blob: 153c3b6f7e045719142d9da48ef7cf400fb4d317 [file] [log] [blame]
Mike Reed74065272021-04-12 09:52:07 -04001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "SkiaInterpolator.h"
18
19#include "include/core/SkMath.h"
Kevin Lubick46691242022-11-29 19:08:17 +000020#include "include/core/SkScalar.h"
21#include "include/core/SkTypes.h"
Mike Reed74065272021-04-12 09:52:07 -040022#include "include/private/SkFixed.h"
23#include "include/private/SkMalloc.h"
24#include "include/private/SkTo.h"
25#include "src/core/SkTSearch.h"
26
27typedef int Dot14;
28#define Dot14_ONE (1 << 14)
29#define Dot14_HALF (1 << 13)
30
31#define Dot14ToFloat(x) ((x) / 16384.f)
32
33static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
34 return (a * b + Dot14_HALF) >> 14;
35}
36
37static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
38 return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
39}
40
41static inline Dot14 pin_and_convert(float x) {
42 if (x <= 0) {
43 return 0;
44 }
45 if (x >= SK_Scalar1) {
46 return Dot14_ONE;
47 }
48 return SkScalarToFixed(x) >> 2;
49}
50
51static float SkUnitCubicInterp(float value, float bx, float by, float cx, float cy) {
52 // pin to the unit-square, and convert to 2.14
53 Dot14 x = pin_and_convert(value);
54
55 if (x == 0) return 0;
56 if (x == Dot14_ONE) return SK_Scalar1;
57
58 Dot14 b = pin_and_convert(bx);
59 Dot14 c = pin_and_convert(cx);
60
61 // Now compute our coefficients from the control points
62 // t -> 3b
63 // t^2 -> 3c - 6b
64 // t^3 -> 3b - 3c + 1
65 Dot14 A = 3 * b;
66 Dot14 B = 3 * (c - 2 * b);
67 Dot14 C = 3 * (b - c) + Dot14_ONE;
68
69 // Now search for a t value given x
70 Dot14 t = Dot14_HALF;
71 Dot14 dt = Dot14_HALF;
72 for (int i = 0; i < 13; i++) {
73 dt >>= 1;
74 Dot14 guess = eval_cubic(t, A, B, C);
75 if (x < guess) {
76 t -= dt;
77 } else {
78 t += dt;
79 }
80 }
81
82 // Now we have t, so compute the coeff for Y and evaluate
83 b = pin_and_convert(by);
84 c = pin_and_convert(cy);
85 A = 3 * b;
86 B = 3 * (c - 2 * b);
87 C = 3 * (b - c) + Dot14_ONE;
88 return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
89}
90
91///////////////////////////////////////////////////////////////////////////////////////////////////
92
93SkiaInterpolatorBase::SkiaInterpolatorBase() {
94 fStorage = nullptr;
95 fTimes = nullptr;
96 SkDEBUGCODE(fTimesArray = nullptr;)
97}
98
99SkiaInterpolatorBase::~SkiaInterpolatorBase() {
100 if (fStorage) {
101 sk_free(fStorage);
102 }
103}
104
105void SkiaInterpolatorBase::reset(int elemCount, int frameCount) {
106 fFlags = 0;
107 fElemCount = SkToU8(elemCount);
108 fFrameCount = SkToS16(frameCount);
109 fRepeat = SK_Scalar1;
110 if (fStorage) {
111 sk_free(fStorage);
112 fStorage = nullptr;
113 fTimes = nullptr;
114 SkDEBUGCODE(fTimesArray = nullptr);
115 }
116}
117
118/* Each value[] run is formatted as:
119 <time (in msec)>
120 <blend>
121 <data[fElemCount]>
122
123 Totaling fElemCount+2 entries per keyframe
124*/
125
126bool SkiaInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
127 if (fFrameCount == 0) {
128 return false;
129 }
130
131 if (startTime) {
132 *startTime = fTimes[0].fTime;
133 }
134 if (endTime) {
135 *endTime = fTimes[fFrameCount - 1].fTime;
136 }
137 return true;
138}
139
140float SkiaInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime, SkMSec nextTime,
141 const float blend[4]) {
142 SkASSERT(time > prevTime && time < nextTime);
143
144 float t = (float)(time - prevTime) / (float)(nextTime - prevTime);
145 return blend ? SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
146}
147
148SkiaInterpolatorBase::Result SkiaInterpolatorBase::timeToT(SkMSec time, float* T, int* indexPtr,
149 bool* exactPtr) const {
150 SkASSERT(fFrameCount > 0);
151 Result result = kNormal_Result;
152 if (fRepeat != SK_Scalar1) {
153 SkMSec startTime = 0, endTime = 0; // initialize to avoid warning
154 this->getDuration(&startTime, &endTime);
155 SkMSec totalTime = endTime - startTime;
156 SkMSec offsetTime = time - startTime;
157 endTime = SkScalarFloorToInt(fRepeat * totalTime);
158 if (offsetTime >= endTime) {
159 float fraction = SkScalarFraction(fRepeat);
160 offsetTime = fraction == 0 && fRepeat > 0
161 ? totalTime
162 : (SkMSec)SkScalarFloorToInt(fraction * totalTime);
163 result = kFreezeEnd_Result;
164 } else {
165 int mirror = fFlags & kMirror;
166 offsetTime = offsetTime % (totalTime << mirror);
167 if (offsetTime > totalTime) { // can only be true if fMirror is true
168 offsetTime = (totalTime << 1) - offsetTime;
169 }
170 }
171 time = offsetTime + startTime;
172 }
173
174 int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time, sizeof(SkTimeCode));
175
176 bool exact = true;
177
178 if (index < 0) {
179 index = ~index;
180 if (index == 0) {
181 result = kFreezeStart_Result;
182 } else if (index == fFrameCount) {
183 if (fFlags & kReset) {
184 index = 0;
185 } else {
186 index -= 1;
187 }
188 result = kFreezeEnd_Result;
189 } else {
190 exact = false;
191 }
192 }
193 SkASSERT(index < fFrameCount);
194 const SkTimeCode* nextTime = &fTimes[index];
195 SkMSec nextT = nextTime[0].fTime;
196 if (exact) {
197 *T = 0;
198 } else {
199 SkMSec prevT = nextTime[-1].fTime;
200 *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
201 }
202 *indexPtr = index;
203 *exactPtr = exact;
204 return result;
205}
206
207SkiaInterpolator::SkiaInterpolator() {
208 INHERITED::reset(0, 0);
209 fValues = nullptr;
210 SkDEBUGCODE(fScalarsArray = nullptr;)
211}
212
213SkiaInterpolator::SkiaInterpolator(int elemCount, int frameCount) {
214 SkASSERT(elemCount > 0);
215 this->reset(elemCount, frameCount);
216}
217
218void SkiaInterpolator::reset(int elemCount, int frameCount) {
219 INHERITED::reset(elemCount, frameCount);
220 fStorage = sk_malloc_throw((sizeof(float) * elemCount + sizeof(SkTimeCode)) * frameCount);
221 fTimes = (SkTimeCode*)fStorage;
222 fValues = (float*)((char*)fStorage + sizeof(SkTimeCode) * frameCount);
223#ifdef SK_DEBUG
224 fTimesArray = (SkTimeCode(*)[10])fTimes;
225 fScalarsArray = (float(*)[10])fValues;
226#endif
227}
228
229#define SK_Fixed1Third (SK_Fixed1 / 3)
230#define SK_Fixed2Third (SK_Fixed1 * 2 / 3)
231
232static const float gIdentityBlend[4] = {0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f};
233
234bool SkiaInterpolator::setKeyFrame(int index, SkMSec time, const float values[],
235 const float blend[4]) {
236 SkASSERT(values != nullptr);
237
238 if (blend == nullptr) {
239 blend = gIdentityBlend;
240 }
241
242 bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time, sizeof(SkTimeCode));
243 SkASSERT(success);
244 if (success) {
245 SkTimeCode* timeCode = &fTimes[index];
246 timeCode->fTime = time;
247 memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
248 float* dst = &fValues[fElemCount * index];
249 memcpy(dst, values, fElemCount * sizeof(float));
250 }
251 return success;
252}
253
254SkiaInterpolator::Result SkiaInterpolator::timeToValues(SkMSec time, float values[]) const {
255 float T;
256 int index;
257 bool exact;
258 Result result = timeToT(time, &T, &index, &exact);
259 if (values) {
260 const float* nextSrc = &fValues[index * fElemCount];
261
262 if (exact) {
263 memcpy(values, nextSrc, fElemCount * sizeof(float));
264 } else {
265 SkASSERT(index > 0);
266
267 const float* prevSrc = nextSrc - fElemCount;
268
269 for (int i = fElemCount - 1; i >= 0; --i) {
270 values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
271 }
272 }
273 }
274 return result;
275}