blob: 1e38d3e1556d0d9f75bc8b2f33e9c0d883331cb2 [file] [log] [blame]
Andy Hung86eae0e2013-12-09 12:12:46 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResamplerDyn"
18//#define LOG_NDEBUG 0
19
20#include <malloc.h>
21#include <string.h>
22#include <stdlib.h>
23#include <dlfcn.h>
24#include <math.h>
25
26#include <cutils/compiler.h>
27#include <cutils/properties.h>
28#include <utils/Log.h>
29
30#include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
31#include "AudioResamplerFirProcess.h"
32#include "AudioResamplerFirProcessNeon.h"
33#include "AudioResamplerFirGen.h" // requires math.h
34#include "AudioResamplerDyn.h"
35
36//#define DEBUG_RESAMPLER
37
38namespace android {
39
40// generate a unique resample type compile-time constant (constexpr)
41#define RESAMPLETYPE(CHANNELS, LOCKED, STRIDE, COEFTYPE) \
42 ((((CHANNELS)-1)&1) | !!(LOCKED)<<1 | (COEFTYPE)<<2 \
43 | ((STRIDE)==8 ? 1 : (STRIDE)==16 ? 2 : 0)<<3)
44
45/*
46 * InBuffer is a type agnostic input buffer.
47 *
48 * Layout of the state buffer for halfNumCoefs=8.
49 *
50 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
51 * S I R
52 *
53 * S = mState
54 * I = mImpulse
55 * R = mRingFull
56 * p = past samples, convoluted with the (p)ositive side of sinc()
57 * n = future samples, convoluted with the (n)egative side of sinc()
58 * r = extra space for implementing the ring buffer
59 */
60
61template<typename TI>
62AudioResamplerDyn::InBuffer<TI>::InBuffer()
63 : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateSize(0) {
64}
65
66template<typename TI>
67AudioResamplerDyn::InBuffer<TI>::~InBuffer() {
68 init();
69}
70
71template<typename TI>
72void AudioResamplerDyn::InBuffer<TI>::init() {
73 free(mState);
74 mState = NULL;
75 mImpulse = NULL;
76 mRingFull = NULL;
77 mStateSize = 0;
78}
79
80// resizes the state buffer to accommodate the appropriate filter length
81template<typename TI>
82void AudioResamplerDyn::InBuffer<TI>::resize(int CHANNELS, int halfNumCoefs) {
83 // calculate desired state size
84 int stateSize = halfNumCoefs * CHANNELS * 2
85 * kStateSizeMultipleOfFilterLength;
86
87 // check if buffer needs resizing
88 if (mState
89 && stateSize == mStateSize
90 && mRingFull-mState == mStateSize-halfNumCoefs*CHANNELS) {
91 return;
92 }
93
94 // create new buffer
95 TI* state = (int16_t*)memalign(32, stateSize*sizeof(*state));
96 memset(state, 0, stateSize*sizeof(*state));
97
98 // attempt to preserve state
99 if (mState) {
100 TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
101 TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
102 TI* dst = state;
103
104 if (srcLo < mState) {
105 dst += mState-srcLo;
106 srcLo = mState;
107 }
108 if (srcHi > mState + mStateSize) {
109 srcHi = mState + mStateSize;
110 }
111 memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
112 free(mState);
113 }
114
115 // set class member vars
116 mState = state;
117 mStateSize = stateSize;
118 mImpulse = mState + halfNumCoefs*CHANNELS; // actually one sample greater than needed
119 mRingFull = mState + mStateSize - halfNumCoefs*CHANNELS;
120}
121
122// copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
123template<typename TI>
124template<int CHANNELS>
125void AudioResamplerDyn::InBuffer<TI>::readAgain(TI*& impulse, const int halfNumCoefs,
126 const TI* const in, const size_t inputIndex) {
127 int16_t* head = impulse + halfNumCoefs*CHANNELS;
128 for (size_t i=0 ; i<CHANNELS ; i++) {
129 head[i] = in[inputIndex*CHANNELS + i];
130 }
131}
132
133// advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
134template<typename TI>
135template<int CHANNELS>
136void AudioResamplerDyn::InBuffer<TI>::readAdvance(TI*& impulse, const int halfNumCoefs,
137 const TI* const in, const size_t inputIndex) {
138 impulse += CHANNELS;
139
140 if (CC_UNLIKELY(impulse >= mRingFull)) {
141 const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
142 memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
143 impulse -= shiftDown;
144 }
145 readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
146}
147
148void AudioResamplerDyn::Constants::set(
149 int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
150{
151 int bits = 0;
152 int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
153 static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
154 for (int i=lscale; i; ++bits, i>>=1)
155 ;
156 mL = L;
157 mShift = kNumPhaseBits - bits;
158 mHalfNumCoefs = halfNumCoefs;
159}
160
161AudioResamplerDyn::AudioResamplerDyn(int bitDepth,
162 int inChannelCount, int32_t sampleRate, src_quality quality)
163 : AudioResampler(bitDepth, inChannelCount, sampleRate, quality),
164 mResampleType(0), mFilterSampleRate(0), mCoefBuffer(NULL)
165{
166 mVolumeSimd[0] = mVolumeSimd[1] = 0;
167 mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
168}
169
170AudioResamplerDyn::~AudioResamplerDyn() {
171 free(mCoefBuffer);
172}
173
174void AudioResamplerDyn::init() {
175 mFilterSampleRate = 0; // always trigger new filter generation
176 mInBuffer.init();
177}
178
179void AudioResamplerDyn::setVolume(int16_t left, int16_t right) {
180 AudioResampler::setVolume(left, right);
181 mVolumeSimd[0] = static_cast<int32_t>(left)<<16;
182 mVolumeSimd[1] = static_cast<int32_t>(right)<<16;
183}
184
185template <typename T> T max(T a, T b) {return a > b ? a : b;}
186
187template <typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
188
189template<typename T>
190void AudioResamplerDyn::createKaiserFir(Constants &c, double stopBandAtten,
191 int inSampleRate, int outSampleRate, double tbwCheat) {
192 T* buf = reinterpret_cast<T*>(memalign(32, (c.mL+1)*c.mHalfNumCoefs*sizeof(T)));
193 static const double atten = 0.9998; // to avoid ripple overflow
194 double fcr;
195 double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
196
197 if (inSampleRate < outSampleRate) { // upsample
198 fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
199 } else { // downsample
200 fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
201 }
202 // create and set filter
203 firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
204 c.setBuf(buf);
205 if (mCoefBuffer) {
206 free(mCoefBuffer);
207 }
208 mCoefBuffer = buf;
209#ifdef DEBUG_RESAMPLER
210 // print basic filter stats
211 printf("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n",
212 c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
213 // test the filter and report results
214 double fp = (fcr - tbw/2)/c.mL;
215 double fs = (fcr + tbw/2)/c.mL;
216 double fmin, fmax;
217 testFir(buf, c.mL, c.mHalfNumCoefs, 0., fp, 100, fmin, fmax);
218 double d1 = (fmax - fmin)/2.;
219 double ap = -20.*log10(1. - d1); // passband ripple
220 printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, (fmax + fmin)/2., d1, ap);
221 testFir(buf, c.mL, c.mHalfNumCoefs, fs, 0.5, 100, fmin, fmax);
222 double d2 = fmax;
223 double as = -20.*log10(d2); // stopband attenuation
224 printf("stopband(%lf, %lf): %.8lf %.8lf %.3lf\n", fs, 0.5, (fmax + fmin)/2., d2, as);
225#endif
226}
227
228// recursive gcd (TODO: verify tail recursion elimination should make this iterate)
229static int gcd(int n, int m) {
230 if (m == 0) {
231 return n;
232 }
233 return gcd(m, n % m);
234}
235
236static bool isClose(int32_t newSampleRate, int32_t prevSampleRate, int32_t filterSampleRate) {
237 int pdiff = absdiff(newSampleRate, prevSampleRate);
238 int adiff = absdiff(newSampleRate, filterSampleRate);
239
240 // allow up to 6% relative change increments.
241 // allow up to 12% absolute change increments (from filter design)
242 return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
243}
244
245void AudioResamplerDyn::setSampleRate(int32_t inSampleRate) {
246 if (mInSampleRate == inSampleRate) {
247 return;
248 }
249 int32_t oldSampleRate = mInSampleRate;
250 int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
251 uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
252 bool useS32 = false;
253
254 mInSampleRate = inSampleRate;
255
256 // TODO: Add precalculated Equiripple filters
257
258 if (!isClose(inSampleRate, oldSampleRate, mFilterSampleRate)) {
259 mFilterSampleRate = inSampleRate;
260
261 // Begin Kaiser Filter computation
262 //
263 // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
264 // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
265 //
266 // For s32 we keep the stop band attenuation at the same as 16b resolution, about
267 // 96-98dB
268 //
269
270 double stopBandAtten;
271 double tbwCheat = 1.; // how much we "cheat" into aliasing
272 int halfLength;
273 if (getQuality() == DYN_HIGH_QUALITY) {
274 // 32b coefficients, 64 length
275 useS32 = true;
276 stopBandAtten = 98.;
277 halfLength = 32;
278 } else if (getQuality() == DYN_LOW_QUALITY) {
279 // 16b coefficients, 16-32 length
280 useS32 = false;
281 stopBandAtten = 80.;
282 if (mSampleRate >= inSampleRate * 2) {
283 halfLength = 16;
284 } else {
285 halfLength = 8;
286 }
287 if (mSampleRate >= inSampleRate) {
288 tbwCheat = 1.05;
289 } else {
290 tbwCheat = 1.03;
291 }
292 } else { // medium quality
293 // 16b coefficients, 32-64 length
294 useS32 = false;
295 stopBandAtten = 84.;
296 if (mSampleRate >= inSampleRate * 4) {
297 halfLength = 32;
298 } else if (mSampleRate >= inSampleRate * 2) {
299 halfLength = 24;
300 } else {
301 halfLength = 16;
302 }
303 if (mSampleRate >= inSampleRate) {
304 tbwCheat = 1.03;
305 } else {
306 tbwCheat = 1.01;
307 }
308 }
309
310 // determine the number of polyphases in the filterbank.
311 // for 16b, it is desirable to have 2^(16/2) = 256 phases.
312 // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
313 //
314 // We are a bit more lax on this.
315
316 int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
317
318 while (phases<63) { // too few phases, allow room for interpolation
319 phases *= 2; // this code only needed to support dynamic rate changes
320 }
321 if (phases>=256) { // too many phases, always interpolate
322 phases = 127;
323 }
324
325 // create the filter
326 mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
327 if (useS32) {
328 createKaiserFir<int32_t>(mConstants, stopBandAtten,
329 inSampleRate, mSampleRate, tbwCheat);
330 } else {
331 createKaiserFir<int16_t>(mConstants, stopBandAtten,
332 inSampleRate, mSampleRate, tbwCheat);
333 }
334 } // End Kaiser filter
335
336 // update phase and state based on the new filter.
337 const Constants& c(mConstants);
338 mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
339 const uint32_t phaseWrapLimit = c.mL << c.mShift;
340 // try to preserve as much of the phase fraction as possible for on-the-fly changes
341 mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
342 * phaseWrapLimit / oldPhaseWrapLimit;
343 mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
344 mPhaseIncrement = static_cast<uint32_t>(static_cast<double>(phaseWrapLimit)
345 * inSampleRate / mSampleRate);
346
347 // determine which resampler to use
348 // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
349 int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
350 int stride = (c.mHalfNumCoefs&7)==0 ? 16 : (c.mHalfNumCoefs&3)==0 ? 8 : 2;
351 if (locked) {
352 mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
353 }
354 if (!USE_NEON) {
355 stride = 2; // C version only
356 }
357 // TODO: Remove this for testing
358 //stride = 2;
359 mResampleType = RESAMPLETYPE(mChannelCount, locked, stride, !!useS32);
360#ifdef DEBUG_RESAMPLER
361 printf("channels:%d %s stride:%d %s coef:%d shift:%d\n",
362 mChannelCount, locked ? "locked" : "interpolated",
363 stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
364#endif
365}
366
367void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount,
368 AudioBufferProvider* provider)
369{
370 // TODO:
371 // 24 cases - this perhaps can be reduced later, as testing might take too long
372 switch (mResampleType) {
373
374 // stride 16 (stride 2 for machines that do not support NEON)
375 case RESAMPLETYPE(1, true, 16, 0):
376 return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
377 case RESAMPLETYPE(2, true, 16, 0):
378 return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
379 case RESAMPLETYPE(1, false, 16, 0):
380 return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
381 case RESAMPLETYPE(2, false, 16, 0):
382 return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
383 case RESAMPLETYPE(1, true, 16, 1):
384 return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
385 case RESAMPLETYPE(2, true, 16, 1):
386 return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
387 case RESAMPLETYPE(1, false, 16, 1):
388 return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
389 case RESAMPLETYPE(2, false, 16, 1):
390 return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
391#if 0
392 // TODO: Remove these?
393 // stride 8
394 case RESAMPLETYPE(1, true, 8, 0):
395 return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
396 case RESAMPLETYPE(2, true, 8, 0):
397 return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
398 case RESAMPLETYPE(1, false, 8, 0):
399 return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
400 case RESAMPLETYPE(2, false, 8, 0):
401 return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
402 case RESAMPLETYPE(1, true, 8, 1):
403 return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
404 case RESAMPLETYPE(2, true, 8, 1):
405 return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
406 case RESAMPLETYPE(1, false, 8, 1):
407 return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
408 case RESAMPLETYPE(2, false, 8, 1):
409 return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
410 // stride 2 (can handle any filter length)
411 case RESAMPLETYPE(1, true, 2, 0):
412 return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
413 case RESAMPLETYPE(2, true, 2, 0):
414 return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
415 case RESAMPLETYPE(1, false, 2, 0):
416 return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
417 case RESAMPLETYPE(2, false, 2, 0):
418 return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
419 case RESAMPLETYPE(1, true, 2, 1):
420 return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
421 case RESAMPLETYPE(2, true, 2, 1):
422 return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
423 case RESAMPLETYPE(1, false, 2, 1):
424 return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
425 case RESAMPLETYPE(2, false, 2, 1):
426 return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
427#endif
428 default:
429 ; // error
430 }
431}
432
433template<int CHANNELS, bool LOCKED, int STRIDE, typename TC>
434void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount,
435 const TC* const coefs, AudioBufferProvider* provider)
436{
437 const Constants& c(mConstants);
438 int16_t* impulse = mInBuffer.getImpulse();
439 size_t inputIndex = mInputIndex;
440 uint32_t phaseFraction = mPhaseFraction;
441 const uint32_t phaseIncrement = mPhaseIncrement;
442 size_t outputIndex = 0;
443 size_t outputSampleCount = outFrameCount * 2; // stereo output
444 size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
445 const uint32_t phaseWrapLimit = c.mL << c.mShift;
446
447 // NOTE: be very careful when modifying the code here. register
448 // pressure is very high and a small change might cause the compiler
449 // to generate far less efficient code.
450 // Always sanity check the result with objdump or test-resample.
451
452 // the following logic is a bit convoluted to keep the main processing loop
453 // as tight as possible with register allocation.
454 while (outputIndex < outputSampleCount) {
455 // buffer is empty, fetch a new one
456 while (mBuffer.frameCount == 0) {
457 mBuffer.frameCount = inFrameCount;
458 provider->getNextBuffer(&mBuffer,
459 calculateOutputPTS(outputIndex / 2));
460 if (mBuffer.raw == NULL) {
461 goto resample_exit;
462 }
463 if (phaseFraction >= phaseWrapLimit) { // read in data
464 mInBuffer.readAdvance<CHANNELS>(
465 impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex);
466 phaseFraction -= phaseWrapLimit;
467 while (phaseFraction >= phaseWrapLimit) {
468 inputIndex++;
469 if (inputIndex >= mBuffer.frameCount) {
470 inputIndex -= mBuffer.frameCount;
471 provider->releaseBuffer(&mBuffer);
472 break;
473 }
474 mInBuffer.readAdvance<CHANNELS>(
475 impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex);
476 phaseFraction -= phaseWrapLimit;
477 }
478 }
479 }
480 const int16_t* const in = mBuffer.i16;
481 const size_t frameCount = mBuffer.frameCount;
482 const int coefShift = c.mShift;
483 const int halfNumCoefs = c.mHalfNumCoefs;
484 const int32_t* const volumeSimd = mVolumeSimd;
485
486 // reread the last input in.
487 mInBuffer.readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
488
489 // main processing loop
490 while (CC_LIKELY(outputIndex < outputSampleCount)) {
491 // caution: fir() is inlined and may be large.
492 // output will be loaded with the appropriate values
493 //
494 // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
495 // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
496 //
497 fir<CHANNELS, LOCKED, STRIDE>(
498 &out[outputIndex],
499 phaseFraction, phaseWrapLimit,
500 coefShift, halfNumCoefs, coefs,
501 impulse, volumeSimd);
502 outputIndex += 2;
503
504 phaseFraction += phaseIncrement;
505 while (phaseFraction >= phaseWrapLimit) {
506 inputIndex++;
507 if (inputIndex >= frameCount) {
508 goto done; // need a new buffer
509 }
510 mInBuffer.readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
511 phaseFraction -= phaseWrapLimit;
512 }
513 }
514done:
515 // often arrives here when input buffer runs out
516 if (inputIndex >= frameCount) {
517 inputIndex -= frameCount;
518 provider->releaseBuffer(&mBuffer);
519 // mBuffer.frameCount MUST be zero here.
520 }
521 }
522
523resample_exit:
524 mInBuffer.setImpulse(impulse);
525 mInputIndex = inputIndex;
526 mPhaseFraction = phaseFraction;
527}
528
529// ----------------------------------------------------------------------------
530}; // namespace android