| // Copyright 2009 Google Inc. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <ETC1/etc1.h> | 
 |  | 
 | #include <string.h> | 
 |  | 
 | /* From http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt | 
 |  | 
 |  The number of bits that represent a 4x4 texel block is 64 bits if | 
 |  <internalformat> is given by ETC1_RGB8_OES. | 
 |  | 
 |  The data for a block is a number of bytes, | 
 |  | 
 |  {q0, q1, q2, q3, q4, q5, q6, q7} | 
 |  | 
 |  where byte q0 is located at the lowest memory address and q7 at | 
 |  the highest. The 64 bits specifying the block is then represented | 
 |  by the following 64 bit integer: | 
 |  | 
 |  int64bit = 256*(256*(256*(256*(256*(256*(256*q0+q1)+q2)+q3)+q4)+q5)+q6)+q7; | 
 |  | 
 |  ETC1_RGB8_OES: | 
 |  | 
 |  a) bit layout in bits 63 through 32 if diffbit = 0 | 
 |  | 
 |  63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 | 
 |  ----------------------------------------------- | 
 |  | base col1 | base col2 | base col1 | base col2 | | 
 |  | R1 (4bits)| R2 (4bits)| G1 (4bits)| G2 (4bits)| | 
 |  ----------------------------------------------- | 
 |  | 
 |  47 46 45 44 43 42 41 40 39 38 37 36 35 34  33  32 | 
 |  --------------------------------------------------- | 
 |  | base col1 | base col2 | table  | table  |diff|flip| | 
 |  | B1 (4bits)| B2 (4bits)| cw 1   | cw 2   |bit |bit | | 
 |  --------------------------------------------------- | 
 |  | 
 |  | 
 |  b) bit layout in bits 63 through 32 if diffbit = 1 | 
 |  | 
 |  63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 | 
 |  ----------------------------------------------- | 
 |  | base col1    | dcol 2 | base col1    | dcol 2 | | 
 |  | R1' (5 bits) | dR2    | G1' (5 bits) | dG2    | | 
 |  ----------------------------------------------- | 
 |  | 
 |  47 46 45 44 43 42 41 40 39 38 37 36 35 34  33  32 | 
 |  --------------------------------------------------- | 
 |  | base col 1   | dcol 2 | table  | table  |diff|flip| | 
 |  | B1' (5 bits) | dB2    | cw 1   | cw 2   |bit |bit | | 
 |  --------------------------------------------------- | 
 |  | 
 |  | 
 |  c) bit layout in bits 31 through 0 (in both cases) | 
 |  | 
 |  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 | 
 |  ----------------------------------------------- | 
 |  |       most significant pixel index bits       | | 
 |  | p| o| n| m| l| k| j| i| h| g| f| e| d| c| b| a| | 
 |  ----------------------------------------------- | 
 |  | 
 |  15 14 13 12 11 10  9  8  7  6  5  4  3   2   1  0 | 
 |  -------------------------------------------------- | 
 |  |         least significant pixel index bits       | | 
 |  | p| o| n| m| l| k| j| i| h| g| f| e| d| c | b | a | | 
 |  -------------------------------------------------- | 
 |  | 
 |  | 
 |  Add table 3.17.2: Intensity modifier sets for ETC1 compressed textures: | 
 |  | 
 |  table codeword                modifier table | 
 |  ------------------        ---------------------- | 
 |  0                     -8  -2  2   8 | 
 |  1                    -17  -5  5  17 | 
 |  2                    -29  -9  9  29 | 
 |  3                    -42 -13 13  42 | 
 |  4                    -60 -18 18  60 | 
 |  5                    -80 -24 24  80 | 
 |  6                   -106 -33 33 106 | 
 |  7                   -183 -47 47 183 | 
 |  | 
 |  | 
 |  Add table 3.17.3 Mapping from pixel index values to modifier values for | 
 |  ETC1 compressed textures: | 
 |  | 
 |  pixel index value | 
 |  --------------- | 
 |  msb     lsb           resulting modifier value | 
 |  -----   -----          ------------------------- | 
 |  1       1            -b (large negative value) | 
 |  1       0            -a (small negative value) | 
 |  0       0             a (small positive value) | 
 |  0       1             b (large positive value) | 
 |  | 
 |  | 
 |  */ | 
 |  | 
 | static const int kModifierTable[] = { | 
 | /* 0 */2, 8, -2, -8, | 
 | /* 1 */5, 17, -5, -17, | 
 | /* 2 */9, 29, -9, -29, | 
 | /* 3 */13, 42, -13, -42, | 
 | /* 4 */18, 60, -18, -60, | 
 | /* 5 */24, 80, -24, -80, | 
 | /* 6 */33, 106, -33, -106, | 
 | /* 7 */47, 183, -47, -183 }; | 
 |  | 
 | static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 }; | 
 |  | 
 | static inline etc1_byte clamp(int x) { | 
 |     return (etc1_byte) (x >= 0 ? (x < 255 ? x : 255) : 0); | 
 | } | 
 |  | 
 | static | 
 | inline int convert4To8(int b) { | 
 |     int c = b & 0xf; | 
 |     return (c << 4) | c; | 
 | } | 
 |  | 
 | static | 
 | inline int convert5To8(int b) { | 
 |     int c = b & 0x1f; | 
 |     return (c << 3) | (c >> 2); | 
 | } | 
 |  | 
 | static | 
 | inline int convert6To8(int b) { | 
 |     int c = b & 0x3f; | 
 |     return (c << 2) | (c >> 4); | 
 | } | 
 |  | 
 | static | 
 | inline int divideBy255(int d) { | 
 |     return (d + 128 + (d >> 8)) >> 8; | 
 | } | 
 |  | 
 | static | 
 | inline int convert8To4(int b) { | 
 |     int c = b & 0xff; | 
 |     return divideBy255(c * 15); | 
 | } | 
 |  | 
 | static | 
 | inline int convert8To5(int b) { | 
 |     int c = b & 0xff; | 
 |     return divideBy255(c * 31); | 
 | } | 
 |  | 
 | static | 
 | inline int convertDiff(int base, int diff) { | 
 |     return convert5To8((0x1f & base) + kLookup[0x7 & diff]); | 
 | } | 
 |  | 
 | static | 
 | void decode_subblock(etc1_byte* pOut, int r, int g, int b, const int* table, | 
 |         etc1_uint32 low, bool second, bool flipped) { | 
 |     int baseX = 0; | 
 |     int baseY = 0; | 
 |     if (second) { | 
 |         if (flipped) { | 
 |             baseY = 2; | 
 |         } else { | 
 |             baseX = 2; | 
 |         } | 
 |     } | 
 |     for (int i = 0; i < 8; i++) { | 
 |         int x, y; | 
 |         if (flipped) { | 
 |             x = baseX + (i >> 1); | 
 |             y = baseY + (i & 1); | 
 |         } else { | 
 |             x = baseX + (i >> 2); | 
 |             y = baseY + (i & 3); | 
 |         } | 
 |         int k = y + (x * 4); | 
 |         int offset = ((low >> k) & 1) | ((low >> (k + 15)) & 2); | 
 |         int delta = table[offset]; | 
 |         etc1_byte* q = pOut + 3 * (x + 4 * y); | 
 |         *q++ = clamp(r + delta); | 
 |         *q++ = clamp(g + delta); | 
 |         *q++ = clamp(b + delta); | 
 |     } | 
 | } | 
 |  | 
 | // Input is an ETC1 compressed version of the data. | 
 | // Output is a 4 x 4 square of 3-byte pixels in form R, G, B | 
 |  | 
 | void etc1_decode_block(const etc1_byte* pIn, etc1_byte* pOut) { | 
 |     etc1_uint32 high = (pIn[0] << 24) | (pIn[1] << 16) | (pIn[2] << 8) | pIn[3]; | 
 |     etc1_uint32 low = (pIn[4] << 24) | (pIn[5] << 16) | (pIn[6] << 8) | pIn[7]; | 
 |     int r1, r2, g1, g2, b1, b2; | 
 |     if (high & 2) { | 
 |         // differential | 
 |         int rBase = high >> 27; | 
 |         int gBase = high >> 19; | 
 |         int bBase = high >> 11; | 
 |         r1 = convert5To8(rBase); | 
 |         r2 = convertDiff(rBase, high >> 24); | 
 |         g1 = convert5To8(gBase); | 
 |         g2 = convertDiff(gBase, high >> 16); | 
 |         b1 = convert5To8(bBase); | 
 |         b2 = convertDiff(bBase, high >> 8); | 
 |     } else { | 
 |         // not differential | 
 |         r1 = convert4To8(high >> 28); | 
 |         r2 = convert4To8(high >> 24); | 
 |         g1 = convert4To8(high >> 20); | 
 |         g2 = convert4To8(high >> 16); | 
 |         b1 = convert4To8(high >> 12); | 
 |         b2 = convert4To8(high >> 8); | 
 |     } | 
 |     int tableIndexA = 7 & (high >> 5); | 
 |     int tableIndexB = 7 & (high >> 2); | 
 |     const int* tableA = kModifierTable + tableIndexA * 4; | 
 |     const int* tableB = kModifierTable + tableIndexB * 4; | 
 |     bool flipped = (high & 1) != 0; | 
 |     decode_subblock(pOut, r1, g1, b1, tableA, low, false, flipped); | 
 |     decode_subblock(pOut, r2, g2, b2, tableB, low, true, flipped); | 
 | } | 
 |  | 
 | typedef struct { | 
 |     etc1_uint32 high; | 
 |     etc1_uint32 low; | 
 |     etc1_uint32 score; // Lower is more accurate | 
 | } etc_compressed; | 
 |  | 
 | static | 
 | inline void take_best(etc_compressed* a, const etc_compressed* b) { | 
 |     if (a->score > b->score) { | 
 |         *a = *b; | 
 |     } | 
 | } | 
 |  | 
 | static | 
 | void etc_average_colors_subblock(const etc1_byte* pIn, etc1_uint32 inMask, | 
 |         etc1_byte* pColors, bool flipped, bool second) { | 
 |     int r = 0; | 
 |     int g = 0; | 
 |     int b = 0; | 
 |  | 
 |     if (flipped) { | 
 |         int by = 0; | 
 |         if (second) { | 
 |             by = 2; | 
 |         } | 
 |         for (int y = 0; y < 2; y++) { | 
 |             int yy = by + y; | 
 |             for (int x = 0; x < 4; x++) { | 
 |                 int i = x + 4 * yy; | 
 |                 if (inMask & (1 << i)) { | 
 |                     const etc1_byte* p = pIn + i * 3; | 
 |                     r += *(p++); | 
 |                     g += *(p++); | 
 |                     b += *(p++); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } else { | 
 |         int bx = 0; | 
 |         if (second) { | 
 |             bx = 2; | 
 |         } | 
 |         for (int y = 0; y < 4; y++) { | 
 |             for (int x = 0; x < 2; x++) { | 
 |                 int xx = bx + x; | 
 |                 int i = xx + 4 * y; | 
 |                 if (inMask & (1 << i)) { | 
 |                     const etc1_byte* p = pIn + i * 3; | 
 |                     r += *(p++); | 
 |                     g += *(p++); | 
 |                     b += *(p++); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |     pColors[0] = (etc1_byte)((r + 4) >> 3); | 
 |     pColors[1] = (etc1_byte)((g + 4) >> 3); | 
 |     pColors[2] = (etc1_byte)((b + 4) >> 3); | 
 | } | 
 |  | 
 | static | 
 | inline int square(int x) { | 
 |     return x * x; | 
 | } | 
 |  | 
 | static etc1_uint32 chooseModifier(const etc1_byte* pBaseColors, | 
 |         const etc1_byte* pIn, etc1_uint32 *pLow, int bitIndex, | 
 |         const int* pModifierTable) { | 
 |     etc1_uint32 bestScore = ~0; | 
 |     int bestIndex = 0; | 
 |     int pixelR = pIn[0]; | 
 |     int pixelG = pIn[1]; | 
 |     int pixelB = pIn[2]; | 
 |     int r = pBaseColors[0]; | 
 |     int g = pBaseColors[1]; | 
 |     int b = pBaseColors[2]; | 
 |     for (int i = 0; i < 4; i++) { | 
 |         int modifier = pModifierTable[i]; | 
 |         int decodedG = clamp(g + modifier); | 
 |         etc1_uint32 score = (etc1_uint32) (6 * square(decodedG - pixelG)); | 
 |         if (score >= bestScore) { | 
 |             continue; | 
 |         } | 
 |         int decodedR = clamp(r + modifier); | 
 |         score += (etc1_uint32) (3 * square(decodedR - pixelR)); | 
 |         if (score >= bestScore) { | 
 |             continue; | 
 |         } | 
 |         int decodedB = clamp(b + modifier); | 
 |         score += (etc1_uint32) square(decodedB - pixelB); | 
 |         if (score < bestScore) { | 
 |             bestScore = score; | 
 |             bestIndex = i; | 
 |         } | 
 |     } | 
 |     etc1_uint32 lowMask = (((bestIndex >> 1) << 16) | (bestIndex & 1)) | 
 |             << bitIndex; | 
 |     *pLow |= lowMask; | 
 |     return bestScore; | 
 | } | 
 |  | 
 | static | 
 | void etc_encode_subblock_helper(const etc1_byte* pIn, etc1_uint32 inMask, | 
 |         etc_compressed* pCompressed, bool flipped, bool second, | 
 |         const etc1_byte* pBaseColors, const int* pModifierTable) { | 
 |     int score = pCompressed->score; | 
 |     if (flipped) { | 
 |         int by = 0; | 
 |         if (second) { | 
 |             by = 2; | 
 |         } | 
 |         for (int y = 0; y < 2; y++) { | 
 |             int yy = by + y; | 
 |             for (int x = 0; x < 4; x++) { | 
 |                 int i = x + 4 * yy; | 
 |                 if (inMask & (1 << i)) { | 
 |                     score += chooseModifier(pBaseColors, pIn + i * 3, | 
 |                             &pCompressed->low, yy + x * 4, pModifierTable); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } else { | 
 |         int bx = 0; | 
 |         if (second) { | 
 |             bx = 2; | 
 |         } | 
 |         for (int y = 0; y < 4; y++) { | 
 |             for (int x = 0; x < 2; x++) { | 
 |                 int xx = bx + x; | 
 |                 int i = xx + 4 * y; | 
 |                 if (inMask & (1 << i)) { | 
 |                     score += chooseModifier(pBaseColors, pIn + i * 3, | 
 |                             &pCompressed->low, y + xx * 4, pModifierTable); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |     pCompressed->score = score; | 
 | } | 
 |  | 
 | static bool inRange4bitSigned(int color) { | 
 |     return color >= -4 && color <= 3; | 
 | } | 
 |  | 
 | static void etc_encodeBaseColors(etc1_byte* pBaseColors, | 
 |         const etc1_byte* pColors, etc_compressed* pCompressed) { | 
 |     int r1, g1, b1, r2, g2, b2; // 8 bit base colors for sub-blocks | 
 |     bool differential; | 
 |     { | 
 |         int r51 = convert8To5(pColors[0]); | 
 |         int g51 = convert8To5(pColors[1]); | 
 |         int b51 = convert8To5(pColors[2]); | 
 |         int r52 = convert8To5(pColors[3]); | 
 |         int g52 = convert8To5(pColors[4]); | 
 |         int b52 = convert8To5(pColors[5]); | 
 |  | 
 |         r1 = convert5To8(r51); | 
 |         g1 = convert5To8(g51); | 
 |         b1 = convert5To8(b51); | 
 |  | 
 |         int dr = r52 - r51; | 
 |         int dg = g52 - g51; | 
 |         int db = b52 - b51; | 
 |  | 
 |         differential = inRange4bitSigned(dr) && inRange4bitSigned(dg) | 
 |                 && inRange4bitSigned(db); | 
 |         if (differential) { | 
 |             r2 = convert5To8(r51 + dr); | 
 |             g2 = convert5To8(g51 + dg); | 
 |             b2 = convert5To8(b51 + db); | 
 |             pCompressed->high |= (r51 << 27) | ((7 & dr) << 24) | (g51 << 19) | 
 |                     | ((7 & dg) << 16) | (b51 << 11) | ((7 & db) << 8) | 2; | 
 |         } | 
 |     } | 
 |  | 
 |     if (!differential) { | 
 |         int r41 = convert8To4(pColors[0]); | 
 |         int g41 = convert8To4(pColors[1]); | 
 |         int b41 = convert8To4(pColors[2]); | 
 |         int r42 = convert8To4(pColors[3]); | 
 |         int g42 = convert8To4(pColors[4]); | 
 |         int b42 = convert8To4(pColors[5]); | 
 |         r1 = convert4To8(r41); | 
 |         g1 = convert4To8(g41); | 
 |         b1 = convert4To8(b41); | 
 |         r2 = convert4To8(r42); | 
 |         g2 = convert4To8(g42); | 
 |         b2 = convert4To8(b42); | 
 |         pCompressed->high |= (r41 << 28) | (r42 << 24) | (g41 << 20) | (g42 | 
 |                 << 16) | (b41 << 12) | (b42 << 8); | 
 |     } | 
 |     pBaseColors[0] = r1; | 
 |     pBaseColors[1] = g1; | 
 |     pBaseColors[2] = b1; | 
 |     pBaseColors[3] = r2; | 
 |     pBaseColors[4] = g2; | 
 |     pBaseColors[5] = b2; | 
 | } | 
 |  | 
 | static | 
 | void etc_encode_block_helper(const etc1_byte* pIn, etc1_uint32 inMask, | 
 |         const etc1_byte* pColors, etc_compressed* pCompressed, bool flipped) { | 
 |     pCompressed->score = ~0; | 
 |     pCompressed->high = (flipped ? 1 : 0); | 
 |     pCompressed->low = 0; | 
 |  | 
 |     etc1_byte pBaseColors[6]; | 
 |  | 
 |     etc_encodeBaseColors(pBaseColors, pColors, pCompressed); | 
 |  | 
 |     int originalHigh = pCompressed->high; | 
 |  | 
 |     const int* pModifierTable = kModifierTable; | 
 |     for (int i = 0; i < 8; i++, pModifierTable += 4) { | 
 |         etc_compressed temp; | 
 |         temp.score = 0; | 
 |         temp.high = originalHigh | (i << 5); | 
 |         temp.low = 0; | 
 |         etc_encode_subblock_helper(pIn, inMask, &temp, flipped, false, | 
 |                 pBaseColors, pModifierTable); | 
 |         take_best(pCompressed, &temp); | 
 |     } | 
 |     pModifierTable = kModifierTable; | 
 |     etc_compressed firstHalf = *pCompressed; | 
 |     for (int i = 0; i < 8; i++, pModifierTable += 4) { | 
 |         etc_compressed temp; | 
 |         temp.score = firstHalf.score; | 
 |         temp.high = firstHalf.high | (i << 2); | 
 |         temp.low = firstHalf.low; | 
 |         etc_encode_subblock_helper(pIn, inMask, &temp, flipped, true, | 
 |                 pBaseColors + 3, pModifierTable); | 
 |         if (i == 0) { | 
 |             *pCompressed = temp; | 
 |         } else { | 
 |             take_best(pCompressed, &temp); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void writeBigEndian(etc1_byte* pOut, etc1_uint32 d) { | 
 |     pOut[0] = (etc1_byte)(d >> 24); | 
 |     pOut[1] = (etc1_byte)(d >> 16); | 
 |     pOut[2] = (etc1_byte)(d >> 8); | 
 |     pOut[3] = (etc1_byte) d; | 
 | } | 
 |  | 
 | // Input is a 4 x 4 square of 3-byte pixels in form R, G, B | 
 | // inmask is a 16-bit mask where bit (1 << (x + y * 4)) tells whether the corresponding (x,y) | 
 | // pixel is valid or not. Invalid pixel color values are ignored when compressing. | 
 | // Output is an ETC1 compressed version of the data. | 
 |  | 
 | void etc1_encode_block(const etc1_byte* pIn, etc1_uint32 inMask, | 
 |         etc1_byte* pOut) { | 
 |     etc1_byte colors[6]; | 
 |     etc1_byte flippedColors[6]; | 
 |     etc_average_colors_subblock(pIn, inMask, colors, false, false); | 
 |     etc_average_colors_subblock(pIn, inMask, colors + 3, false, true); | 
 |     etc_average_colors_subblock(pIn, inMask, flippedColors, true, false); | 
 |     etc_average_colors_subblock(pIn, inMask, flippedColors + 3, true, true); | 
 |  | 
 |     etc_compressed a, b; | 
 |     etc_encode_block_helper(pIn, inMask, colors, &a, false); | 
 |     etc_encode_block_helper(pIn, inMask, flippedColors, &b, true); | 
 |     take_best(&a, &b); | 
 |     writeBigEndian(pOut, a.high); | 
 |     writeBigEndian(pOut + 4, a.low); | 
 | } | 
 |  | 
 | // Return the size of the encoded image data (does not include size of PKM header). | 
 |  | 
 | etc1_uint32 etc1_get_encoded_data_size(etc1_uint32 width, etc1_uint32 height) { | 
 |     return (((width + 3) & ~3) * ((height + 3) & ~3)) >> 1; | 
 | } | 
 |  | 
 | // Encode an entire image. | 
 | // pIn - pointer to the image data. Formatted such that the Red component of | 
 | //       pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset; | 
 | // pOut - pointer to encoded data. Must be large enough to store entire encoded image. | 
 |  | 
 | int etc1_encode_image(const etc1_byte* pIn, etc1_uint32 width, etc1_uint32 height, | 
 |         etc1_uint32 pixelSize, etc1_uint32 stride, etc1_byte* pOut) { | 
 |     if (pixelSize < 2 || pixelSize > 3) { | 
 |         return -1; | 
 |     } | 
 |     static const unsigned short kYMask[] = { 0x0, 0xf, 0xff, 0xfff, 0xffff }; | 
 |     static const unsigned short kXMask[] = { 0x0, 0x1111, 0x3333, 0x7777, | 
 |             0xffff }; | 
 |     etc1_byte block[ETC1_DECODED_BLOCK_SIZE]; | 
 |     etc1_byte encoded[ETC1_ENCODED_BLOCK_SIZE]; | 
 |  | 
 |     etc1_uint32 encodedWidth = (width + 3) & ~3; | 
 |     etc1_uint32 encodedHeight = (height + 3) & ~3; | 
 |  | 
 |     for (etc1_uint32 y = 0; y < encodedHeight; y += 4) { | 
 |         etc1_uint32 yEnd = height - y; | 
 |         if (yEnd > 4) { | 
 |             yEnd = 4; | 
 |         } | 
 |         int ymask = kYMask[yEnd]; | 
 |         for (etc1_uint32 x = 0; x < encodedWidth; x += 4) { | 
 |             etc1_uint32 xEnd = width - x; | 
 |             if (xEnd > 4) { | 
 |                 xEnd = 4; | 
 |             } | 
 |             int mask = ymask & kXMask[xEnd]; | 
 |             for (etc1_uint32 cy = 0; cy < yEnd; cy++) { | 
 |                 etc1_byte* q = block + (cy * 4) * 3; | 
 |                 const etc1_byte* p = pIn + pixelSize * x + stride * (y + cy); | 
 |                 if (pixelSize == 3) { | 
 |                     memcpy(q, p, xEnd * 3); | 
 |                 } else { | 
 |                     for (etc1_uint32 cx = 0; cx < xEnd; cx++) { | 
 |                         int pixel = (p[1] << 8) | p[0]; | 
 |                         *q++ = convert5To8(pixel >> 11); | 
 |                         *q++ = convert6To8(pixel >> 5); | 
 |                         *q++ = convert5To8(pixel); | 
 |                         p += pixelSize; | 
 |                     } | 
 |                 } | 
 |             } | 
 |             etc1_encode_block(block, mask, encoded); | 
 |             memcpy(pOut, encoded, sizeof(encoded)); | 
 |             pOut += sizeof(encoded); | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | // Decode an entire image. | 
 | // pIn - pointer to encoded data. | 
 | // pOut - pointer to the image data. Will be written such that the Red component of | 
 | //       pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset. Must be | 
 | //        large enough to store entire image. | 
 |  | 
 |  | 
 | int etc1_decode_image(const etc1_byte* pIn, etc1_byte* pOut, | 
 |         etc1_uint32 width, etc1_uint32 height, | 
 |         etc1_uint32 pixelSize, etc1_uint32 stride) { | 
 |     if (pixelSize < 2 || pixelSize > 3) { | 
 |         return -1; | 
 |     } | 
 |     etc1_byte block[ETC1_DECODED_BLOCK_SIZE]; | 
 |  | 
 |     etc1_uint32 encodedWidth = (width + 3) & ~3; | 
 |     etc1_uint32 encodedHeight = (height + 3) & ~3; | 
 |  | 
 |     for (etc1_uint32 y = 0; y < encodedHeight; y += 4) { | 
 |         etc1_uint32 yEnd = height - y; | 
 |         if (yEnd > 4) { | 
 |             yEnd = 4; | 
 |         } | 
 |         for (etc1_uint32 x = 0; x < encodedWidth; x += 4) { | 
 |             etc1_uint32 xEnd = width - x; | 
 |             if (xEnd > 4) { | 
 |                 xEnd = 4; | 
 |             } | 
 |             etc1_decode_block(pIn, block); | 
 |             pIn += ETC1_ENCODED_BLOCK_SIZE; | 
 |             for (etc1_uint32 cy = 0; cy < yEnd; cy++) { | 
 |                 const etc1_byte* q = block + (cy * 4) * 3; | 
 |                 etc1_byte* p = pOut + pixelSize * x + stride * (y + cy); | 
 |                 if (pixelSize == 3) { | 
 |                     memcpy(p, q, xEnd * 3); | 
 |                 } else { | 
 |                     for (etc1_uint32 cx = 0; cx < xEnd; cx++) { | 
 |                         etc1_byte r = *q++; | 
 |                         etc1_byte g = *q++; | 
 |                         etc1_byte b = *q++; | 
 |                         etc1_uint32 pixel = ((r >> 3) << 11) | ((g >> 2) << 5) | (b >> 3); | 
 |                         *p++ = (etc1_byte) pixel; | 
 |                         *p++ = (etc1_byte) (pixel >> 8); | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static const char kMagic[] = { 'P', 'K', 'M', ' ', '1', '0' }; | 
 |  | 
 | static const etc1_uint32 ETC1_PKM_FORMAT_OFFSET = 6; | 
 | static const etc1_uint32 ETC1_PKM_ENCODED_WIDTH_OFFSET = 8; | 
 | static const etc1_uint32 ETC1_PKM_ENCODED_HEIGHT_OFFSET = 10; | 
 | static const etc1_uint32 ETC1_PKM_WIDTH_OFFSET = 12; | 
 | static const etc1_uint32 ETC1_PKM_HEIGHT_OFFSET = 14; | 
 |  | 
 | static const etc1_uint32 ETC1_RGB_NO_MIPMAPS = 0; | 
 |  | 
 | static void writeBEUint16(etc1_byte* pOut, etc1_uint32 data) { | 
 |     pOut[0] = (etc1_byte) (data >> 8); | 
 |     pOut[1] = (etc1_byte) data; | 
 | } | 
 |  | 
 | static etc1_uint32 readBEUint16(const etc1_byte* pIn) { | 
 |     return (pIn[0] << 8) | pIn[1]; | 
 | } | 
 |  | 
 | // Format a PKM header | 
 |  | 
 | void etc1_pkm_format_header(etc1_byte* pHeader, etc1_uint32 width, etc1_uint32 height) { | 
 |     memcpy(pHeader, kMagic, sizeof(kMagic)); | 
 |     etc1_uint32 encodedWidth = (width + 3) & ~3; | 
 |     etc1_uint32 encodedHeight = (height + 3) & ~3; | 
 |     writeBEUint16(pHeader + ETC1_PKM_FORMAT_OFFSET, ETC1_RGB_NO_MIPMAPS); | 
 |     writeBEUint16(pHeader + ETC1_PKM_ENCODED_WIDTH_OFFSET, encodedWidth); | 
 |     writeBEUint16(pHeader + ETC1_PKM_ENCODED_HEIGHT_OFFSET, encodedHeight); | 
 |     writeBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET, width); | 
 |     writeBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET, height); | 
 | } | 
 |  | 
 | // Check if a PKM header is correctly formatted. | 
 |  | 
 | etc1_bool etc1_pkm_is_valid(const etc1_byte* pHeader) { | 
 |     if (memcmp(pHeader, kMagic, sizeof(kMagic))) { | 
 |         return false; | 
 |     } | 
 |     etc1_uint32 format = readBEUint16(pHeader + ETC1_PKM_FORMAT_OFFSET); | 
 |     etc1_uint32 encodedWidth = readBEUint16(pHeader + ETC1_PKM_ENCODED_WIDTH_OFFSET); | 
 |     etc1_uint32 encodedHeight = readBEUint16(pHeader + ETC1_PKM_ENCODED_HEIGHT_OFFSET); | 
 |     etc1_uint32 width = readBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET); | 
 |     etc1_uint32 height = readBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET); | 
 |     return format == ETC1_RGB_NO_MIPMAPS && | 
 |             encodedWidth >= width && encodedWidth - width < 4 && | 
 |             encodedHeight >= height && encodedHeight - height < 4; | 
 | } | 
 |  | 
 | // Read the image width from a PKM header | 
 |  | 
 | etc1_uint32 etc1_pkm_get_width(const etc1_byte* pHeader) { | 
 |     return readBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET); | 
 | } | 
 |  | 
 | // Read the image height from a PKM header | 
 |  | 
 | etc1_uint32 etc1_pkm_get_height(const etc1_byte* pHeader){ | 
 |     return readBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET); | 
 | } |