| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2013 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 5 | * you may not use this file except in compliance with the License. | 
|  | 6 | * You may obtain a copy of the License at | 
|  | 7 | * | 
|  | 8 | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 9 | * | 
|  | 10 | * Unless required by applicable law or agreed to in writing, software | 
|  | 11 | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 13 | * See the License for the specific language governing permissions and | 
|  | 14 | * limitations under the License. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #define LOG_TAG "AudioResamplerDyn" | 
|  | 18 | //#define LOG_NDEBUG 0 | 
|  | 19 |  | 
|  | 20 | #include <malloc.h> | 
|  | 21 | #include <string.h> | 
|  | 22 | #include <stdlib.h> | 
|  | 23 | #include <dlfcn.h> | 
|  | 24 | #include <math.h> | 
|  | 25 |  | 
|  | 26 | #include <cutils/compiler.h> | 
|  | 27 | #include <cutils/properties.h> | 
|  | 28 | #include <utils/Log.h> | 
|  | 29 |  | 
|  | 30 | #include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here | 
|  | 31 | #include "AudioResamplerFirProcess.h" | 
|  | 32 | #include "AudioResamplerFirProcessNeon.h" | 
|  | 33 | #include "AudioResamplerFirGen.h" // requires math.h | 
|  | 34 | #include "AudioResamplerDyn.h" | 
|  | 35 |  | 
|  | 36 | //#define DEBUG_RESAMPLER | 
|  | 37 |  | 
|  | 38 | namespace android { | 
|  | 39 |  | 
|  | 40 | // generate a unique resample type compile-time constant (constexpr) | 
|  | 41 | #define RESAMPLETYPE(CHANNELS, LOCKED, STRIDE, COEFTYPE) \ | 
|  | 42 | ((((CHANNELS)-1)&1) | !!(LOCKED)<<1 | (COEFTYPE)<<2 \ | 
|  | 43 | | ((STRIDE)==8 ? 1 : (STRIDE)==16 ? 2 : 0)<<3) | 
|  | 44 |  | 
|  | 45 | /* | 
|  | 46 | * InBuffer is a type agnostic input buffer. | 
|  | 47 | * | 
|  | 48 | * Layout of the state buffer for halfNumCoefs=8. | 
|  | 49 | * | 
|  | 50 | * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr] | 
|  | 51 | *  S            I                                R | 
|  | 52 | * | 
|  | 53 | * S = mState | 
|  | 54 | * I = mImpulse | 
|  | 55 | * R = mRingFull | 
|  | 56 | * p = past samples, convoluted with the (p)ositive side of sinc() | 
|  | 57 | * n = future samples, convoluted with the (n)egative side of sinc() | 
|  | 58 | * r = extra space for implementing the ring buffer | 
|  | 59 | */ | 
|  | 60 |  | 
|  | 61 | template<typename TI> | 
|  | 62 | AudioResamplerDyn::InBuffer<TI>::InBuffer() | 
|  | 63 | : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateSize(0) { | 
|  | 64 | } | 
|  | 65 |  | 
|  | 66 | template<typename TI> | 
|  | 67 | AudioResamplerDyn::InBuffer<TI>::~InBuffer() { | 
|  | 68 | init(); | 
|  | 69 | } | 
|  | 70 |  | 
|  | 71 | template<typename TI> | 
|  | 72 | void AudioResamplerDyn::InBuffer<TI>::init() { | 
|  | 73 | free(mState); | 
|  | 74 | mState = NULL; | 
|  | 75 | mImpulse = NULL; | 
|  | 76 | mRingFull = NULL; | 
|  | 77 | mStateSize = 0; | 
|  | 78 | } | 
|  | 79 |  | 
|  | 80 | // resizes the state buffer to accommodate the appropriate filter length | 
|  | 81 | template<typename TI> | 
|  | 82 | void AudioResamplerDyn::InBuffer<TI>::resize(int CHANNELS, int halfNumCoefs) { | 
|  | 83 | // calculate desired state size | 
|  | 84 | int stateSize = halfNumCoefs * CHANNELS * 2 | 
|  | 85 | * kStateSizeMultipleOfFilterLength; | 
|  | 86 |  | 
|  | 87 | // check if buffer needs resizing | 
|  | 88 | if (mState | 
|  | 89 | && stateSize == mStateSize | 
|  | 90 | && mRingFull-mState == mStateSize-halfNumCoefs*CHANNELS) { | 
|  | 91 | return; | 
|  | 92 | } | 
|  | 93 |  | 
|  | 94 | // create new buffer | 
|  | 95 | TI* state = (int16_t*)memalign(32, stateSize*sizeof(*state)); | 
|  | 96 | memset(state, 0, stateSize*sizeof(*state)); | 
|  | 97 |  | 
|  | 98 | // attempt to preserve state | 
|  | 99 | if (mState) { | 
|  | 100 | TI* srcLo = mImpulse - halfNumCoefs*CHANNELS; | 
|  | 101 | TI* srcHi = mImpulse + halfNumCoefs*CHANNELS; | 
|  | 102 | TI* dst = state; | 
|  | 103 |  | 
|  | 104 | if (srcLo < mState) { | 
|  | 105 | dst += mState-srcLo; | 
|  | 106 | srcLo = mState; | 
|  | 107 | } | 
|  | 108 | if (srcHi > mState + mStateSize) { | 
|  | 109 | srcHi = mState + mStateSize; | 
|  | 110 | } | 
|  | 111 | memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo)); | 
|  | 112 | free(mState); | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | // set class member vars | 
|  | 116 | mState = state; | 
|  | 117 | mStateSize = stateSize; | 
|  | 118 | mImpulse = mState + halfNumCoefs*CHANNELS; // actually one sample greater than needed | 
|  | 119 | mRingFull = mState + mStateSize - halfNumCoefs*CHANNELS; | 
|  | 120 | } | 
|  | 121 |  | 
|  | 122 | // copy in the input data into the head (impulse+halfNumCoefs) of the buffer. | 
|  | 123 | template<typename TI> | 
|  | 124 | template<int CHANNELS> | 
|  | 125 | void AudioResamplerDyn::InBuffer<TI>::readAgain(TI*& impulse, const int halfNumCoefs, | 
|  | 126 | const TI* const in, const size_t inputIndex) { | 
|  | 127 | int16_t* head = impulse + halfNumCoefs*CHANNELS; | 
|  | 128 | for (size_t i=0 ; i<CHANNELS ; i++) { | 
|  | 129 | head[i] = in[inputIndex*CHANNELS + i]; | 
|  | 130 | } | 
|  | 131 | } | 
|  | 132 |  | 
|  | 133 | // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs) | 
|  | 134 | template<typename TI> | 
|  | 135 | template<int CHANNELS> | 
|  | 136 | void AudioResamplerDyn::InBuffer<TI>::readAdvance(TI*& impulse, const int halfNumCoefs, | 
|  | 137 | const TI* const in, const size_t inputIndex) { | 
|  | 138 | impulse += CHANNELS; | 
|  | 139 |  | 
|  | 140 | if (CC_UNLIKELY(impulse >= mRingFull)) { | 
|  | 141 | const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS; | 
|  | 142 | memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI)); | 
|  | 143 | impulse -= shiftDown; | 
|  | 144 | } | 
|  | 145 | readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex); | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | void AudioResamplerDyn::Constants::set( | 
|  | 149 | int L, int halfNumCoefs, int inSampleRate, int outSampleRate) | 
|  | 150 | { | 
|  | 151 | int bits = 0; | 
|  | 152 | int lscale = inSampleRate/outSampleRate < 2 ? L - 1 : | 
|  | 153 | static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate); | 
|  | 154 | for (int i=lscale; i; ++bits, i>>=1) | 
|  | 155 | ; | 
|  | 156 | mL = L; | 
|  | 157 | mShift = kNumPhaseBits - bits; | 
|  | 158 | mHalfNumCoefs = halfNumCoefs; | 
|  | 159 | } | 
|  | 160 |  | 
|  | 161 | AudioResamplerDyn::AudioResamplerDyn(int bitDepth, | 
|  | 162 | int inChannelCount, int32_t sampleRate, src_quality quality) | 
|  | 163 | : AudioResampler(bitDepth, inChannelCount, sampleRate, quality), | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 164 | mResampleType(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY), | 
|  | 165 | mCoefBuffer(NULL) | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 166 | { | 
|  | 167 | mVolumeSimd[0] = mVolumeSimd[1] = 0; | 
|  | 168 | mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | AudioResamplerDyn::~AudioResamplerDyn() { | 
|  | 172 | free(mCoefBuffer); | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | void AudioResamplerDyn::init() { | 
|  | 176 | mFilterSampleRate = 0; // always trigger new filter generation | 
|  | 177 | mInBuffer.init(); | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | void AudioResamplerDyn::setVolume(int16_t left, int16_t right) { | 
|  | 181 | AudioResampler::setVolume(left, right); | 
|  | 182 | mVolumeSimd[0] = static_cast<int32_t>(left)<<16; | 
|  | 183 | mVolumeSimd[1] = static_cast<int32_t>(right)<<16; | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 | template <typename T> T max(T a, T b) {return a > b ? a : b;} | 
|  | 187 |  | 
|  | 188 | template <typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;} | 
|  | 189 |  | 
|  | 190 | template<typename T> | 
|  | 191 | void AudioResamplerDyn::createKaiserFir(Constants &c, double stopBandAtten, | 
|  | 192 | int inSampleRate, int outSampleRate, double tbwCheat) { | 
|  | 193 | T* buf = reinterpret_cast<T*>(memalign(32, (c.mL+1)*c.mHalfNumCoefs*sizeof(T))); | 
|  | 194 | static const double atten = 0.9998;   // to avoid ripple overflow | 
|  | 195 | double fcr; | 
|  | 196 | double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten); | 
|  | 197 |  | 
|  | 198 | if (inSampleRate < outSampleRate) { // upsample | 
|  | 199 | fcr = max(0.5*tbwCheat - tbw/2, tbw/2); | 
|  | 200 | } else { // downsample | 
|  | 201 | fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2); | 
|  | 202 | } | 
|  | 203 | // create and set filter | 
|  | 204 | firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten); | 
|  | 205 | c.setBuf(buf); | 
|  | 206 | if (mCoefBuffer) { | 
|  | 207 | free(mCoefBuffer); | 
|  | 208 | } | 
|  | 209 | mCoefBuffer = buf; | 
|  | 210 | #ifdef DEBUG_RESAMPLER | 
|  | 211 | // print basic filter stats | 
|  | 212 | printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n", | 
|  | 213 | c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw); | 
|  | 214 | // test the filter and report results | 
|  | 215 | double fp = (fcr - tbw/2)/c.mL; | 
|  | 216 | double fs = (fcr + tbw/2)/c.mL; | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 217 | double passMin, passMax, passRipple; | 
|  | 218 | double stopMax, stopRipple; | 
|  | 219 | testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000, | 
|  | 220 | passMin, passMax, passRipple, stopMax, stopRipple); | 
|  | 221 | printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple); | 
|  | 222 | printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple); | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 223 | #endif | 
|  | 224 | } | 
|  | 225 |  | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 226 | // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop. | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 227 | static int gcd(int n, int m) { | 
|  | 228 | if (m == 0) { | 
|  | 229 | return n; | 
|  | 230 | } | 
|  | 231 | return gcd(m, n % m); | 
|  | 232 | } | 
|  | 233 |  | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 234 | static bool isClose(int32_t newSampleRate, int32_t prevSampleRate, | 
|  | 235 | int32_t filterSampleRate, int32_t outSampleRate) { | 
|  | 236 |  | 
|  | 237 | // different upsampling ratios do not need a filter change. | 
|  | 238 | if (filterSampleRate != 0 | 
|  | 239 | && filterSampleRate < outSampleRate | 
|  | 240 | && newSampleRate < outSampleRate) | 
|  | 241 | return true; | 
|  | 242 |  | 
|  | 243 | // check design criteria again if downsampling is detected. | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 244 | int pdiff = absdiff(newSampleRate, prevSampleRate); | 
|  | 245 | int adiff = absdiff(newSampleRate, filterSampleRate); | 
|  | 246 |  | 
|  | 247 | // allow up to 6% relative change increments. | 
|  | 248 | // allow up to 12% absolute change increments (from filter design) | 
|  | 249 | return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3; | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | void AudioResamplerDyn::setSampleRate(int32_t inSampleRate) { | 
|  | 253 | if (mInSampleRate == inSampleRate) { | 
|  | 254 | return; | 
|  | 255 | } | 
|  | 256 | int32_t oldSampleRate = mInSampleRate; | 
|  | 257 | int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs; | 
|  | 258 | uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift; | 
|  | 259 | bool useS32 = false; | 
|  | 260 |  | 
|  | 261 | mInSampleRate = inSampleRate; | 
|  | 262 |  | 
|  | 263 | // TODO: Add precalculated Equiripple filters | 
|  | 264 |  | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 265 | if (mFilterQuality != getQuality() || | 
|  | 266 | !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) { | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 267 | mFilterSampleRate = inSampleRate; | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 268 | mFilterQuality = getQuality(); | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 269 |  | 
|  | 270 | // Begin Kaiser Filter computation | 
|  | 271 | // | 
|  | 272 | // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB. | 
|  | 273 | // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters | 
|  | 274 | // | 
|  | 275 | // For s32 we keep the stop band attenuation at the same as 16b resolution, about | 
|  | 276 | // 96-98dB | 
|  | 277 | // | 
|  | 278 |  | 
|  | 279 | double stopBandAtten; | 
|  | 280 | double tbwCheat = 1.; // how much we "cheat" into aliasing | 
|  | 281 | int halfLength; | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 282 | if (mFilterQuality == DYN_HIGH_QUALITY) { | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 283 | // 32b coefficients, 64 length | 
|  | 284 | useS32 = true; | 
|  | 285 | stopBandAtten = 98.; | 
|  | 286 | halfLength = 32; | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 287 | } else if (mFilterQuality == DYN_LOW_QUALITY) { | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 288 | // 16b coefficients, 16-32 length | 
|  | 289 | useS32 = false; | 
|  | 290 | stopBandAtten = 80.; | 
|  | 291 | if (mSampleRate >= inSampleRate * 2) { | 
|  | 292 | halfLength = 16; | 
|  | 293 | } else { | 
|  | 294 | halfLength = 8; | 
|  | 295 | } | 
|  | 296 | if (mSampleRate >= inSampleRate) { | 
|  | 297 | tbwCheat = 1.05; | 
|  | 298 | } else { | 
|  | 299 | tbwCheat = 1.03; | 
|  | 300 | } | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 301 | } else { // DYN_MED_QUALITY | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 302 | // 16b coefficients, 32-64 length | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 303 | // note: > 64 length filters with 16b coefs can have quantization noise problems | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 304 | useS32 = false; | 
|  | 305 | stopBandAtten = 84.; | 
|  | 306 | if (mSampleRate >= inSampleRate * 4) { | 
|  | 307 | halfLength = 32; | 
|  | 308 | } else if (mSampleRate >= inSampleRate * 2) { | 
|  | 309 | halfLength = 24; | 
|  | 310 | } else { | 
|  | 311 | halfLength = 16; | 
|  | 312 | } | 
|  | 313 | if (mSampleRate >= inSampleRate) { | 
|  | 314 | tbwCheat = 1.03; | 
|  | 315 | } else { | 
|  | 316 | tbwCheat = 1.01; | 
|  | 317 | } | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | // determine the number of polyphases in the filterbank. | 
|  | 321 | // for 16b, it is desirable to have 2^(16/2) = 256 phases. | 
|  | 322 | // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html | 
|  | 323 | // | 
|  | 324 | // We are a bit more lax on this. | 
|  | 325 |  | 
|  | 326 | int phases = mSampleRate / gcd(mSampleRate, inSampleRate); | 
|  | 327 |  | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 328 | // TODO: Once dynamic sample rate change is an option, the code below | 
|  | 329 | // should be modified to execute only when dynamic sample rate change is enabled. | 
|  | 330 | // | 
|  | 331 | // as above, #phases less than 63 is too few phases for accurate linear interpolation. | 
|  | 332 | // we increase the phases to compensate, but more phases means more memory per | 
|  | 333 | // filter and more time to compute the filter. | 
|  | 334 | // | 
|  | 335 | // if we know that the filter will be used for dynamic sample rate changes, | 
|  | 336 | // that would allow us skip this part for fixed sample rate resamplers. | 
|  | 337 | // | 
|  | 338 | while (phases<63) { | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 339 | phases *= 2; // this code only needed to support dynamic rate changes | 
|  | 340 | } | 
| Andy Hung | 6582f2b | 2014-01-03 12:30:41 -0800 | [diff] [blame] | 341 |  | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 342 | if (phases>=256) {  // too many phases, always interpolate | 
|  | 343 | phases = 127; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | // create the filter | 
|  | 347 | mConstants.set(phases, halfLength, inSampleRate, mSampleRate); | 
|  | 348 | if (useS32) { | 
|  | 349 | createKaiserFir<int32_t>(mConstants, stopBandAtten, | 
|  | 350 | inSampleRate, mSampleRate, tbwCheat); | 
|  | 351 | } else { | 
|  | 352 | createKaiserFir<int16_t>(mConstants, stopBandAtten, | 
|  | 353 | inSampleRate, mSampleRate, tbwCheat); | 
|  | 354 | } | 
|  | 355 | } // End Kaiser filter | 
|  | 356 |  | 
|  | 357 | // update phase and state based on the new filter. | 
|  | 358 | const Constants& c(mConstants); | 
|  | 359 | mInBuffer.resize(mChannelCount, c.mHalfNumCoefs); | 
|  | 360 | const uint32_t phaseWrapLimit = c.mL << c.mShift; | 
|  | 361 | // try to preserve as much of the phase fraction as possible for on-the-fly changes | 
|  | 362 | mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction) | 
|  | 363 | * phaseWrapLimit / oldPhaseWrapLimit; | 
|  | 364 | mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case. | 
|  | 365 | mPhaseIncrement = static_cast<uint32_t>(static_cast<double>(phaseWrapLimit) | 
|  | 366 | * inSampleRate / mSampleRate); | 
|  | 367 |  | 
|  | 368 | // determine which resampler to use | 
|  | 369 | // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits") | 
|  | 370 | int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0; | 
|  | 371 | int stride = (c.mHalfNumCoefs&7)==0 ? 16 : (c.mHalfNumCoefs&3)==0 ? 8 : 2; | 
|  | 372 | if (locked) { | 
|  | 373 | mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase | 
|  | 374 | } | 
| Andy Hung | 83be256 | 2014-02-03 14:11:09 -0800 | [diff] [blame] | 375 |  | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 376 | mResampleType = RESAMPLETYPE(mChannelCount, locked, stride, !!useS32); | 
|  | 377 | #ifdef DEBUG_RESAMPLER | 
|  | 378 | printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n", | 
|  | 379 | mChannelCount, locked ? "locked" : "interpolated", | 
|  | 380 | stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift); | 
|  | 381 | #endif | 
|  | 382 | } | 
|  | 383 |  | 
|  | 384 | void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount, | 
|  | 385 | AudioBufferProvider* provider) | 
|  | 386 | { | 
|  | 387 | // TODO: | 
|  | 388 | // 24 cases - this perhaps can be reduced later, as testing might take too long | 
|  | 389 | switch (mResampleType) { | 
|  | 390 |  | 
| Andy Hung | 83be256 | 2014-02-03 14:11:09 -0800 | [diff] [blame] | 391 | // stride 16 (falls back to stride 2 for machines that do not support NEON) | 
| Andy Hung | 86eae0e | 2013-12-09 12:12:46 -0800 | [diff] [blame] | 392 | case RESAMPLETYPE(1, true, 16, 0): | 
|  | 393 | return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 394 | case RESAMPLETYPE(2, true, 16, 0): | 
|  | 395 | return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 396 | case RESAMPLETYPE(1, false, 16, 0): | 
|  | 397 | return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 398 | case RESAMPLETYPE(2, false, 16, 0): | 
|  | 399 | return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 400 | case RESAMPLETYPE(1, true, 16, 1): | 
|  | 401 | return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 402 | case RESAMPLETYPE(2, true, 16, 1): | 
|  | 403 | return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 404 | case RESAMPLETYPE(1, false, 16, 1): | 
|  | 405 | return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 406 | case RESAMPLETYPE(2, false, 16, 1): | 
|  | 407 | return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 408 | #if 0 | 
|  | 409 | // TODO: Remove these? | 
|  | 410 | // stride 8 | 
|  | 411 | case RESAMPLETYPE(1, true, 8, 0): | 
|  | 412 | return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 413 | case RESAMPLETYPE(2, true, 8, 0): | 
|  | 414 | return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 415 | case RESAMPLETYPE(1, false, 8, 0): | 
|  | 416 | return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 417 | case RESAMPLETYPE(2, false, 8, 0): | 
|  | 418 | return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 419 | case RESAMPLETYPE(1, true, 8, 1): | 
|  | 420 | return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 421 | case RESAMPLETYPE(2, true, 8, 1): | 
|  | 422 | return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 423 | case RESAMPLETYPE(1, false, 8, 1): | 
|  | 424 | return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 425 | case RESAMPLETYPE(2, false, 8, 1): | 
|  | 426 | return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 427 | // stride 2 (can handle any filter length) | 
|  | 428 | case RESAMPLETYPE(1, true, 2, 0): | 
|  | 429 | return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 430 | case RESAMPLETYPE(2, true, 2, 0): | 
|  | 431 | return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 432 | case RESAMPLETYPE(1, false, 2, 0): | 
|  | 433 | return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 434 | case RESAMPLETYPE(2, false, 2, 0): | 
|  | 435 | return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider); | 
|  | 436 | case RESAMPLETYPE(1, true, 2, 1): | 
|  | 437 | return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 438 | case RESAMPLETYPE(2, true, 2, 1): | 
|  | 439 | return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 440 | case RESAMPLETYPE(1, false, 2, 1): | 
|  | 441 | return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 442 | case RESAMPLETYPE(2, false, 2, 1): | 
|  | 443 | return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider); | 
|  | 444 | #endif | 
|  | 445 | default: | 
|  | 446 | ; // error | 
|  | 447 | } | 
|  | 448 | } | 
|  | 449 |  | 
|  | 450 | template<int CHANNELS, bool LOCKED, int STRIDE, typename TC> | 
|  | 451 | void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount, | 
|  | 452 | const TC* const coefs,  AudioBufferProvider* provider) | 
|  | 453 | { | 
|  | 454 | const Constants& c(mConstants); | 
|  | 455 | int16_t* impulse = mInBuffer.getImpulse(); | 
|  | 456 | size_t inputIndex = mInputIndex; | 
|  | 457 | uint32_t phaseFraction = mPhaseFraction; | 
|  | 458 | const uint32_t phaseIncrement = mPhaseIncrement; | 
|  | 459 | size_t outputIndex = 0; | 
|  | 460 | size_t outputSampleCount = outFrameCount * 2;   // stereo output | 
|  | 461 | size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate; | 
|  | 462 | const uint32_t phaseWrapLimit = c.mL << c.mShift; | 
|  | 463 |  | 
|  | 464 | // NOTE: be very careful when modifying the code here. register | 
|  | 465 | // pressure is very high and a small change might cause the compiler | 
|  | 466 | // to generate far less efficient code. | 
|  | 467 | // Always sanity check the result with objdump or test-resample. | 
|  | 468 |  | 
|  | 469 | // the following logic is a bit convoluted to keep the main processing loop | 
|  | 470 | // as tight as possible with register allocation. | 
|  | 471 | while (outputIndex < outputSampleCount) { | 
|  | 472 | // buffer is empty, fetch a new one | 
|  | 473 | while (mBuffer.frameCount == 0) { | 
|  | 474 | mBuffer.frameCount = inFrameCount; | 
|  | 475 | provider->getNextBuffer(&mBuffer, | 
|  | 476 | calculateOutputPTS(outputIndex / 2)); | 
|  | 477 | if (mBuffer.raw == NULL) { | 
|  | 478 | goto resample_exit; | 
|  | 479 | } | 
|  | 480 | if (phaseFraction >= phaseWrapLimit) { // read in data | 
|  | 481 | mInBuffer.readAdvance<CHANNELS>( | 
|  | 482 | impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex); | 
|  | 483 | phaseFraction -= phaseWrapLimit; | 
|  | 484 | while (phaseFraction >= phaseWrapLimit) { | 
|  | 485 | inputIndex++; | 
|  | 486 | if (inputIndex >= mBuffer.frameCount) { | 
|  | 487 | inputIndex -= mBuffer.frameCount; | 
|  | 488 | provider->releaseBuffer(&mBuffer); | 
|  | 489 | break; | 
|  | 490 | } | 
|  | 491 | mInBuffer.readAdvance<CHANNELS>( | 
|  | 492 | impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex); | 
|  | 493 | phaseFraction -= phaseWrapLimit; | 
|  | 494 | } | 
|  | 495 | } | 
|  | 496 | } | 
|  | 497 | const int16_t* const in = mBuffer.i16; | 
|  | 498 | const size_t frameCount = mBuffer.frameCount; | 
|  | 499 | const int coefShift = c.mShift; | 
|  | 500 | const int halfNumCoefs = c.mHalfNumCoefs; | 
|  | 501 | const int32_t* const volumeSimd = mVolumeSimd; | 
|  | 502 |  | 
|  | 503 | // reread the last input in. | 
|  | 504 | mInBuffer.readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex); | 
|  | 505 |  | 
|  | 506 | // main processing loop | 
|  | 507 | while (CC_LIKELY(outputIndex < outputSampleCount)) { | 
|  | 508 | // caution: fir() is inlined and may be large. | 
|  | 509 | // output will be loaded with the appropriate values | 
|  | 510 | // | 
|  | 511 | // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs] | 
|  | 512 | // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs. | 
|  | 513 | // | 
|  | 514 | fir<CHANNELS, LOCKED, STRIDE>( | 
|  | 515 | &out[outputIndex], | 
|  | 516 | phaseFraction, phaseWrapLimit, | 
|  | 517 | coefShift, halfNumCoefs, coefs, | 
|  | 518 | impulse, volumeSimd); | 
|  | 519 | outputIndex += 2; | 
|  | 520 |  | 
|  | 521 | phaseFraction += phaseIncrement; | 
|  | 522 | while (phaseFraction >= phaseWrapLimit) { | 
|  | 523 | inputIndex++; | 
|  | 524 | if (inputIndex >= frameCount) { | 
|  | 525 | goto done;  // need a new buffer | 
|  | 526 | } | 
|  | 527 | mInBuffer.readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex); | 
|  | 528 | phaseFraction -= phaseWrapLimit; | 
|  | 529 | } | 
|  | 530 | } | 
|  | 531 | done: | 
|  | 532 | // often arrives here when input buffer runs out | 
|  | 533 | if (inputIndex >= frameCount) { | 
|  | 534 | inputIndex -= frameCount; | 
|  | 535 | provider->releaseBuffer(&mBuffer); | 
|  | 536 | // mBuffer.frameCount MUST be zero here. | 
|  | 537 | } | 
|  | 538 | } | 
|  | 539 |  | 
|  | 540 | resample_exit: | 
|  | 541 | mInBuffer.setImpulse(impulse); | 
|  | 542 | mInputIndex = inputIndex; | 
|  | 543 | mPhaseFraction = phaseFraction; | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | // ---------------------------------------------------------------------------- | 
|  | 547 | }; // namespace android |