|  | /* | 
|  | * Copyright (C) 2007 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | package android.opengl; | 
|  |  | 
|  | /** | 
|  | * Matrix math utilities. These methods operate on OpenGL ES format | 
|  | * matrices and vectors stored in float arrays. | 
|  | * <p> | 
|  | * Matrices are 4 x 4 column-vector matrices stored in column-major | 
|  | * order: | 
|  | * <pre> | 
|  | *  m[offset +  0] m[offset +  4] m[offset +  8] m[offset + 12] | 
|  | *  m[offset +  1] m[offset +  5] m[offset +  9] m[offset + 13] | 
|  | *  m[offset +  2] m[offset +  6] m[offset + 10] m[offset + 14] | 
|  | *  m[offset +  3] m[offset +  7] m[offset + 11] m[offset + 15]</pre> | 
|  | * | 
|  | * Vectors are 4 x 1 column vectors stored in order: | 
|  | * <pre> | 
|  | * v[offset + 0] | 
|  | * v[offset + 1] | 
|  | * v[offset + 2] | 
|  | * v[offset + 3]</pre> | 
|  | */ | 
|  | public class Matrix { | 
|  |  | 
|  | /** Temporary memory for operations that need temporary matrix data. */ | 
|  | private final static float[] sTemp = new float[32]; | 
|  |  | 
|  | /** | 
|  | * @deprecated All methods are static, do not instantiate this class. | 
|  | */ | 
|  | @Deprecated | 
|  | public Matrix() {} | 
|  |  | 
|  | /** | 
|  | * Multiplies two 4x4 matrices together and stores the result in a third 4x4 | 
|  | * matrix. In matrix notation: result = lhs x rhs. Due to the way | 
|  | * matrix multiplication works, the result matrix will have the same | 
|  | * effect as first multiplying by the rhs matrix, then multiplying by | 
|  | * the lhs matrix. This is the opposite of what you might expect. | 
|  | * <p> | 
|  | * The same float array may be passed for result, lhs, and/or rhs. However, | 
|  | * the result element values are undefined if the result elements overlap | 
|  | * either the lhs or rhs elements. | 
|  | * | 
|  | * @param result The float array that holds the result. | 
|  | * @param resultOffset The offset into the result array where the result is | 
|  | *        stored. | 
|  | * @param lhs The float array that holds the left-hand-side matrix. | 
|  | * @param lhsOffset The offset into the lhs array where the lhs is stored | 
|  | * @param rhs The float array that holds the right-hand-side matrix. | 
|  | * @param rhsOffset The offset into the rhs array where the rhs is stored. | 
|  | * | 
|  | * @throws IllegalArgumentException if result, lhs, or rhs are null, or if | 
|  | * resultOffset + 16 > result.length or lhsOffset + 16 > lhs.length or | 
|  | * rhsOffset + 16 > rhs.length. | 
|  | */ | 
|  | public static native void multiplyMM(float[] result, int resultOffset, | 
|  | float[] lhs, int lhsOffset, float[] rhs, int rhsOffset); | 
|  |  | 
|  | /** | 
|  | * Multiplies a 4 element vector by a 4x4 matrix and stores the result in a | 
|  | * 4-element column vector. In matrix notation: result = lhs x rhs | 
|  | * <p> | 
|  | * The same float array may be passed for resultVec, lhsMat, and/or rhsVec. | 
|  | * However, the resultVec element values are undefined if the resultVec | 
|  | * elements overlap either the lhsMat or rhsVec elements. | 
|  | * | 
|  | * @param resultVec The float array that holds the result vector. | 
|  | * @param resultVecOffset The offset into the result array where the result | 
|  | *        vector is stored. | 
|  | * @param lhsMat The float array that holds the left-hand-side matrix. | 
|  | * @param lhsMatOffset The offset into the lhs array where the lhs is stored | 
|  | * @param rhsVec The float array that holds the right-hand-side vector. | 
|  | * @param rhsVecOffset The offset into the rhs vector where the rhs vector | 
|  | *        is stored. | 
|  | * | 
|  | * @throws IllegalArgumentException if resultVec, lhsMat, | 
|  | * or rhsVec are null, or if resultVecOffset + 4 > resultVec.length | 
|  | * or lhsMatOffset + 16 > lhsMat.length or | 
|  | * rhsVecOffset + 4 > rhsVec.length. | 
|  | */ | 
|  | public static native void multiplyMV(float[] resultVec, | 
|  | int resultVecOffset, float[] lhsMat, int lhsMatOffset, | 
|  | float[] rhsVec, int rhsVecOffset); | 
|  |  | 
|  | /** | 
|  | * Transposes a 4 x 4 matrix. | 
|  | * <p> | 
|  | * mTrans and m must not overlap. | 
|  | * | 
|  | * @param mTrans the array that holds the output transposed matrix | 
|  | * @param mTransOffset an offset into mTrans where the transposed matrix is | 
|  | *        stored. | 
|  | * @param m the input array | 
|  | * @param mOffset an offset into m where the input matrix is stored. | 
|  | */ | 
|  | public static void transposeM(float[] mTrans, int mTransOffset, float[] m, | 
|  | int mOffset) { | 
|  | for (int i = 0; i < 4; i++) { | 
|  | int mBase = i * 4 + mOffset; | 
|  | mTrans[i + mTransOffset] = m[mBase]; | 
|  | mTrans[i + 4 + mTransOffset] = m[mBase + 1]; | 
|  | mTrans[i + 8 + mTransOffset] = m[mBase + 2]; | 
|  | mTrans[i + 12 + mTransOffset] = m[mBase + 3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Inverts a 4 x 4 matrix. | 
|  | * <p> | 
|  | * mInv and m must not overlap. | 
|  | * | 
|  | * @param mInv the array that holds the output inverted matrix | 
|  | * @param mInvOffset an offset into mInv where the inverted matrix is | 
|  | *        stored. | 
|  | * @param m the input array | 
|  | * @param mOffset an offset into m where the input matrix is stored. | 
|  | * @return true if the matrix could be inverted, false if it could not. | 
|  | */ | 
|  | public static boolean invertM(float[] mInv, int mInvOffset, float[] m, | 
|  | int mOffset) { | 
|  | // Invert a 4 x 4 matrix using Cramer's Rule | 
|  |  | 
|  | // transpose matrix | 
|  | final float src0  = m[mOffset +  0]; | 
|  | final float src4  = m[mOffset +  1]; | 
|  | final float src8  = m[mOffset +  2]; | 
|  | final float src12 = m[mOffset +  3]; | 
|  |  | 
|  | final float src1  = m[mOffset +  4]; | 
|  | final float src5  = m[mOffset +  5]; | 
|  | final float src9  = m[mOffset +  6]; | 
|  | final float src13 = m[mOffset +  7]; | 
|  |  | 
|  | final float src2  = m[mOffset +  8]; | 
|  | final float src6  = m[mOffset +  9]; | 
|  | final float src10 = m[mOffset + 10]; | 
|  | final float src14 = m[mOffset + 11]; | 
|  |  | 
|  | final float src3  = m[mOffset + 12]; | 
|  | final float src7  = m[mOffset + 13]; | 
|  | final float src11 = m[mOffset + 14]; | 
|  | final float src15 = m[mOffset + 15]; | 
|  |  | 
|  | // calculate pairs for first 8 elements (cofactors) | 
|  | final float atmp0  = src10 * src15; | 
|  | final float atmp1  = src11 * src14; | 
|  | final float atmp2  = src9  * src15; | 
|  | final float atmp3  = src11 * src13; | 
|  | final float atmp4  = src9  * src14; | 
|  | final float atmp5  = src10 * src13; | 
|  | final float atmp6  = src8  * src15; | 
|  | final float atmp7  = src11 * src12; | 
|  | final float atmp8  = src8  * src14; | 
|  | final float atmp9  = src10 * src12; | 
|  | final float atmp10 = src8  * src13; | 
|  | final float atmp11 = src9  * src12; | 
|  |  | 
|  | // calculate first 8 elements (cofactors) | 
|  | final float dst0  = (atmp0 * src5 + atmp3 * src6 + atmp4  * src7) | 
|  | - (atmp1 * src5 + atmp2 * src6 + atmp5  * src7); | 
|  | final float dst1  = (atmp1 * src4 + atmp6 * src6 + atmp9  * src7) | 
|  | - (atmp0 * src4 + atmp7 * src6 + atmp8  * src7); | 
|  | final float dst2  = (atmp2 * src4 + atmp7 * src5 + atmp10 * src7) | 
|  | - (atmp3 * src4 + atmp6 * src5 + atmp11 * src7); | 
|  | final float dst3  = (atmp5 * src4 + atmp8 * src5 + atmp11 * src6) | 
|  | - (atmp4 * src4 + atmp9 * src5 + atmp10 * src6); | 
|  | final float dst4  = (atmp1 * src1 + atmp2 * src2 + atmp5  * src3) | 
|  | - (atmp0 * src1 + atmp3 * src2 + atmp4  * src3); | 
|  | final float dst5  = (atmp0 * src0 + atmp7 * src2 + atmp8  * src3) | 
|  | - (atmp1 * src0 + atmp6 * src2 + atmp9  * src3); | 
|  | final float dst6  = (atmp3 * src0 + atmp6 * src1 + atmp11 * src3) | 
|  | - (atmp2 * src0 + atmp7 * src1 + atmp10 * src3); | 
|  | final float dst7  = (atmp4 * src0 + atmp9 * src1 + atmp10 * src2) | 
|  | - (atmp5 * src0 + atmp8 * src1 + atmp11 * src2); | 
|  |  | 
|  | // calculate pairs for second 8 elements (cofactors) | 
|  | final float btmp0  = src2 * src7; | 
|  | final float btmp1  = src3 * src6; | 
|  | final float btmp2  = src1 * src7; | 
|  | final float btmp3  = src3 * src5; | 
|  | final float btmp4  = src1 * src6; | 
|  | final float btmp5  = src2 * src5; | 
|  | final float btmp6  = src0 * src7; | 
|  | final float btmp7  = src3 * src4; | 
|  | final float btmp8  = src0 * src6; | 
|  | final float btmp9  = src2 * src4; | 
|  | final float btmp10 = src0 * src5; | 
|  | final float btmp11 = src1 * src4; | 
|  |  | 
|  | // calculate second 8 elements (cofactors) | 
|  | final float dst8  = (btmp0  * src13 + btmp3  * src14 + btmp4  * src15) | 
|  | - (btmp1  * src13 + btmp2  * src14 + btmp5  * src15); | 
|  | final float dst9  = (btmp1  * src12 + btmp6  * src14 + btmp9  * src15) | 
|  | - (btmp0  * src12 + btmp7  * src14 + btmp8  * src15); | 
|  | final float dst10 = (btmp2  * src12 + btmp7  * src13 + btmp10 * src15) | 
|  | - (btmp3  * src12 + btmp6  * src13 + btmp11 * src15); | 
|  | final float dst11 = (btmp5  * src12 + btmp8  * src13 + btmp11 * src14) | 
|  | - (btmp4  * src12 + btmp9  * src13 + btmp10 * src14); | 
|  | final float dst12 = (btmp2  * src10 + btmp5  * src11 + btmp1  * src9 ) | 
|  | - (btmp4  * src11 + btmp0  * src9  + btmp3  * src10); | 
|  | final float dst13 = (btmp8  * src11 + btmp0  * src8  + btmp7  * src10) | 
|  | - (btmp6  * src10 + btmp9  * src11 + btmp1  * src8 ); | 
|  | final float dst14 = (btmp6  * src9  + btmp11 * src11 + btmp3  * src8 ) | 
|  | - (btmp10 * src11 + btmp2  * src8  + btmp7  * src9 ); | 
|  | final float dst15 = (btmp10 * src10 + btmp4  * src8  + btmp9  * src9 ) | 
|  | - (btmp8  * src9  + btmp11 * src10 + btmp5  * src8 ); | 
|  |  | 
|  | // calculate determinant | 
|  | final float det = | 
|  | src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3; | 
|  |  | 
|  | if (det == 0.0f) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // calculate matrix inverse | 
|  | final float invdet = 1.0f / det; | 
|  | mInv[     mInvOffset] = dst0  * invdet; | 
|  | mInv[ 1 + mInvOffset] = dst1  * invdet; | 
|  | mInv[ 2 + mInvOffset] = dst2  * invdet; | 
|  | mInv[ 3 + mInvOffset] = dst3  * invdet; | 
|  |  | 
|  | mInv[ 4 + mInvOffset] = dst4  * invdet; | 
|  | mInv[ 5 + mInvOffset] = dst5  * invdet; | 
|  | mInv[ 6 + mInvOffset] = dst6  * invdet; | 
|  | mInv[ 7 + mInvOffset] = dst7  * invdet; | 
|  |  | 
|  | mInv[ 8 + mInvOffset] = dst8  * invdet; | 
|  | mInv[ 9 + mInvOffset] = dst9  * invdet; | 
|  | mInv[10 + mInvOffset] = dst10 * invdet; | 
|  | mInv[11 + mInvOffset] = dst11 * invdet; | 
|  |  | 
|  | mInv[12 + mInvOffset] = dst12 * invdet; | 
|  | mInv[13 + mInvOffset] = dst13 * invdet; | 
|  | mInv[14 + mInvOffset] = dst14 * invdet; | 
|  | mInv[15 + mInvOffset] = dst15 * invdet; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Computes an orthographic projection matrix. | 
|  | * | 
|  | * @param m returns the result | 
|  | * @param mOffset | 
|  | * @param left | 
|  | * @param right | 
|  | * @param bottom | 
|  | * @param top | 
|  | * @param near | 
|  | * @param far | 
|  | */ | 
|  | public static void orthoM(float[] m, int mOffset, | 
|  | float left, float right, float bottom, float top, | 
|  | float near, float far) { | 
|  | if (left == right) { | 
|  | throw new IllegalArgumentException("left == right"); | 
|  | } | 
|  | if (bottom == top) { | 
|  | throw new IllegalArgumentException("bottom == top"); | 
|  | } | 
|  | if (near == far) { | 
|  | throw new IllegalArgumentException("near == far"); | 
|  | } | 
|  |  | 
|  | final float r_width  = 1.0f / (right - left); | 
|  | final float r_height = 1.0f / (top - bottom); | 
|  | final float r_depth  = 1.0f / (far - near); | 
|  | final float x =  2.0f * (r_width); | 
|  | final float y =  2.0f * (r_height); | 
|  | final float z = -2.0f * (r_depth); | 
|  | final float tx = -(right + left) * r_width; | 
|  | final float ty = -(top + bottom) * r_height; | 
|  | final float tz = -(far + near) * r_depth; | 
|  | m[mOffset + 0] = x; | 
|  | m[mOffset + 5] = y; | 
|  | m[mOffset +10] = z; | 
|  | m[mOffset +12] = tx; | 
|  | m[mOffset +13] = ty; | 
|  | m[mOffset +14] = tz; | 
|  | m[mOffset +15] = 1.0f; | 
|  | m[mOffset + 1] = 0.0f; | 
|  | m[mOffset + 2] = 0.0f; | 
|  | m[mOffset + 3] = 0.0f; | 
|  | m[mOffset + 4] = 0.0f; | 
|  | m[mOffset + 6] = 0.0f; | 
|  | m[mOffset + 7] = 0.0f; | 
|  | m[mOffset + 8] = 0.0f; | 
|  | m[mOffset + 9] = 0.0f; | 
|  | m[mOffset + 11] = 0.0f; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Defines a projection matrix in terms of six clip planes. | 
|  | * | 
|  | * @param m the float array that holds the output perspective matrix | 
|  | * @param offset the offset into float array m where the perspective | 
|  | *        matrix data is written | 
|  | * @param left | 
|  | * @param right | 
|  | * @param bottom | 
|  | * @param top | 
|  | * @param near | 
|  | * @param far | 
|  | */ | 
|  | public static void frustumM(float[] m, int offset, | 
|  | float left, float right, float bottom, float top, | 
|  | float near, float far) { | 
|  | if (left == right) { | 
|  | throw new IllegalArgumentException("left == right"); | 
|  | } | 
|  | if (top == bottom) { | 
|  | throw new IllegalArgumentException("top == bottom"); | 
|  | } | 
|  | if (near == far) { | 
|  | throw new IllegalArgumentException("near == far"); | 
|  | } | 
|  | if (near <= 0.0f) { | 
|  | throw new IllegalArgumentException("near <= 0.0f"); | 
|  | } | 
|  | if (far <= 0.0f) { | 
|  | throw new IllegalArgumentException("far <= 0.0f"); | 
|  | } | 
|  | final float r_width  = 1.0f / (right - left); | 
|  | final float r_height = 1.0f / (top - bottom); | 
|  | final float r_depth  = 1.0f / (near - far); | 
|  | final float x = 2.0f * (near * r_width); | 
|  | final float y = 2.0f * (near * r_height); | 
|  | final float A = (right + left) * r_width; | 
|  | final float B = (top + bottom) * r_height; | 
|  | final float C = (far + near) * r_depth; | 
|  | final float D = 2.0f * (far * near * r_depth); | 
|  | m[offset + 0] = x; | 
|  | m[offset + 5] = y; | 
|  | m[offset + 8] = A; | 
|  | m[offset +  9] = B; | 
|  | m[offset + 10] = C; | 
|  | m[offset + 14] = D; | 
|  | m[offset + 11] = -1.0f; | 
|  | m[offset +  1] = 0.0f; | 
|  | m[offset +  2] = 0.0f; | 
|  | m[offset +  3] = 0.0f; | 
|  | m[offset +  4] = 0.0f; | 
|  | m[offset +  6] = 0.0f; | 
|  | m[offset +  7] = 0.0f; | 
|  | m[offset + 12] = 0.0f; | 
|  | m[offset + 13] = 0.0f; | 
|  | m[offset + 15] = 0.0f; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Defines a projection matrix in terms of a field of view angle, an | 
|  | * aspect ratio, and z clip planes. | 
|  | * | 
|  | * @param m the float array that holds the perspective matrix | 
|  | * @param offset the offset into float array m where the perspective | 
|  | *        matrix data is written | 
|  | * @param fovy field of view in y direction, in degrees | 
|  | * @param aspect width to height aspect ratio of the viewport | 
|  | * @param zNear | 
|  | * @param zFar | 
|  | */ | 
|  | public static void perspectiveM(float[] m, int offset, | 
|  | float fovy, float aspect, float zNear, float zFar) { | 
|  | float f = 1.0f / (float) Math.tan(fovy * (Math.PI / 360.0)); | 
|  | float rangeReciprocal = 1.0f / (zNear - zFar); | 
|  |  | 
|  | m[offset + 0] = f / aspect; | 
|  | m[offset + 1] = 0.0f; | 
|  | m[offset + 2] = 0.0f; | 
|  | m[offset + 3] = 0.0f; | 
|  |  | 
|  | m[offset + 4] = 0.0f; | 
|  | m[offset + 5] = f; | 
|  | m[offset + 6] = 0.0f; | 
|  | m[offset + 7] = 0.0f; | 
|  |  | 
|  | m[offset + 8] = 0.0f; | 
|  | m[offset + 9] = 0.0f; | 
|  | m[offset + 10] = (zFar + zNear) * rangeReciprocal; | 
|  | m[offset + 11] = -1.0f; | 
|  |  | 
|  | m[offset + 12] = 0.0f; | 
|  | m[offset + 13] = 0.0f; | 
|  | m[offset + 14] = 2.0f * zFar * zNear * rangeReciprocal; | 
|  | m[offset + 15] = 0.0f; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Computes the length of a vector. | 
|  | * | 
|  | * @param x x coordinate of a vector | 
|  | * @param y y coordinate of a vector | 
|  | * @param z z coordinate of a vector | 
|  | * @return the length of a vector | 
|  | */ | 
|  | public static float length(float x, float y, float z) { | 
|  | return (float) Math.sqrt(x * x + y * y + z * z); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Sets matrix m to the identity matrix. | 
|  | * | 
|  | * @param sm returns the result | 
|  | * @param smOffset index into sm where the result matrix starts | 
|  | */ | 
|  | public static void setIdentityM(float[] sm, int smOffset) { | 
|  | for (int i=0 ; i<16 ; i++) { | 
|  | sm[smOffset + i] = 0; | 
|  | } | 
|  | for(int i = 0; i < 16; i += 5) { | 
|  | sm[smOffset + i] = 1.0f; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Scales matrix m by x, y, and z, putting the result in sm. | 
|  | * <p> | 
|  | * m and sm must not overlap. | 
|  | * | 
|  | * @param sm returns the result | 
|  | * @param smOffset index into sm where the result matrix starts | 
|  | * @param m source matrix | 
|  | * @param mOffset index into m where the source matrix starts | 
|  | * @param x scale factor x | 
|  | * @param y scale factor y | 
|  | * @param z scale factor z | 
|  | */ | 
|  | public static void scaleM(float[] sm, int smOffset, | 
|  | float[] m, int mOffset, | 
|  | float x, float y, float z) { | 
|  | for (int i=0 ; i<4 ; i++) { | 
|  | int smi = smOffset + i; | 
|  | int mi = mOffset + i; | 
|  | sm[     smi] = m[     mi] * x; | 
|  | sm[ 4 + smi] = m[ 4 + mi] * y; | 
|  | sm[ 8 + smi] = m[ 8 + mi] * z; | 
|  | sm[12 + smi] = m[12 + mi]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Scales matrix m in place by sx, sy, and sz. | 
|  | * | 
|  | * @param m matrix to scale | 
|  | * @param mOffset index into m where the matrix starts | 
|  | * @param x scale factor x | 
|  | * @param y scale factor y | 
|  | * @param z scale factor z | 
|  | */ | 
|  | public static void scaleM(float[] m, int mOffset, | 
|  | float x, float y, float z) { | 
|  | for (int i=0 ; i<4 ; i++) { | 
|  | int mi = mOffset + i; | 
|  | m[     mi] *= x; | 
|  | m[ 4 + mi] *= y; | 
|  | m[ 8 + mi] *= z; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Translates matrix m by x, y, and z, putting the result in tm. | 
|  | * <p> | 
|  | * m and tm must not overlap. | 
|  | * | 
|  | * @param tm returns the result | 
|  | * @param tmOffset index into sm where the result matrix starts | 
|  | * @param m source matrix | 
|  | * @param mOffset index into m where the source matrix starts | 
|  | * @param x translation factor x | 
|  | * @param y translation factor y | 
|  | * @param z translation factor z | 
|  | */ | 
|  | public static void translateM(float[] tm, int tmOffset, | 
|  | float[] m, int mOffset, | 
|  | float x, float y, float z) { | 
|  | for (int i=0 ; i<12 ; i++) { | 
|  | tm[tmOffset + i] = m[mOffset + i]; | 
|  | } | 
|  | for (int i=0 ; i<4 ; i++) { | 
|  | int tmi = tmOffset + i; | 
|  | int mi = mOffset + i; | 
|  | tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z + | 
|  | m[12 + mi]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Translates matrix m by x, y, and z in place. | 
|  | * | 
|  | * @param m matrix | 
|  | * @param mOffset index into m where the matrix starts | 
|  | * @param x translation factor x | 
|  | * @param y translation factor y | 
|  | * @param z translation factor z | 
|  | */ | 
|  | public static void translateM( | 
|  | float[] m, int mOffset, | 
|  | float x, float y, float z) { | 
|  | for (int i=0 ; i<4 ; i++) { | 
|  | int mi = mOffset + i; | 
|  | m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Rotates matrix m by angle a (in degrees) around the axis (x, y, z). | 
|  | * <p> | 
|  | * m and rm must not overlap. | 
|  | * | 
|  | * @param rm returns the result | 
|  | * @param rmOffset index into rm where the result matrix starts | 
|  | * @param m source matrix | 
|  | * @param mOffset index into m where the source matrix starts | 
|  | * @param a angle to rotate in degrees | 
|  | * @param x X axis component | 
|  | * @param y Y axis component | 
|  | * @param z Z axis component | 
|  | */ | 
|  | public static void rotateM(float[] rm, int rmOffset, | 
|  | float[] m, int mOffset, | 
|  | float a, float x, float y, float z) { | 
|  | synchronized(sTemp) { | 
|  | setRotateM(sTemp, 0, a, x, y, z); | 
|  | multiplyMM(rm, rmOffset, m, mOffset, sTemp, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Rotates matrix m in place by angle a (in degrees) | 
|  | * around the axis (x, y, z). | 
|  | * | 
|  | * @param m source matrix | 
|  | * @param mOffset index into m where the matrix starts | 
|  | * @param a angle to rotate in degrees | 
|  | * @param x X axis component | 
|  | * @param y Y axis component | 
|  | * @param z Z axis component | 
|  | */ | 
|  | public static void rotateM(float[] m, int mOffset, | 
|  | float a, float x, float y, float z) { | 
|  | synchronized(sTemp) { | 
|  | setRotateM(sTemp, 0, a, x, y, z); | 
|  | multiplyMM(sTemp, 16, m, mOffset, sTemp, 0); | 
|  | System.arraycopy(sTemp, 16, m, mOffset, 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Creates a matrix for rotation by angle a (in degrees) | 
|  | * around the axis (x, y, z). | 
|  | * <p> | 
|  | * An optimized path will be used for rotation about a major axis | 
|  | * (e.g. x=1.0f y=0.0f z=0.0f). | 
|  | * | 
|  | * @param rm returns the result | 
|  | * @param rmOffset index into rm where the result matrix starts | 
|  | * @param a angle to rotate in degrees | 
|  | * @param x X axis component | 
|  | * @param y Y axis component | 
|  | * @param z Z axis component | 
|  | */ | 
|  | public static void setRotateM(float[] rm, int rmOffset, | 
|  | float a, float x, float y, float z) { | 
|  | rm[rmOffset + 3] = 0; | 
|  | rm[rmOffset + 7] = 0; | 
|  | rm[rmOffset + 11]= 0; | 
|  | rm[rmOffset + 12]= 0; | 
|  | rm[rmOffset + 13]= 0; | 
|  | rm[rmOffset + 14]= 0; | 
|  | rm[rmOffset + 15]= 1; | 
|  | a *= (float) (Math.PI / 180.0f); | 
|  | float s = (float) Math.sin(a); | 
|  | float c = (float) Math.cos(a); | 
|  | if (1.0f == x && 0.0f == y && 0.0f == z) { | 
|  | rm[rmOffset + 5] = c;   rm[rmOffset + 10]= c; | 
|  | rm[rmOffset + 6] = s;   rm[rmOffset + 9] = -s; | 
|  | rm[rmOffset + 1] = 0;   rm[rmOffset + 2] = 0; | 
|  | rm[rmOffset + 4] = 0;   rm[rmOffset + 8] = 0; | 
|  | rm[rmOffset + 0] = 1; | 
|  | } else if (0.0f == x && 1.0f == y && 0.0f == z) { | 
|  | rm[rmOffset + 0] = c;   rm[rmOffset + 10]= c; | 
|  | rm[rmOffset + 8] = s;   rm[rmOffset + 2] = -s; | 
|  | rm[rmOffset + 1] = 0;   rm[rmOffset + 4] = 0; | 
|  | rm[rmOffset + 6] = 0;   rm[rmOffset + 9] = 0; | 
|  | rm[rmOffset + 5] = 1; | 
|  | } else if (0.0f == x && 0.0f == y && 1.0f == z) { | 
|  | rm[rmOffset + 0] = c;   rm[rmOffset + 5] = c; | 
|  | rm[rmOffset + 1] = s;   rm[rmOffset + 4] = -s; | 
|  | rm[rmOffset + 2] = 0;   rm[rmOffset + 6] = 0; | 
|  | rm[rmOffset + 8] = 0;   rm[rmOffset + 9] = 0; | 
|  | rm[rmOffset + 10]= 1; | 
|  | } else { | 
|  | float len = length(x, y, z); | 
|  | if (1.0f != len) { | 
|  | float recipLen = 1.0f / len; | 
|  | x *= recipLen; | 
|  | y *= recipLen; | 
|  | z *= recipLen; | 
|  | } | 
|  | float nc = 1.0f - c; | 
|  | float xy = x * y; | 
|  | float yz = y * z; | 
|  | float zx = z * x; | 
|  | float xs = x * s; | 
|  | float ys = y * s; | 
|  | float zs = z * s; | 
|  | rm[rmOffset +  0] = x*x*nc +  c; | 
|  | rm[rmOffset +  4] =  xy*nc - zs; | 
|  | rm[rmOffset +  8] =  zx*nc + ys; | 
|  | rm[rmOffset +  1] =  xy*nc + zs; | 
|  | rm[rmOffset +  5] = y*y*nc +  c; | 
|  | rm[rmOffset +  9] =  yz*nc - xs; | 
|  | rm[rmOffset +  2] =  zx*nc - ys; | 
|  | rm[rmOffset +  6] =  yz*nc + xs; | 
|  | rm[rmOffset + 10] = z*z*nc +  c; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Converts Euler angles to a rotation matrix. | 
|  | * | 
|  | * @param rm returns the result | 
|  | * @param rmOffset index into rm where the result matrix starts | 
|  | * @param x angle of rotation, in degrees | 
|  | * @param y angle of rotation, in degrees | 
|  | * @param z angle of rotation, in degrees | 
|  | */ | 
|  | public static void setRotateEulerM(float[] rm, int rmOffset, | 
|  | float x, float y, float z) { | 
|  | x *= (float) (Math.PI / 180.0f); | 
|  | y *= (float) (Math.PI / 180.0f); | 
|  | z *= (float) (Math.PI / 180.0f); | 
|  | float cx = (float) Math.cos(x); | 
|  | float sx = (float) Math.sin(x); | 
|  | float cy = (float) Math.cos(y); | 
|  | float sy = (float) Math.sin(y); | 
|  | float cz = (float) Math.cos(z); | 
|  | float sz = (float) Math.sin(z); | 
|  | float cxsy = cx * sy; | 
|  | float sxsy = sx * sy; | 
|  |  | 
|  | rm[rmOffset + 0]  =   cy * cz; | 
|  | rm[rmOffset + 1]  =  -cy * sz; | 
|  | rm[rmOffset + 2]  =   sy; | 
|  | rm[rmOffset + 3]  =  0.0f; | 
|  |  | 
|  | rm[rmOffset + 4]  =  cxsy * cz + cx * sz; | 
|  | rm[rmOffset + 5]  = -cxsy * sz + cx * cz; | 
|  | rm[rmOffset + 6]  =  -sx * cy; | 
|  | rm[rmOffset + 7]  =  0.0f; | 
|  |  | 
|  | rm[rmOffset + 8]  = -sxsy * cz + sx * sz; | 
|  | rm[rmOffset + 9]  =  sxsy * sz + sx * cz; | 
|  | rm[rmOffset + 10] =  cx * cy; | 
|  | rm[rmOffset + 11] =  0.0f; | 
|  |  | 
|  | rm[rmOffset + 12] =  0.0f; | 
|  | rm[rmOffset + 13] =  0.0f; | 
|  | rm[rmOffset + 14] =  0.0f; | 
|  | rm[rmOffset + 15] =  1.0f; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Defines a viewing transformation in terms of an eye point, a center of | 
|  | * view, and an up vector. | 
|  | * | 
|  | * @param rm returns the result | 
|  | * @param rmOffset index into rm where the result matrix starts | 
|  | * @param eyeX eye point X | 
|  | * @param eyeY eye point Y | 
|  | * @param eyeZ eye point Z | 
|  | * @param centerX center of view X | 
|  | * @param centerY center of view Y | 
|  | * @param centerZ center of view Z | 
|  | * @param upX up vector X | 
|  | * @param upY up vector Y | 
|  | * @param upZ up vector Z | 
|  | */ | 
|  | public static void setLookAtM(float[] rm, int rmOffset, | 
|  | float eyeX, float eyeY, float eyeZ, | 
|  | float centerX, float centerY, float centerZ, float upX, float upY, | 
|  | float upZ) { | 
|  |  | 
|  | // See the OpenGL GLUT documentation for gluLookAt for a description | 
|  | // of the algorithm. We implement it in a straightforward way: | 
|  |  | 
|  | float fx = centerX - eyeX; | 
|  | float fy = centerY - eyeY; | 
|  | float fz = centerZ - eyeZ; | 
|  |  | 
|  | // Normalize f | 
|  | float rlf = 1.0f / Matrix.length(fx, fy, fz); | 
|  | fx *= rlf; | 
|  | fy *= rlf; | 
|  | fz *= rlf; | 
|  |  | 
|  | // compute s = f x up (x means "cross product") | 
|  | float sx = fy * upZ - fz * upY; | 
|  | float sy = fz * upX - fx * upZ; | 
|  | float sz = fx * upY - fy * upX; | 
|  |  | 
|  | // and normalize s | 
|  | float rls = 1.0f / Matrix.length(sx, sy, sz); | 
|  | sx *= rls; | 
|  | sy *= rls; | 
|  | sz *= rls; | 
|  |  | 
|  | // compute u = s x f | 
|  | float ux = sy * fz - sz * fy; | 
|  | float uy = sz * fx - sx * fz; | 
|  | float uz = sx * fy - sy * fx; | 
|  |  | 
|  | rm[rmOffset + 0] = sx; | 
|  | rm[rmOffset + 1] = ux; | 
|  | rm[rmOffset + 2] = -fx; | 
|  | rm[rmOffset + 3] = 0.0f; | 
|  |  | 
|  | rm[rmOffset + 4] = sy; | 
|  | rm[rmOffset + 5] = uy; | 
|  | rm[rmOffset + 6] = -fy; | 
|  | rm[rmOffset + 7] = 0.0f; | 
|  |  | 
|  | rm[rmOffset + 8] = sz; | 
|  | rm[rmOffset + 9] = uz; | 
|  | rm[rmOffset + 10] = -fz; | 
|  | rm[rmOffset + 11] = 0.0f; | 
|  |  | 
|  | rm[rmOffset + 12] = 0.0f; | 
|  | rm[rmOffset + 13] = 0.0f; | 
|  | rm[rmOffset + 14] = 0.0f; | 
|  | rm[rmOffset + 15] = 1.0f; | 
|  |  | 
|  | translateM(rm, rmOffset, -eyeX, -eyeY, -eyeZ); | 
|  | } | 
|  | } |