|  | /* | 
|  | * Copyright (C) 2008 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "SkiaInterpolator.h" | 
|  |  | 
|  | #include "include/core/SkScalar.h" | 
|  | #include "include/core/SkTypes.h" | 
|  |  | 
|  | #include <cstdlib> | 
|  | #include <log/log.h> | 
|  |  | 
|  | typedef int Dot14; | 
|  | #define Dot14_ONE (1 << 14) | 
|  | #define Dot14_HALF (1 << 13) | 
|  |  | 
|  | #define Dot14ToFloat(x) ((x) / 16384.f) | 
|  |  | 
|  | static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) { | 
|  | return (a * b + Dot14_HALF) >> 14; | 
|  | } | 
|  |  | 
|  | static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) { | 
|  | return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t); | 
|  | } | 
|  |  | 
|  | static inline Dot14 pin_and_convert(float x) { | 
|  | if (x <= 0) { | 
|  | return 0; | 
|  | } | 
|  | if (x >= 1.0f) { | 
|  | return Dot14_ONE; | 
|  | } | 
|  | return static_cast<Dot14>(x * Dot14_ONE); | 
|  | } | 
|  |  | 
|  | static float SkUnitCubicInterp(float value, float bx, float by, float cx, float cy) { | 
|  | // pin to the unit-square, and convert to 2.14 | 
|  | Dot14 x = pin_and_convert(value); | 
|  |  | 
|  | if (x == 0) return 0.0f; | 
|  | if (x == Dot14_ONE) return 1.0f; | 
|  |  | 
|  | Dot14 b = pin_and_convert(bx); | 
|  | Dot14 c = pin_and_convert(cx); | 
|  |  | 
|  | // Now compute our coefficients from the control points | 
|  | //  t   -> 3b | 
|  | //  t^2 -> 3c - 6b | 
|  | //  t^3 -> 3b - 3c + 1 | 
|  | Dot14 A = 3 * b; | 
|  | Dot14 B = 3 * (c - 2 * b); | 
|  | Dot14 C = 3 * (b - c) + Dot14_ONE; | 
|  |  | 
|  | // Now search for a t value given x | 
|  | Dot14 t = Dot14_HALF; | 
|  | Dot14 dt = Dot14_HALF; | 
|  | for (int i = 0; i < 13; i++) { | 
|  | dt >>= 1; | 
|  | Dot14 guess = eval_cubic(t, A, B, C); | 
|  | if (x < guess) { | 
|  | t -= dt; | 
|  | } else { | 
|  | t += dt; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we have t, so compute the coeff for Y and evaluate | 
|  | b = pin_and_convert(by); | 
|  | c = pin_and_convert(cy); | 
|  | A = 3 * b; | 
|  | B = 3 * (c - 2 * b); | 
|  | C = 3 * (b - c) + Dot14_ONE; | 
|  | return Dot14ToFloat(eval_cubic(t, A, B, C)); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | SkiaInterpolatorBase::SkiaInterpolatorBase() { | 
|  | fStorage = nullptr; | 
|  | fTimes = nullptr; | 
|  | } | 
|  |  | 
|  | SkiaInterpolatorBase::~SkiaInterpolatorBase() { | 
|  | if (fStorage) { | 
|  | free(fStorage); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkiaInterpolatorBase::reset(int elemCount, int frameCount) { | 
|  | fFlags = 0; | 
|  | fElemCount = static_cast<uint8_t>(elemCount); | 
|  | fFrameCount = static_cast<int16_t>(frameCount); | 
|  | fRepeat = 1.0f; | 
|  | if (fStorage) { | 
|  | free(fStorage); | 
|  | fStorage = nullptr; | 
|  | fTimes = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*  Each value[] run is formatted as: | 
|  | <time (in msec)> | 
|  | <blend> | 
|  | <data[fElemCount]> | 
|  |  | 
|  | Totaling fElemCount+2 entries per keyframe | 
|  | */ | 
|  |  | 
|  | bool SkiaInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const { | 
|  | if (fFrameCount == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (startTime) { | 
|  | *startTime = fTimes[0].fTime; | 
|  | } | 
|  | if (endTime) { | 
|  | *endTime = fTimes[fFrameCount - 1].fTime; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | float SkiaInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime, SkMSec nextTime, | 
|  | const float blend[4]) { | 
|  | LOG_FATAL_IF(time < prevTime || time > nextTime); | 
|  |  | 
|  | float t = (float)(time - prevTime) / (float)(nextTime - prevTime); | 
|  | return blend ? SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t; | 
|  | } | 
|  |  | 
|  | // Returns the index of where the item is or the bit not of the index | 
|  | // where the item should go in order to keep arr sorted in ascending order. | 
|  | int SkiaInterpolatorBase::binarySearch(const SkTimeCode* arr, int count, SkMSec target) { | 
|  | if (count <= 0) { | 
|  | return ~0; | 
|  | } | 
|  |  | 
|  | int lo = 0; | 
|  | int hi = count - 1; | 
|  |  | 
|  | while (lo < hi) { | 
|  | int mid = (hi + lo) / 2; | 
|  | SkMSec elem = arr[mid].fTime; | 
|  | if (elem == target) { | 
|  | return mid; | 
|  | } else if (elem < target) { | 
|  | lo = mid + 1; | 
|  | } else { | 
|  | hi = mid; | 
|  | } | 
|  | } | 
|  | // Check to see if target is greater or less than where we stopped | 
|  | if (target < arr[lo].fTime) { | 
|  | return ~lo; | 
|  | } | 
|  | // e.g. it should go at the end. | 
|  | return ~(lo + 1); | 
|  | } | 
|  |  | 
|  | SkiaInterpolatorBase::Result SkiaInterpolatorBase::timeToT(SkMSec time, float* T, int* indexPtr, | 
|  | bool* exactPtr) const { | 
|  | LOG_FATAL_IF(fFrameCount <= 0); | 
|  | Result result = kNormal_Result; | 
|  | if (fRepeat != 1.0f) { | 
|  | SkMSec startTime = 0, endTime = 0;  // initialize to avoid warning | 
|  | this->getDuration(&startTime, &endTime); | 
|  | SkMSec totalTime = endTime - startTime; | 
|  | SkMSec offsetTime = time - startTime; | 
|  | endTime = SkScalarFloorToInt(fRepeat * totalTime); | 
|  | if (offsetTime >= endTime) { | 
|  | float fraction = SkScalarFraction(fRepeat); | 
|  | offsetTime = fraction == 0 && fRepeat > 0 | 
|  | ? totalTime | 
|  | : (SkMSec)SkScalarFloorToInt(fraction * totalTime); | 
|  | result = kFreezeEnd_Result; | 
|  | } else { | 
|  | int mirror = fFlags & kMirror; | 
|  | offsetTime = offsetTime % (totalTime << mirror); | 
|  | if (offsetTime > totalTime) {  // can only be true if fMirror is true | 
|  | offsetTime = (totalTime << 1) - offsetTime; | 
|  | } | 
|  | } | 
|  | time = offsetTime + startTime; | 
|  | } | 
|  |  | 
|  | int index = SkiaInterpolatorBase::binarySearch(fTimes, fFrameCount, time); | 
|  | bool exact = true; | 
|  | if (index < 0) { | 
|  | index = ~index; | 
|  | if (index == 0) { | 
|  | result = kFreezeStart_Result; | 
|  | } else if (index == fFrameCount) { | 
|  | if (fFlags & kReset) { | 
|  | index = 0; | 
|  | } else { | 
|  | index -= 1; | 
|  | } | 
|  | result = kFreezeEnd_Result; | 
|  | } else { | 
|  | // Need to interpolate between two frames. | 
|  | exact = false; | 
|  | } | 
|  | } | 
|  | LOG_FATAL_IF(index >= fFrameCount); | 
|  | const SkTimeCode* nextTime = &fTimes[index]; | 
|  | SkMSec nextT = nextTime[0].fTime; | 
|  | if (exact) { | 
|  | *T = 0; | 
|  | } else { | 
|  | SkMSec prevT = nextTime[-1].fTime; | 
|  | *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend); | 
|  | } | 
|  | *indexPtr = index; | 
|  | *exactPtr = exact; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | SkiaInterpolator::SkiaInterpolator() { | 
|  | INHERITED::reset(0, 0); | 
|  | fValues = nullptr; | 
|  | } | 
|  |  | 
|  | SkiaInterpolator::SkiaInterpolator(int elemCount, int frameCount) { | 
|  | LOG_FATAL_IF(elemCount <= 0); | 
|  | this->reset(elemCount, frameCount); | 
|  | } | 
|  |  | 
|  | void SkiaInterpolator::reset(int elemCount, int frameCount) { | 
|  | INHERITED::reset(elemCount, frameCount); | 
|  | size_t numBytes = (sizeof(float) * elemCount + sizeof(SkTimeCode)) * frameCount; | 
|  | fStorage = malloc(numBytes); | 
|  | LOG_ALWAYS_FATAL_IF(!fStorage, "Failed to allocate %zu bytes in %s", | 
|  | numBytes, __func__); | 
|  | fTimes = (SkTimeCode*)fStorage; | 
|  | fValues = (float*)((char*)fStorage + sizeof(SkTimeCode) * frameCount); | 
|  | } | 
|  |  | 
|  | static const float gIdentityBlend[4] = {0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f}; | 
|  |  | 
|  | bool SkiaInterpolator::setKeyFrame(int index, SkMSec time, const float values[], | 
|  | const float blend[4]) { | 
|  | LOG_FATAL_IF(values == nullptr); | 
|  |  | 
|  | if (blend == nullptr) { | 
|  | blend = gIdentityBlend; | 
|  | } | 
|  |  | 
|  | // Verify the time should go after all the frames before index | 
|  | bool success = ~index == SkiaInterpolatorBase::binarySearch(fTimes, index, time); | 
|  | LOG_FATAL_IF(!success); | 
|  | if (success) { | 
|  | SkTimeCode* timeCode = &fTimes[index]; | 
|  | timeCode->fTime = time; | 
|  | memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend)); | 
|  | float* dst = &fValues[fElemCount * index]; | 
|  | memcpy(dst, values, fElemCount * sizeof(float)); | 
|  | } | 
|  | return success; | 
|  | } | 
|  |  | 
|  | SkiaInterpolator::Result SkiaInterpolator::timeToValues(SkMSec time, float values[]) const { | 
|  | float T; | 
|  | int index; | 
|  | bool exact; | 
|  | Result result = timeToT(time, &T, &index, &exact); | 
|  | if (values) { | 
|  | const float* nextSrc = &fValues[index * fElemCount]; | 
|  |  | 
|  | if (exact) { | 
|  | memcpy(values, nextSrc, fElemCount * sizeof(float)); | 
|  | } else { | 
|  | LOG_FATAL_IF(index <= 0); | 
|  |  | 
|  | const float* prevSrc = nextSrc - fElemCount; | 
|  |  | 
|  | for (int i = fElemCount - 1; i >= 0; --i) { | 
|  | values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T); | 
|  | } | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } |