFramebufferCache) { | 
|  | if (image != EGL_NO_IMAGE_KHR) { | 
|  | std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
|  | if (mFramebufferImageCache.size() >= mFramebufferImageCacheSize) { | 
|  | EGLImageKHR expired = mFramebufferImageCache.front().second; | 
|  | mFramebufferImageCache.pop_front(); | 
|  | eglDestroyImageKHR(mEGLDisplay, expired); | 
|  | DEBUG_EGL_IMAGE_TRACKER_DESTROY(); | 
|  | } | 
|  | mFramebufferImageCache.push_back({graphicBuffer->getId(), image}); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (image != EGL_NO_IMAGE_KHR) { | 
|  | DEBUG_EGL_IMAGE_TRACKER_CREATE(); | 
|  | } | 
|  | return image; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::drawLayersInternal( | 
|  | const std::shared_ptr<std::promise<RenderEngineResult>>&& resultPromise, | 
|  | const DisplaySettings& display, const std::vector<LayerSettings>& layers, | 
|  | const std::shared_ptr<ExternalTexture>& buffer, const bool useFramebufferCache, | 
|  | base::unique_fd&& bufferFence) { | 
|  | ATRACE_CALL(); | 
|  | if (layers.empty()) { | 
|  | ALOGV("Drawing empty layer stack"); | 
|  | resultPromise->set_value({NO_ERROR, base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (bufferFence.get() >= 0) { | 
|  | // Duplicate the fence for passing to waitFence. | 
|  | base::unique_fd bufferFenceDup(dup(bufferFence.get())); | 
|  | if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) { | 
|  | ATRACE_NAME("Waiting before draw"); | 
|  | sync_wait(bufferFence.get(), -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (buffer == nullptr) { | 
|  | ALOGE("No output buffer provided. Aborting GPU composition."); | 
|  | resultPromise->set_value({BAD_VALUE, base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | validateOutputBufferUsage(buffer->getBuffer()); | 
|  |  | 
|  | std::unique_ptr<BindNativeBufferAsFramebuffer> fbo; | 
|  | // Gathering layers that requested blur, we'll need them to decide when to render to an | 
|  | // offscreen buffer, and when to render to the native buffer. | 
|  | std::deque<const LayerSettings> blurLayers; | 
|  | if (CC_LIKELY(mBlurFilter != nullptr)) { | 
|  | for (const auto& layer : layers) { | 
|  | if (layer.backgroundBlurRadius > 0) { | 
|  | blurLayers.push_back(layer); | 
|  | } | 
|  | } | 
|  | } | 
|  | const auto blurLayersSize = blurLayers.size(); | 
|  |  | 
|  | if (blurLayersSize == 0) { | 
|  | fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, | 
|  | buffer->getBuffer() | 
|  | .get() | 
|  | ->getNativeBuffer(), | 
|  | useFramebufferCache); | 
|  | if (fbo->getStatus() != NO_ERROR) { | 
|  | ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).", | 
|  | buffer->getBuffer()->handle); | 
|  | checkErrors(); | 
|  | resultPromise->set_value({fbo->getStatus(), base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  | setViewportAndProjection(display.physicalDisplay, display.clip); | 
|  | } else { | 
|  | setViewportAndProjection(display.physicalDisplay, display.clip); | 
|  | auto status = | 
|  | mBlurFilter->setAsDrawTarget(display, blurLayers.front().backgroundBlurRadius); | 
|  | if (status != NO_ERROR) { | 
|  | ALOGE("Failed to prepare blur filter! Aborting GPU composition for buffer (%p).", | 
|  | buffer->getBuffer()->handle); | 
|  | checkErrors(); | 
|  | resultPromise->set_value({status, base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // clear the entire buffer, sometimes when we reuse buffers we'd persist | 
|  | // ghost images otherwise. | 
|  | // we also require a full transparent framebuffer for overlays. This is | 
|  | // probably not quite efficient on all GPUs, since we could filter out | 
|  | // opaque layers. | 
|  | clearWithColor(0.0, 0.0, 0.0, 0.0); | 
|  |  | 
|  | setOutputDataSpace(display.outputDataspace); | 
|  | setDisplayMaxLuminance(display.maxLuminance); | 
|  | setDisplayColorTransform(display.colorTransform); | 
|  |  | 
|  | const mat4 projectionMatrix = | 
|  | ui::Transform(display.orientation).asMatrix4() * mState.projectionMatrix; | 
|  |  | 
|  | Mesh mesh = Mesh::Builder() | 
|  | .setPrimitive(Mesh::TRIANGLE_FAN) | 
|  | .setVertices(4 /* count */, 2 /* size */) | 
|  | .setTexCoords(2 /* size */) | 
|  | .setCropCoords(2 /* size */) | 
|  | .build(); | 
|  | for (const auto& layer : layers) { | 
|  | if (blurLayers.size() > 0 && blurLayers.front() == layer) { | 
|  | blurLayers.pop_front(); | 
|  |  | 
|  | auto status = mBlurFilter->prepare(); | 
|  | if (status != NO_ERROR) { | 
|  | ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).", | 
|  | buffer->getBuffer()->handle); | 
|  | checkErrors("Can't render first blur pass"); | 
|  | resultPromise->set_value({status, base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (blurLayers.size() == 0) { | 
|  | // Done blurring, time to bind the native FBO and render our blur onto it. | 
|  | fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, | 
|  | buffer.get() | 
|  | ->getBuffer() | 
|  | ->getNativeBuffer(), | 
|  | useFramebufferCache); | 
|  | status = fbo->getStatus(); | 
|  | setViewportAndProjection(display.physicalDisplay, display.clip); | 
|  | } else { | 
|  | // There's still something else to blur, so let's keep rendering to our FBO | 
|  | // instead of to the display. | 
|  | status = mBlurFilter->setAsDrawTarget(display, | 
|  | blurLayers.front().backgroundBlurRadius); | 
|  | } | 
|  | if (status != NO_ERROR) { | 
|  | ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).", | 
|  | buffer->getBuffer()->handle); | 
|  | checkErrors("Can't bind native framebuffer"); | 
|  | resultPromise->set_value({status, base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | status = mBlurFilter->render(blurLayersSize > 1); | 
|  | if (status != NO_ERROR) { | 
|  | ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).", | 
|  | buffer->getBuffer()->handle); | 
|  | checkErrors("Can't render blur filter"); | 
|  | resultPromise->set_value({status, base::unique_fd()}); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure luminance is at least 100 nits to avoid div-by-zero | 
|  | const float maxLuminance = std::max(100.f, layer.source.buffer.maxLuminanceNits); | 
|  | mState.maxMasteringLuminance = maxLuminance; | 
|  | mState.maxContentLuminance = maxLuminance; | 
|  | mState.projectionMatrix = projectionMatrix * layer.geometry.positionTransform; | 
|  |  | 
|  | const FloatRect bounds = layer.geometry.boundaries; | 
|  | Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
|  | position[0] = vec2(bounds.left, bounds.top); | 
|  | position[1] = vec2(bounds.left, bounds.bottom); | 
|  | position[2] = vec2(bounds.right, bounds.bottom); | 
|  | position[3] = vec2(bounds.right, bounds.top); | 
|  |  | 
|  | setupLayerCropping(layer, mesh); | 
|  | setColorTransform(layer.colorTransform); | 
|  |  | 
|  | bool usePremultipliedAlpha = true; | 
|  | bool disableTexture = true; | 
|  | bool isOpaque = false; | 
|  | if (layer.source.buffer.buffer != nullptr) { | 
|  | disableTexture = false; | 
|  | isOpaque = layer.source.buffer.isOpaque; | 
|  |  | 
|  | sp<GraphicBuffer> gBuf = layer.source.buffer.buffer->getBuffer(); | 
|  | validateInputBufferUsage(gBuf); | 
|  | bindExternalTextureBuffer(layer.source.buffer.textureName, gBuf, | 
|  | layer.source.buffer.fence); | 
|  |  | 
|  | usePremultipliedAlpha = layer.source.buffer.usePremultipliedAlpha; | 
|  | Texture texture(Texture::TEXTURE_EXTERNAL, layer.source.buffer.textureName); | 
|  | mat4 texMatrix = layer.source.buffer.textureTransform; | 
|  |  | 
|  | texture.setMatrix(texMatrix.asArray()); | 
|  | texture.setFiltering(layer.source.buffer.useTextureFiltering); | 
|  |  | 
|  | texture.setDimensions(gBuf->getWidth(), gBuf->getHeight()); | 
|  | setSourceY410BT2020(layer.source.buffer.isY410BT2020); | 
|  |  | 
|  | renderengine::Mesh::VertexArray<vec2> texCoords(mesh.getTexCoordArray<vec2>()); | 
|  | texCoords[0] = vec2(0.0, 0.0); | 
|  | texCoords[1] = vec2(0.0, 1.0); | 
|  | texCoords[2] = vec2(1.0, 1.0); | 
|  | texCoords[3] = vec2(1.0, 0.0); | 
|  | setupLayerTexturing(texture); | 
|  |  | 
|  | // Do not cache protected EGLImage, protected memory is limited. | 
|  | if (gBuf->getUsage() & GRALLOC_USAGE_PROTECTED) { | 
|  | unmapExternalTextureBuffer(gBuf); | 
|  | } | 
|  | } | 
|  |  | 
|  | const half3 solidColor = layer.source.solidColor; | 
|  | const half4 color = half4(solidColor.r, solidColor.g, solidColor.b, layer.alpha); | 
|  | // Buffer sources will have a black solid color ignored in the shader, | 
|  | // so in that scenario the solid color passed here is arbitrary. | 
|  | setupLayerBlending(usePremultipliedAlpha, isOpaque, disableTexture, color, | 
|  | layer.geometry.roundedCornersRadius); | 
|  | if (layer.disableBlending) { | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  | setSourceDataSpace(layer.sourceDataspace); | 
|  |  | 
|  | if (layer.shadow.length > 0.0f) { | 
|  | handleShadow(layer.geometry.boundaries, layer.geometry.roundedCornersRadius, | 
|  | layer.shadow); | 
|  | } | 
|  | // We only want to do a special handling for rounded corners when having rounded corners | 
|  | // is the only reason it needs to turn on blending, otherwise, we handle it like the | 
|  | // usual way since it needs to turn on blending anyway. | 
|  | else if (layer.geometry.roundedCornersRadius > 0.0 && color.a >= 1.0f && isOpaque) { | 
|  | handleRoundedCorners(display, layer, mesh); | 
|  | } else { | 
|  | drawMesh(mesh); | 
|  | } | 
|  |  | 
|  | // Cleanup if there's a buffer source | 
|  | if (layer.source.buffer.buffer != nullptr) { | 
|  | disableBlending(); | 
|  | setSourceY410BT2020(false); | 
|  | disableTexturing(); | 
|  | } | 
|  | } | 
|  |  | 
|  | base::unique_fd drawFence = flush(); | 
|  |  | 
|  | // If flush failed or we don't support native fences, we need to force the | 
|  | // gl command stream to be executed. | 
|  | if (drawFence.get() < 0) { | 
|  | bool success = finish(); | 
|  | if (!success) { | 
|  | ALOGE("Failed to flush RenderEngine commands"); | 
|  | checkErrors(); | 
|  | // Chances are, something illegal happened (either the caller passed | 
|  | // us bad parameters, or we messed up our shader generation). | 
|  | resultPromise->set_value({INVALID_OPERATION, std::move(drawFence)}); | 
|  | return; | 
|  | } | 
|  | mLastDrawFence = nullptr; | 
|  | } else { | 
|  | // The caller takes ownership of drawFence, so we need to duplicate the | 
|  | // fd here. | 
|  | mLastDrawFence = new Fence(dup(drawFence.get())); | 
|  | } | 
|  | mPriorResourcesCleaned = false; | 
|  |  | 
|  | checkErrors(); | 
|  | resultPromise->set_value({NO_ERROR, std::move(drawFence)}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setViewportAndProjection(Rect viewport, Rect clip) { | 
|  | ATRACE_CALL(); | 
|  | mVpWidth = viewport.getWidth(); | 
|  | mVpHeight = viewport.getHeight(); | 
|  |  | 
|  | // We pass the the top left corner instead of the bottom left corner, | 
|  | // because since we're rendering off-screen first. | 
|  | glViewport(viewport.left, viewport.top, mVpWidth, mVpHeight); | 
|  |  | 
|  | mState.projectionMatrix = mat4::ortho(clip.left, clip.right, clip.top, clip.bottom, 0, 1); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture, | 
|  | const half4& color, float cornerRadius) { | 
|  | mState.isPremultipliedAlpha = premultipliedAlpha; | 
|  | mState.isOpaque = opaque; | 
|  | mState.color = color; | 
|  | mState.cornerRadius = cornerRadius; | 
|  |  | 
|  | if (disableTexture) { | 
|  | mState.textureEnabled = false; | 
|  | } | 
|  |  | 
|  | if (color.a < 1.0f || !opaque || cornerRadius > 0.0f) { | 
|  | glEnable(GL_BLEND); | 
|  | glBlendFuncSeparate(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, | 
|  | GL_ONE, GL_ONE_MINUS_SRC_ALPHA); | 
|  | } else { | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setSourceY410BT2020(bool enable) { | 
|  | mState.isY410BT2020 = enable; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setSourceDataSpace(Dataspace source) { | 
|  | mDataSpace = source; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setOutputDataSpace(Dataspace dataspace) { | 
|  | mOutputDataSpace = dataspace; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setDisplayMaxLuminance(const float maxLuminance) { | 
|  | mState.displayMaxLuminance = maxLuminance; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setupLayerTexturing(const Texture& texture) { | 
|  | GLuint target = texture.getTextureTarget(); | 
|  | glBindTexture(target, texture.getTextureName()); | 
|  | GLenum filter = GL_NEAREST; | 
|  | if (texture.getFiltering()) { | 
|  | filter = GL_LINEAR; | 
|  | } | 
|  | glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); | 
|  | glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); | 
|  | glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); | 
|  | glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); | 
|  |  | 
|  | mState.texture = texture; | 
|  | mState.textureEnabled = true; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setColorTransform(const mat4& colorTransform) { | 
|  | mState.colorMatrix = colorTransform; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setDisplayColorTransform(const mat4& colorTransform) { | 
|  | mState.displayColorMatrix = colorTransform; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::disableTexturing() { | 
|  | mState.textureEnabled = false; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::disableBlending() { | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setupFillWithColor(float r, float g, float b, float a) { | 
|  | mState.isPremultipliedAlpha = true; | 
|  | mState.isOpaque = false; | 
|  | mState.color = half4(r, g, b, a); | 
|  | mState.textureEnabled = false; | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::setupCornerRadiusCropSize(float width, float height) { | 
|  | mState.cropSize = half2(width, height); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::drawMesh(const Mesh& mesh) { | 
|  | ATRACE_CALL(); | 
|  | if (mesh.getTexCoordsSize()) { | 
|  | glEnableVertexAttribArray(Program::texCoords); | 
|  | glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getTexCoords()); | 
|  | } | 
|  |  | 
|  | glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getPositions()); | 
|  |  | 
|  | if (mState.cornerRadius > 0.0f) { | 
|  | glEnableVertexAttribArray(Program::cropCoords); | 
|  | glVertexAttribPointer(Program::cropCoords, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getCropCoords()); | 
|  | } | 
|  |  | 
|  | if (mState.drawShadows) { | 
|  | glEnableVertexAttribArray(Program::shadowColor); | 
|  | glVertexAttribPointer(Program::shadowColor, mesh.getShadowColorSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getShadowColor()); | 
|  |  | 
|  | glEnableVertexAttribArray(Program::shadowParams); | 
|  | glVertexAttribPointer(Program::shadowParams, mesh.getShadowParamsSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getShadowParams()); | 
|  | } | 
|  |  | 
|  | Description managedState = mState; | 
|  | // By default, DISPLAY_P3 is the only supported wide color output. However, | 
|  | // when HDR content is present, hardware composer may be able to handle | 
|  | // BT2020 data space, in that case, the output data space is set to be | 
|  | // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need | 
|  | // to respect this and convert non-HDR content to HDR format. | 
|  | if (mUseColorManagement) { | 
|  | Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK); | 
|  | Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); | 
|  | Dataspace outputStandard = | 
|  | static_cast<Dataspace>(mOutputDataSpace & Dataspace::STANDARD_MASK); | 
|  | Dataspace outputTransfer = | 
|  | static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK); | 
|  | bool needsXYZConversion = needsXYZTransformMatrix(); | 
|  |  | 
|  | // NOTE: if the input standard of the input dataspace is not STANDARD_DCI_P3 or | 
|  | // STANDARD_BT2020, it will be  treated as STANDARD_BT709 | 
|  | if (inputStandard != Dataspace::STANDARD_DCI_P3 && | 
|  | inputStandard != Dataspace::STANDARD_BT2020) { | 
|  | inputStandard = Dataspace::STANDARD_BT709; | 
|  | } | 
|  |  | 
|  | if (needsXYZConversion) { | 
|  | // The supported input color spaces are standard RGB, Display P3 and BT2020. | 
|  | switch (inputStandard) { | 
|  | case Dataspace::STANDARD_DCI_P3: | 
|  | managedState.inputTransformMatrix = mDisplayP3ToXyz; | 
|  | break; | 
|  | case Dataspace::STANDARD_BT2020: | 
|  | managedState.inputTransformMatrix = mBt2020ToXyz; | 
|  | break; | 
|  | default: | 
|  | managedState.inputTransformMatrix = mSrgbToXyz; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The supported output color spaces are BT2020, Display P3 and standard RGB. | 
|  | switch (outputStandard) { | 
|  | case Dataspace::STANDARD_BT2020: | 
|  | managedState.outputTransformMatrix = mXyzToBt2020; | 
|  | break; | 
|  | case Dataspace::STANDARD_DCI_P3: | 
|  | managedState.outputTransformMatrix = mXyzToDisplayP3; | 
|  | break; | 
|  | default: | 
|  | managedState.outputTransformMatrix = mXyzToSrgb; | 
|  | break; | 
|  | } | 
|  | } else if (inputStandard != outputStandard) { | 
|  | // At this point, the input data space and output data space could be both | 
|  | // HDR data spaces, but they match each other, we do nothing in this case. | 
|  | // In addition to the case above, the input data space could be | 
|  | // - scRGB linear | 
|  | // - scRGB non-linear | 
|  | // - sRGB | 
|  | // - Display P3 | 
|  | // - BT2020 | 
|  | // The output data spaces could be | 
|  | // - sRGB | 
|  | // - Display P3 | 
|  | // - BT2020 | 
|  | switch (outputStandard) { | 
|  | case Dataspace::STANDARD_BT2020: | 
|  | if (inputStandard == Dataspace::STANDARD_BT709) { | 
|  | managedState.outputTransformMatrix = mSrgbToBt2020; | 
|  | } else if (inputStandard == Dataspace::STANDARD_DCI_P3) { | 
|  | managedState.outputTransformMatrix = mDisplayP3ToBt2020; | 
|  | } | 
|  | break; | 
|  | case Dataspace::STANDARD_DCI_P3: | 
|  | if (inputStandard == Dataspace::STANDARD_BT709) { | 
|  | managedState.outputTransformMatrix = mSrgbToDisplayP3; | 
|  | } else if (inputStandard == Dataspace::STANDARD_BT2020) { | 
|  | managedState.outputTransformMatrix = mBt2020ToDisplayP3; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (inputStandard == Dataspace::STANDARD_DCI_P3) { | 
|  | managedState.outputTransformMatrix = mDisplayP3ToSrgb; | 
|  | } else if (inputStandard == Dataspace::STANDARD_BT2020) { | 
|  | managedState.outputTransformMatrix = mBt2020ToSrgb; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // we need to convert the RGB value to linear space and convert it back when: | 
|  | // - there is a color matrix that is not an identity matrix, or | 
|  | // - there is an output transform matrix that is not an identity matrix, or | 
|  | // - the input transfer function doesn't match the output transfer function. | 
|  | if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() || | 
|  | inputTransfer != outputTransfer) { | 
|  | managedState.inputTransferFunction = | 
|  | Description::dataSpaceToTransferFunction(inputTransfer); | 
|  | managedState.outputTransferFunction = | 
|  | Description::dataSpaceToTransferFunction(outputTransfer); | 
|  | } | 
|  | } | 
|  |  | 
|  | ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext : mEGLContext, | 
|  | managedState); | 
|  |  | 
|  | if (mState.drawShadows) { | 
|  | glDrawElements(mesh.getPrimitive(), mesh.getIndexCount(), GL_UNSIGNED_SHORT, | 
|  | mesh.getIndices()); | 
|  | } else { | 
|  | glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); | 
|  | } | 
|  |  | 
|  | if (mUseColorManagement && outputDebugPPMs) { | 
|  | static uint64_t managedColorFrameCount = 0; | 
|  | std::ostringstream out; | 
|  | out << "/data/texture_out" << managedColorFrameCount++; | 
|  | writePPM(out.str().c_str(), mVpWidth, mVpHeight); | 
|  | } | 
|  |  | 
|  | if (mesh.getTexCoordsSize()) { | 
|  | glDisableVertexAttribArray(Program::texCoords); | 
|  | } | 
|  |  | 
|  | if (mState.cornerRadius > 0.0f) { | 
|  | glDisableVertexAttribArray(Program::cropCoords); | 
|  | } | 
|  |  | 
|  | if (mState.drawShadows) { | 
|  | glDisableVertexAttribArray(Program::shadowColor); | 
|  | glDisableVertexAttribArray(Program::shadowParams); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t GLESRenderEngine::getMaxTextureSize() const { | 
|  | return mMaxTextureSize; | 
|  | } | 
|  |  | 
|  | size_t GLESRenderEngine::getMaxViewportDims() const { | 
|  | return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1]; | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::dump(std::string& result) { | 
|  | const GLExtensions& extensions = GLExtensions::getInstance(); | 
|  | ProgramCache& cache = ProgramCache::getInstance(); | 
|  |  | 
|  | StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion()); | 
|  | StringAppendF(&result, "%s\n", extensions.getEGLExtensions()); | 
|  | StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(), | 
|  | extensions.getVersion()); | 
|  | StringAppendF(&result, "%s\n", extensions.getExtensions()); | 
|  | StringAppendF(&result, "RenderEngine supports protected context: %d\n", | 
|  | supportsProtectedContent()); | 
|  | StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); | 
|  | StringAppendF(&result, "RenderEngine program cache size for unprotected context: %zu\n", | 
|  | cache.getSize(mEGLContext)); | 
|  | StringAppendF(&result, "RenderEngine program cache size for protected context: %zu\n", | 
|  | cache.getSize(mProtectedEGLContext)); | 
|  | StringAppendF(&result, "RenderEngine last dataspace conversion: (%s) to (%s)\n", | 
|  | dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(), | 
|  | dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str()); | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | StringAppendF(&result, "RenderEngine image cache size: %zu\n", mImageCache.size()); | 
|  | StringAppendF(&result, "Dumping buffer ids...\n"); | 
|  | for (const auto& [id, unused] : mImageCache) { | 
|  | StringAppendF(&result, "0x%" PRIx64 "\n", id); | 
|  | } | 
|  | } | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
|  | StringAppendF(&result, "RenderEngine framebuffer image cache size: %zu\n", | 
|  | mFramebufferImageCache.size()); | 
|  | StringAppendF(&result, "Dumping buffer ids...\n"); | 
|  | for (const auto& [id, unused] : mFramebufferImageCache) { | 
|  | StringAppendF(&result, "0x%" PRIx64 "\n", id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | GLESRenderEngine::GlesVersion GLESRenderEngine::parseGlesVersion(const char* str) { | 
|  | int major, minor; | 
|  | if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) { | 
|  | if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) { | 
|  | ALOGW("Unable to parse GL_VERSION string: \"%s\"", str); | 
|  | return GLES_VERSION_1_0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (major == 1 && minor == 0) return GLES_VERSION_1_0; | 
|  | if (major == 1 && minor >= 1) return GLES_VERSION_1_1; | 
|  | if (major == 2 && minor >= 0) return GLES_VERSION_2_0; | 
|  | if (major == 3 && minor >= 0) return GLES_VERSION_3_0; | 
|  |  | 
|  | ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor); | 
|  | return GLES_VERSION_1_0; | 
|  | } | 
|  |  | 
|  | EGLContext GLESRenderEngine::createEglContext(EGLDisplay display, EGLConfig config, | 
|  | EGLContext shareContext, | 
|  | std::optional<ContextPriority> contextPriority, | 
|  | Protection protection) { | 
|  | EGLint renderableType = 0; | 
|  | if (config == EGL_NO_CONFIG) { | 
|  | renderableType = EGL_OPENGL_ES3_BIT; | 
|  | } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) { | 
|  | LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE"); | 
|  | } | 
|  | EGLint contextClientVersion = 0; | 
|  | if (renderableType & EGL_OPENGL_ES3_BIT) { | 
|  | contextClientVersion = 3; | 
|  | } else if (renderableType & EGL_OPENGL_ES2_BIT) { | 
|  | contextClientVersion = 2; | 
|  | } else if (renderableType & EGL_OPENGL_ES_BIT) { | 
|  | contextClientVersion = 1; | 
|  | } else { | 
|  | LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs"); | 
|  | } | 
|  |  | 
|  | std::vector<EGLint> contextAttributes; | 
|  | contextAttributes.reserve(7); | 
|  | contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION); | 
|  | contextAttributes.push_back(contextClientVersion); | 
|  | if (contextPriority) { | 
|  | contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG); | 
|  | switch (*contextPriority) { | 
|  | case ContextPriority::REALTIME: | 
|  | contextAttributes.push_back(EGL_CONTEXT_PRIORITY_REALTIME_NV); | 
|  | break; | 
|  | case ContextPriority::MEDIUM: | 
|  | contextAttributes.push_back(EGL_CONTEXT_PRIORITY_MEDIUM_IMG); | 
|  | break; | 
|  | case ContextPriority::LOW: | 
|  | contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LOW_IMG); | 
|  | break; | 
|  | case ContextPriority::HIGH: | 
|  | default: | 
|  | contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (protection == Protection::PROTECTED) { | 
|  | contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT); | 
|  | contextAttributes.push_back(EGL_TRUE); | 
|  | } | 
|  | contextAttributes.push_back(EGL_NONE); | 
|  |  | 
|  | EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data()); | 
|  |  | 
|  | if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) { | 
|  | // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus | 
|  | // EGL_NO_CONTEXT so that we can abort. | 
|  | if (config != EGL_NO_CONFIG) { | 
|  | return context; | 
|  | } | 
|  | // If |config| is EGL_NO_CONFIG, we speculatively try to create GLES 3 context, so we should | 
|  | // try to fall back to GLES 2. | 
|  | contextAttributes[1] = 2; | 
|  | context = eglCreateContext(display, config, shareContext, contextAttributes.data()); | 
|  | } | 
|  |  | 
|  | return context; | 
|  | } | 
|  |  | 
|  | EGLSurface GLESRenderEngine::createStubEglPbufferSurface(EGLDisplay display, EGLConfig config, | 
|  | int hwcFormat, Protection protection) { | 
|  | EGLConfig stubConfig = config; | 
|  | if (stubConfig == EGL_NO_CONFIG) { | 
|  | stubConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true); | 
|  | } | 
|  | std::vector<EGLint> attributes; | 
|  | attributes.reserve(7); | 
|  | attributes.push_back(EGL_WIDTH); | 
|  | attributes.push_back(1); | 
|  | attributes.push_back(EGL_HEIGHT); | 
|  | attributes.push_back(1); | 
|  | if (protection == Protection::PROTECTED) { | 
|  | attributes.push_back(EGL_PROTECTED_CONTENT_EXT); | 
|  | attributes.push_back(EGL_TRUE); | 
|  | } | 
|  | attributes.push_back(EGL_NONE); | 
|  |  | 
|  | return eglCreatePbufferSurface(display, stubConfig, attributes.data()); | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::isHdrDataSpace(const Dataspace dataSpace) const { | 
|  | const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK); | 
|  | const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK); | 
|  | return standard == Dataspace::STANDARD_BT2020 && | 
|  | (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); | 
|  | } | 
|  |  | 
|  | // For convenience, we want to convert the input color space to XYZ color space first, | 
|  | // and then convert from XYZ color space to output color space when | 
|  | // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or | 
|  | //   HDR content will be tone-mapped to SDR; Or, | 
|  | // - there are HDR PQ and HLG contents presented at the same time, where we want to convert | 
|  | //   HLG content to PQ content. | 
|  | // In either case above, we need to operate the Y value in XYZ color space. Thus, when either | 
|  | // input data space or output data space is HDR data space, and the input transfer function | 
|  | // doesn't match the output transfer function, we would enable an intermediate transfrom to | 
|  | // XYZ color space. | 
|  | bool GLESRenderEngine::needsXYZTransformMatrix() const { | 
|  | const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace); | 
|  | const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace); | 
|  | const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); | 
|  | const Dataspace outputTransfer = | 
|  | static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK); | 
|  |  | 
|  | return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer; | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::isImageCachedForTesting(uint64_t bufferId) { | 
|  | std::lock_guard<std::mutex> lock(mRenderingMutex); | 
|  | const auto& cachedImage = mImageCache.find(bufferId); | 
|  | return cachedImage != mImageCache.end(); | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::isTextureNameKnownForTesting(uint32_t texName) { | 
|  | const auto& entry = mTextureView.find(texName); | 
|  | return entry != mTextureView.end(); | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> GLESRenderEngine::getBufferIdForTextureNameForTesting(uint32_t texName) { | 
|  | const auto& entry = mTextureView.find(texName); | 
|  | return entry != mTextureView.end() ? entry->second : std::nullopt; | 
|  | } | 
|  |  | 
|  | bool GLESRenderEngine::isFramebufferImageCachedForTesting(uint64_t bufferId) { | 
|  | std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
|  | return std::any_of(mFramebufferImageCache.cbegin(), mFramebufferImageCache.cend(), | 
|  | [=](std::pair<uint64_t, EGLImageKHR> image) { | 
|  | return image.first == bufferId; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // FlushTracer implementation | 
|  | GLESRenderEngine::FlushTracer::FlushTracer(GLESRenderEngine* engine) : mEngine(engine) { | 
|  | mThread = std::thread(&GLESRenderEngine::FlushTracer::loop, this); | 
|  | } | 
|  |  | 
|  | GLESRenderEngine::FlushTracer::~FlushTracer() { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mMutex); | 
|  | mRunning = false; | 
|  | } | 
|  | mCondition.notify_all(); | 
|  | if (mThread.joinable()) { | 
|  | mThread.join(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::FlushTracer::queueSync(EGLSyncKHR sync) { | 
|  | std::lock_guard<std::mutex> lock(mMutex); | 
|  | char name[64]; | 
|  | const uint64_t frameNum = mFramesQueued++; | 
|  | snprintf(name, sizeof(name), "Queueing sync for frame: %lu", | 
|  | static_cast<unsigned long>(frameNum)); | 
|  | ATRACE_NAME(name); | 
|  | mQueue.push({sync, frameNum}); | 
|  | ATRACE_INT("GPU Frames Outstanding", mQueue.size()); | 
|  | mCondition.notify_one(); | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::FlushTracer::loop() { | 
|  | while (mRunning) { | 
|  | QueueEntry entry; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mMutex); | 
|  |  | 
|  | mCondition.wait(mMutex, | 
|  | [&]() REQUIRES(mMutex) { return !mQueue.empty() || !mRunning; }); | 
|  |  | 
|  | if (!mRunning) { | 
|  | // if mRunning is false, then FlushTracer is being destroyed, so | 
|  | // bail out now. | 
|  | break; | 
|  | } | 
|  | entry = mQueue.front(); | 
|  | mQueue.pop(); | 
|  | } | 
|  | { | 
|  | char name[64]; | 
|  | snprintf(name, sizeof(name), "waiting for frame %lu", | 
|  | static_cast<unsigned long>(entry.mFrameNum)); | 
|  | ATRACE_NAME(name); | 
|  | mEngine->waitSync(entry.mSync, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLESRenderEngine::handleShadow(const FloatRect& casterRect, float casterCornerRadius, | 
|  | const ShadowSettings& settings) { | 
|  | ATRACE_CALL(); | 
|  | const float casterZ = settings.length / 2.0f; | 
|  | const GLShadowVertexGenerator shadows(casterRect, casterCornerRadius, casterZ, | 
|  | settings.casterIsTranslucent, settings.ambientColor, | 
|  | settings.spotColor, settings.lightPos, | 
|  | settings.lightRadius); | 
|  |  | 
|  | // setup mesh for both shadows | 
|  | Mesh mesh = Mesh::Builder() | 
|  | .setPrimitive(Mesh::TRIANGLES) | 
|  | .setVertices(shadows.getVertexCount(), 2 /* size */) | 
|  | .setShadowAttrs() | 
|  | .setIndices(shadows.getIndexCount()) | 
|  | .build(); | 
|  |  | 
|  | Mesh::VertexArray<vec2> position = mesh.getPositionArray<vec2>(); | 
|  | Mesh::VertexArray<vec4> shadowColor = mesh.getShadowColorArray<vec4>(); | 
|  | Mesh::VertexArray<vec3> shadowParams = mesh.getShadowParamsArray<vec3>(); | 
|  | shadows.fillVertices(position, shadowColor, shadowParams); | 
|  | shadows.fillIndices(mesh.getIndicesArray()); | 
|  |  | 
|  | mState.cornerRadius = 0.0f; | 
|  | mState.drawShadows = true; | 
|  | setupLayerTexturing(mShadowTexture->getTexture()); | 
|  | drawMesh(mesh); | 
|  | mState.drawShadows = false; | 
|  | } | 
|  |  | 
|  | } // namespace gl | 
|  | } // namespace renderengine | 
|  | } // namespace android |