| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "Interpolator.h" | 
 |  | 
 | #include <algorithm> | 
 |  | 
 | #include <log/log.h> | 
 |  | 
 | #include "utils/MathUtils.h" | 
 |  | 
 | namespace android { | 
 | namespace uirenderer { | 
 |  | 
 | Interpolator* Interpolator::createDefaultInterpolator() { | 
 |     return new AccelerateDecelerateInterpolator(); | 
 | } | 
 |  | 
 | float AccelerateDecelerateInterpolator::interpolate(float input) { | 
 |     return (float)(cosf((input + 1) * M_PI) / 2.0f) + 0.5f; | 
 | } | 
 |  | 
 | float AccelerateInterpolator::interpolate(float input) { | 
 |     if (mFactor == 1.0f) { | 
 |         return input * input; | 
 |     } else { | 
 |         return pow(input, mDoubleFactor); | 
 |     } | 
 | } | 
 |  | 
 | float AnticipateInterpolator::interpolate(float t) { | 
 |     return t * t * ((mTension + 1) * t - mTension); | 
 | } | 
 |  | 
 | static float a(float t, float s) { | 
 |     return t * t * ((s + 1) * t - s); | 
 | } | 
 |  | 
 | static float o(float t, float s) { | 
 |     return t * t * ((s + 1) * t + s); | 
 | } | 
 |  | 
 | float AnticipateOvershootInterpolator::interpolate(float t) { | 
 |     if (t < 0.5f) | 
 |         return 0.5f * a(t * 2.0f, mTension); | 
 |     else | 
 |         return 0.5f * (o(t * 2.0f - 2.0f, mTension) + 2.0f); | 
 | } | 
 |  | 
 | static float bounce(float t) { | 
 |     return t * t * 8.0f; | 
 | } | 
 |  | 
 | float BounceInterpolator::interpolate(float t) { | 
 |     t *= 1.1226f; | 
 |     if (t < 0.3535f) | 
 |         return bounce(t); | 
 |     else if (t < 0.7408f) | 
 |         return bounce(t - 0.54719f) + 0.7f; | 
 |     else if (t < 0.9644f) | 
 |         return bounce(t - 0.8526f) + 0.9f; | 
 |     else | 
 |         return bounce(t - 1.0435f) + 0.95f; | 
 | } | 
 |  | 
 | float CycleInterpolator::interpolate(float input) { | 
 |     return sinf(2 * mCycles * M_PI * input); | 
 | } | 
 |  | 
 | float DecelerateInterpolator::interpolate(float input) { | 
 |     float result; | 
 |     if (mFactor == 1.0f) { | 
 |         result = 1.0f - (1.0f - input) * (1.0f - input); | 
 |     } else { | 
 |         result = 1.0f - pow((1.0f - input), 2 * mFactor); | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | float OvershootInterpolator::interpolate(float t) { | 
 |     t -= 1.0f; | 
 |     return t * t * ((mTension + 1) * t + mTension) + 1.0f; | 
 | } | 
 |  | 
 | float PathInterpolator::interpolate(float t) { | 
 |     if (t <= 0) { | 
 |         return 0; | 
 |     } else if (t >= 1) { | 
 |         return 1; | 
 |     } | 
 |     // Do a binary search for the correct x to interpolate between. | 
 |     size_t startIndex = 0; | 
 |     size_t endIndex = mX.size() - 1; | 
 |  | 
 |     while (endIndex > startIndex + 1) { | 
 |         int midIndex = (startIndex + endIndex) / 2; | 
 |         if (t < mX[midIndex]) { | 
 |             endIndex = midIndex; | 
 |         } else { | 
 |             startIndex = midIndex; | 
 |         } | 
 |     } | 
 |  | 
 |     float xRange = mX[endIndex] - mX[startIndex]; | 
 |     if (xRange == 0) { | 
 |         return mY[startIndex]; | 
 |     } | 
 |  | 
 |     float tInRange = t - mX[startIndex]; | 
 |     float fraction = tInRange / xRange; | 
 |  | 
 |     float startY = mY[startIndex]; | 
 |     float endY = mY[endIndex]; | 
 |     return startY + (fraction * (endY - startY)); | 
 | } | 
 |  | 
 | LUTInterpolator::LUTInterpolator(float* values, size_t size) : mValues(values), mSize(size) {} | 
 |  | 
 | LUTInterpolator::~LUTInterpolator() {} | 
 |  | 
 | float LUTInterpolator::interpolate(float input) { | 
 |     // lut position should only be at the end of the table when input is 1f. | 
 |     float lutpos = input * (mSize - 1); | 
 |     if (lutpos >= (mSize - 1)) { | 
 |         return mValues[mSize - 1]; | 
 |     } | 
 |  | 
 |     float ipart, weight; | 
 |     weight = modff(lutpos, &ipart); | 
 |  | 
 |     int i1 = (int)ipart; | 
 |     int i2 = std::min(i1 + 1, (int)mSize - 1); | 
 |  | 
 |     LOG_ALWAYS_FATAL_IF( | 
 |             i1 < 0 || i2 < 0, | 
 |             "negatives in interpolation!" | 
 |             " i1=%d, i2=%d, input=%f, lutpos=%f, size=%zu, values=%p, ipart=%f, weight=%f", | 
 |             i1, i2, input, lutpos, mSize, mValues.get(), ipart, weight); | 
 |  | 
 |     float v1 = mValues[i1]; | 
 |     float v2 = mValues[i2]; | 
 |  | 
 |     return MathUtils::lerp(v1, v2, weight); | 
 | } | 
 |  | 
 | } /* namespace uirenderer */ | 
 | } /* namespace android */ |