blob: 8fa23e85e0c225b97f2557c1f7bd1e8d320daa30 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdlib>
#include <functional>
#include <memory>
#include <type_traits>
namespace android::mediautils {
namespace detail {
// Vtable interface for erased types
template <typename Ret, typename... Args>
struct ICallableTable {
// Destroy the erased type
void (*destroy)(void* storage) = nullptr;
// Call the erased object
Ret (*invoke)(void* storage, Args...) = nullptr;
// **Note** the next two functions only copy object data, not the vptr
// Copy the erased object to a new InPlaceFunction buffer
void (*copy_to)(const void* storage, void* other) = nullptr;
// Move the erased object to a new InPlaceFunction buffer
void (*move_to)(void* storage, void* other) = nullptr;
};
} // namespace detail
// This class is an *almost* drop-in replacement for std::function which is guaranteed to never
// allocate, and always holds the type erased functional object in an in-line small buffer of
// templated size. If the object is too large to hold, the type will fail to instantiate.
//
// Two notable differences are:
// - operator() is not const (unlike std::function where the call operator is
// const even if the erased type is not const callable). This retains const
// correctness by default. A workaround is keeping InPlaceFunction mutable.
// - Moving from an InPlaceFunction leaves the object in a valid state (operator
// bool remains true), similar to std::optional/std::variant.
// Calls to the object are still defined (and are equivalent
// to calling the underlying type after it has been moved from). To opt-out
// (and/or ensure safety), clearing the object is recommended:
// func1 = std::move(func2); // func2 still valid (and moved-from) after this line
// func2 = nullptr; // calling func2 will now abort
template <typename, size_t BufferSize = 32>
class InPlaceFunction;
// We partially specialize to match types which are spelled like functions
template <typename Ret, typename... Args, size_t BufferSize>
class InPlaceFunction<Ret(Args...), BufferSize> {
public:
// Storage Type Details
static constexpr size_t Size = BufferSize;
static constexpr size_t Alignment = alignof(std::max_align_t);
using Buffer_t = std::aligned_storage_t<Size, Alignment>;
template <typename T, size_t Other>
friend class InPlaceFunction;
private:
// Callable which is used for empty InPlaceFunction objects (to match the
// std::function interface).
struct BadCallable {
[[noreturn]] Ret operator()(Args...) { std::abort(); }
};
static_assert(std::is_trivially_destructible_v<BadCallable>);
// Implementation of vtable interface for erased types.
// Contains only static vtable instantiated once for each erased type and
// static helpers.
template <typename T>
struct TableImpl {
// T should be a decayed type
static_assert(std::is_same_v<T, std::decay_t<T>>);
// Helper functions to get an unerased reference to the type held in the
// buffer. std::launder is required to avoid strict aliasing rules.
// The cast is always defined, as a precondition for these calls is that
// (exactly) a T was placement new constructed into the buffer.
constexpr static T& getRef(void* storage) {
return *std::launder(reinterpret_cast<T*>(storage));
}
constexpr static const T& getRef(const void* storage) {
return *std::launder(reinterpret_cast<const T*>(storage));
}
// Constexpr implies inline
constexpr static detail::ICallableTable<Ret, Args...> table = {
// Stateless lambdas are convertible to function ptrs
.destroy = [](void* storage) { getRef(storage).~T(); },
.invoke = [](void* storage, Args... args) -> Ret {
return std::invoke(getRef(storage), args...);
},
.copy_to = [](const void* storage,
void* other) { ::new (other) T(getRef(storage)); },
.move_to = [](void* storage,
void* other) { ::new (other) T(std::move(getRef(storage))); },
};
};
// Check size/align requirements for the T in Buffer_t. We use a templated
// struct to enable std::conjunction (see below).
template <typename T>
struct WillFit : std::integral_constant<bool, sizeof(T) <= Size && alignof(T) <= Alignment> {};
// Check size/align requirements for a function to function conversion
template <typename T>
struct ConversionWillFit
: std::integral_constant<bool, (T::Size < Size) && (T::Alignment <= Alignment)> {};
template <typename T>
struct IsInPlaceFunction : std::false_type {};
template <size_t BufferSize_>
struct IsInPlaceFunction<InPlaceFunction<Ret(Args...), BufferSize_>> : std::true_type {};
// Pred is true iff T is a valid type to construct an InPlaceFunction with
// We use std::conjunction for readability and short-circuit behavior
// (checks are ordered).
// The actual target type is the decay of T.
template <typename T>
static constexpr bool Pred = std::conjunction_v<
std::negation<IsInPlaceFunction<std::decay_t<T>>>, // T is not also an InPlaceFunction
// of the same signature.
std::is_invocable_r<Ret, std::decay_t<T>, Args...>, // correct signature callable
WillFit<std::decay_t<T>> // The target type fits in local storage
>;
template <typename T>
static constexpr bool ConvertibleFunc =
std::conjunction_v<IsInPlaceFunction<std::decay_t<T>>, // implies correctly invokable
ConversionWillFit<std::decay_t<T>>>;
// Members below
// This must come first for alignment
Buffer_t storage_;
const detail::ICallableTable<Ret, Args...>* vptr_;
constexpr void copy_to(InPlaceFunction& other) const {
vptr_->copy_to(std::addressof(storage_), std::addressof(other.storage_));
other.vptr_ = vptr_;
}
constexpr void move_to(InPlaceFunction& other) {
vptr_->move_to(std::addressof(storage_), std::addressof(other.storage_));
other.vptr_ = vptr_;
}
constexpr void destroy() { vptr_->destroy(std::addressof(storage_)); }
template <typename T, typename Target = std::decay_t<T>>
constexpr void genericInit(T&& t) {
vptr_ = &TableImpl<Target>::table;
::new (std::addressof(storage_)) Target(std::forward<T>(t));
}
template <typename T, typename Target = std::decay_t<T>>
constexpr void convertingInit(T&& smallerFunc) {
// Redundant, but just in-case
static_assert(Target::Size < Size && Target::Alignment <= Alignment);
if constexpr (std::is_lvalue_reference_v<T>) {
smallerFunc.vptr_->copy_to(std::addressof(smallerFunc.storage_),
std::addressof(storage_));
} else {
smallerFunc.vptr_->move_to(std::addressof(smallerFunc.storage_),
std::addressof(storage_));
}
vptr_ = smallerFunc.vptr_;
}
public:
// Public interface
template <typename T, std::enable_if_t<Pred<T>>* = nullptr>
constexpr InPlaceFunction(T&& t) {
genericInit(std::forward<T>(t));
}
// Conversion from smaller functions.
template <typename T, std::enable_if_t<ConvertibleFunc<T>>* = nullptr>
constexpr InPlaceFunction(T&& t) {
convertingInit(std::forward<T>(t));
}
constexpr InPlaceFunction(const InPlaceFunction& other) { other.copy_to(*this); }
constexpr InPlaceFunction(InPlaceFunction&& other) { other.move_to(*this); }
// Making functions default constructible has pros and cons, we will align
// with the standard
constexpr InPlaceFunction() : InPlaceFunction(BadCallable{}) {}
constexpr InPlaceFunction(std::nullptr_t) : InPlaceFunction(BadCallable{}) {}
#if __cplusplus >= 202002L
constexpr
#endif
~InPlaceFunction() {
destroy();
}
// The std::function call operator is marked const, but this violates const
// correctness. We deviate from the standard and do not mark the operator as
// const. Collections of InPlaceFunctions should probably be mutable.
constexpr Ret operator()(Args... args) {
return vptr_->invoke(std::addressof(storage_), args...);
}
constexpr InPlaceFunction& operator=(const InPlaceFunction& other) {
if (std::addressof(other) == this) return *this;
destroy();
other.copy_to(*this);
return *this;
}
constexpr InPlaceFunction& operator=(InPlaceFunction&& other) {
if (std::addressof(other) == this) return *this;
destroy();
other.move_to(*this);
return *this;
}
template <typename T, std::enable_if_t<Pred<T>>* = nullptr>
constexpr InPlaceFunction& operator=(T&& t) {
// We can't assign to ourselves, since T is a different type
destroy();
genericInit(std::forward<T>(t));
return *this;
}
// Explicitly defining this function saves a move/dtor
template <typename T, std::enable_if_t<ConvertibleFunc<T>>* = nullptr>
constexpr InPlaceFunction& operator=(T&& t) {
// We can't assign to ourselves, since T is different type
destroy();
convertingInit(std::forward<T>(t));
return *this;
}
constexpr InPlaceFunction& operator=(std::nullptr_t) { return operator=(BadCallable{}); }
// Moved from InPlaceFunctions are still considered valid (similar to
// std::optional). If using std::move on a function object explicitly, it is
// recommended that the object is reset using nullptr.
constexpr explicit operator bool() const { return vptr_ != &TableImpl<BadCallable>::table; }
constexpr void swap(InPlaceFunction& other) {
if (std::addressof(other) == this) return;
InPlaceFunction tmp{std::move(other)};
other.destroy();
move_to(other);
destroy();
tmp.move_to(*this);
}
friend constexpr void swap(InPlaceFunction& lhs, InPlaceFunction& rhs) { lhs.swap(rhs); }
};
} // namespace android::mediautils