blob: e08bf4360b3e3e3c0d86107d01e0b67e4edd5120 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2SoftAomEnc"
#include <log/log.h>
#include <media/stagefright/foundation/AUtils.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include <C2Debug.h>
#include <Codec2CommonUtils.h>
#include <Codec2Mapper.h>
#include <C2PlatformSupport.h>
#include <SimpleC2Interface.h>
#include "C2SoftAomEnc.h"
namespace android {
constexpr char COMPONENT_NAME[] = "c2.android.av1.encoder";
#define DEFAULT_SPEED 10
C2SoftAomEnc::IntfImpl::IntfImpl(const std::shared_ptr<C2ReflectorHelper>& helper)
: SimpleInterface<void>::BaseParams(helper, COMPONENT_NAME, C2Component::KIND_ENCODER,
C2Component::DOMAIN_VIDEO, MEDIA_MIMETYPE_VIDEO_AV1) {
noPrivateBuffers(); // TODO: account for our buffers here
noInputReferences();
noOutputReferences();
noInputLatency();
noTimeStretch();
setDerivedInstance(this);
addParameter(DefineParam(mUsage, C2_PARAMKEY_INPUT_STREAM_USAGE)
.withConstValue(new C2StreamUsageTuning::input(
0u, (uint64_t)C2MemoryUsage::CPU_READ))
.build());
addParameter(DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE)
.withDefault(new C2StreamPictureSizeInfo::input(0u, 320, 240))
.withFields({
C2F(mSize, width).inRange(2, 2048, 2),
C2F(mSize, height).inRange(2, 2048, 2),
})
.withSetter(SizeSetter)
.build());
addParameter(DefineParam(mBitrateMode, C2_PARAMKEY_BITRATE_MODE)
.withDefault(new C2StreamBitrateModeTuning::output(
0u, C2Config::BITRATE_VARIABLE))
.withFields({C2F(mBitrateMode, value)
.oneOf({C2Config::BITRATE_CONST,
C2Config::BITRATE_VARIABLE,
C2Config::BITRATE_IGNORE})})
.withSetter(Setter<decltype(*mBitrateMode)>::StrictValueWithNoDeps)
.build());
addParameter(DefineParam(mFrameRate, C2_PARAMKEY_FRAME_RATE)
.withDefault(new C2StreamFrameRateInfo::output(0u, 30.))
// TODO: More restriction?
.withFields({C2F(mFrameRate, value).greaterThan(0.)})
.withSetter(Setter<decltype(*mFrameRate)>::StrictValueWithNoDeps)
.build());
addParameter(DefineParam(mSyncFramePeriod, C2_PARAMKEY_SYNC_FRAME_INTERVAL)
.withDefault(new C2StreamSyncFrameIntervalTuning::output(0u, 1000000))
.withFields({C2F(mSyncFramePeriod, value).any()})
.withSetter(Setter<decltype(*mSyncFramePeriod)>::StrictValueWithNoDeps)
.build());
addParameter(DefineParam(mBitrate, C2_PARAMKEY_BITRATE)
.withDefault(new C2StreamBitrateInfo::output(0u, 64000))
.withFields({C2F(mBitrate, value).inRange(4096, 40000000)})
.withSetter(BitrateSetter)
.build());
addParameter(DefineParam(mComplexity, C2_PARAMKEY_COMPLEXITY)
.withDefault(new C2StreamComplexityTuning::output(0u, 0))
.withFields({C2F(mComplexity, value).inRange(0, 5)})
.withSetter(Setter<decltype(*mComplexity)>::NonStrictValueWithNoDeps)
.build());
addParameter(DefineParam(mQuality, C2_PARAMKEY_QUALITY)
.withDefault(new C2StreamQualityTuning::output(0u, 80))
.withFields({C2F(mQuality, value).inRange(0, 100)})
.withSetter(Setter<decltype(*mQuality)>::NonStrictValueWithNoDeps)
.build());
addParameter(DefineParam(mIntraRefresh, C2_PARAMKEY_INTRA_REFRESH)
.withConstValue(new C2StreamIntraRefreshTuning::output(
0u, C2Config::INTRA_REFRESH_DISABLED, 0.))
.build());
addParameter(DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL)
.withDefault(new C2StreamProfileLevelInfo::output(0u, PROFILE_AV1_0,
LEVEL_AV1_4_1))
.withFields({
C2F(mProfileLevel, profile).equalTo(PROFILE_AV1_0),
C2F(mProfileLevel, level)
.oneOf({LEVEL_AV1_2, LEVEL_AV1_2_1, LEVEL_AV1_2_2,
LEVEL_AV1_2_3, LEVEL_AV1_3, LEVEL_AV1_3_1,
LEVEL_AV1_3_2, LEVEL_AV1_3_3, LEVEL_AV1_4,
LEVEL_AV1_4_1}),
})
.withSetter(ProfileLevelSetter)
.build());
std::vector<uint32_t> pixelFormats = {HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED,
HAL_PIXEL_FORMAT_YCBCR_420_888};
if (isHalPixelFormatSupported((AHardwareBuffer_Format)HAL_PIXEL_FORMAT_YCBCR_P010)) {
pixelFormats.push_back(HAL_PIXEL_FORMAT_YCBCR_P010);
}
addParameter(DefineParam(mPixelFormat, C2_PARAMKEY_PIXEL_FORMAT)
.withDefault(new C2StreamPixelFormatInfo::input(
0u, HAL_PIXEL_FORMAT_YCBCR_420_888))
.withFields({C2F(mPixelFormat, value).oneOf({pixelFormats})})
.withSetter((Setter<decltype(*mPixelFormat)>::StrictValueWithNoDeps))
.build());
addParameter(DefineParam(mRequestSync, C2_PARAMKEY_REQUEST_SYNC_FRAME)
.withDefault(new C2StreamRequestSyncFrameTuning::output(0u, C2_FALSE))
.withFields({C2F(mRequestSync, value).oneOf({C2_FALSE, C2_TRUE})})
.withSetter(Setter<decltype(*mRequestSync)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::input(
0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields(
{C2F(mColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)})
.withSetter(ColorAspectsSetter)
.build());
addParameter(
DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::output(
0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields(
{C2F(mCodedColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mCodedColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mCodedColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mCodedColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)})
.withSetter(CodedColorAspectsSetter, mColorAspects)
.build());
}
C2R C2SoftAomEnc::IntfImpl::BitrateSetter(bool mayBlock, C2P<C2StreamBitrateInfo::output>& me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (me.v.value < 4096) {
me.set().value = 4096;
}
return res;
}
C2R C2SoftAomEnc::IntfImpl::SizeSetter(bool mayBlock,
const C2P<C2StreamPictureSizeInfo::input>& oldMe,
C2P<C2StreamPictureSizeInfo::input>& me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (!me.F(me.v.width).supportsAtAll(me.v.width)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width)));
me.set().width = oldMe.v.width;
}
if (!me.F(me.v.height).supportsAtAll(me.v.height)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height)));
me.set().height = oldMe.v.height;
}
return res;
}
C2R C2SoftAomEnc::IntfImpl::ProfileLevelSetter(bool mayBlock,
C2P<C2StreamProfileLevelInfo::output>& me) {
(void)mayBlock;
if (!me.F(me.v.profile).supportsAtAll(me.v.profile)) {
me.set().profile = PROFILE_AV1_0;
}
if (!me.F(me.v.level).supportsAtAll(me.v.level)) {
me.set().level = LEVEL_AV1_4_1;
}
return C2R::Ok();
}
uint32_t C2SoftAomEnc::IntfImpl::getSyncFramePeriod() const {
if (mSyncFramePeriod->value < 0 || mSyncFramePeriod->value == INT64_MAX) {
return 0;
}
double period = mSyncFramePeriod->value / 1e6 * mFrameRate->value;
return (uint32_t)c2_max(c2_min(period + 0.5, double(UINT32_MAX)), 1.);
}
C2R C2SoftAomEnc::IntfImpl::ColorAspectsSetter(bool mayBlock,
C2P<C2StreamColorAspectsInfo::input>& me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
C2R C2SoftAomEnc::IntfImpl::CodedColorAspectsSetter(
bool mayBlock, C2P<C2StreamColorAspectsInfo::output>& me,
const C2P<C2StreamColorAspectsInfo::input>& coded) {
(void)mayBlock;
me.set().range = coded.v.range;
me.set().primaries = coded.v.primaries;
me.set().transfer = coded.v.transfer;
me.set().matrix = coded.v.matrix;
return C2R::Ok();
}
C2SoftAomEnc::C2SoftAomEnc(const char* name, c2_node_id_t id,
const std::shared_ptr<IntfImpl>& intfImpl)
: SimpleC2Component(std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl),
mCodecContext(nullptr),
mCodecConfiguration(nullptr),
mCodecInterface(nullptr),
mStrideAlign(2),
mBitrateControlMode(AOM_VBR),
mMinQuantizer(0),
mMaxQuantizer(0),
mLastTimestamp(INT64_MAX),
mSignalledOutputEos(false),
mSignalledError(false),
mHeadersReceived(false),
mIs10Bit(false) {
ALOGV("Constructor");
}
C2SoftAomEnc::~C2SoftAomEnc() {
ALOGV("Destructor");
onRelease();
}
c2_status_t C2SoftAomEnc::onInit() {
return C2_OK;
}
c2_status_t C2SoftAomEnc::onStop() {
onRelease();
return C2_OK;
}
void C2SoftAomEnc::onReset() {
(void)onStop();
}
void C2SoftAomEnc::onRelease() {
if (mCodecContext) {
aom_codec_destroy(mCodecContext);
delete mCodecContext;
mCodecContext = nullptr;
}
if (mCodecConfiguration) {
delete mCodecConfiguration;
mCodecConfiguration = nullptr;
}
// this one is not allocated by us
mCodecInterface = nullptr;
mHeadersReceived = false;
}
c2_status_t C2SoftAomEnc::onFlush_sm() {
return onStop();
}
// c2Quality is in range of 0-100 (the more - the better),
// for AOM quality we are using a range of 15-50 (the less - the better)
static int MapC2QualityToAOMQuality (int c2Quality) {
return 15 + 35 * (100 - c2Quality) / 100;
}
static int MapC2ComplexityToAOMSpeed (int c2Complexity) {
int mapping[6] = {10, 9, 8, 7, 6, 6};
if (c2Complexity > 5 || c2Complexity < 0) {
ALOGW("Wrong complexity setting. Falling back to speed 10");
return 10;
}
return mapping[c2Complexity];
}
aom_codec_err_t C2SoftAomEnc::setupCodecParameters() {
aom_codec_err_t codec_return = AOM_CODEC_OK;
codec_return = aom_codec_control(mCodecContext, AOME_SET_CPUUSED,
MapC2ComplexityToAOMSpeed(mComplexity->value));
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ROW_MT, 1);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_CDEF, 1);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_TPL_MODEL, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_DELTAQ_MODE, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_ORDER_HINT, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_AQ_MODE, 3);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_COEFF_COST_UPD_FREQ, 3);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_MODE_COST_UPD_FREQ, 3);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_MV_COST_UPD_FREQ, 3);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_PALETTE, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_OBMC, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_NOISE_SENSITIVITY, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_WARPED_MOTION, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_GLOBAL_MOTION, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_REF_FRAME_MVS, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_CFL_INTRA, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_SMOOTH_INTRA, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_ANGLE_DELTA, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_FILTER_INTRA, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_INTRA_DEFAULT_TX_ONLY, 1);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_DISABLE_TRELLIS_QUANT, 1);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_DIST_WTD_COMP, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_DIFF_WTD_COMP, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_DUAL_FILTER, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTERINTRA_COMP, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTERINTRA_WEDGE, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTRA_EDGE_FILTER, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_INTRABC, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_MASKED_COMP, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_PAETH_INTRA, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_QM, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_RECT_PARTITIONS, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_RESTORATION, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_SMOOTH_INTERINTRA, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_ENABLE_TX64, 0);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_MAX_REFERENCE_FRAMES, 3);
if (codec_return != AOM_CODEC_OK) goto BailOut;
if (mBitrateControlMode == AOM_Q) {
const int aomCQLevel = MapC2QualityToAOMQuality(mQuality->value);
ALOGV("Set Q from %d to CQL %d",
mQuality->value, aomCQLevel);
codec_return = aom_codec_control(mCodecContext, AOME_SET_CQ_LEVEL, aomCQLevel);
if (codec_return != AOM_CODEC_OK) goto BailOut;
}
ColorAspects sfAspects;
if (!C2Mapper::map(mColorAspects->primaries, &sfAspects.mPrimaries)) {
sfAspects.mPrimaries = android::ColorAspects::PrimariesUnspecified;
}
if (!C2Mapper::map(mColorAspects->range, &sfAspects.mRange)) {
sfAspects.mRange = android::ColorAspects::RangeUnspecified;
}
if (!C2Mapper::map(mColorAspects->matrix, &sfAspects.mMatrixCoeffs)) {
sfAspects.mMatrixCoeffs = android::ColorAspects::MatrixUnspecified;
}
if (!C2Mapper::map(mColorAspects->transfer, &sfAspects.mTransfer)) {
sfAspects.mTransfer = android::ColorAspects::TransferUnspecified;
}
int32_t primaries, transfer, matrixCoeffs;
bool range;
ColorUtils::convertCodecColorAspectsToIsoAspects(sfAspects,
&primaries,
&transfer,
&matrixCoeffs,
&range);
codec_return = aom_codec_control(mCodecContext, AV1E_SET_COLOR_RANGE, range);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_COLOR_PRIMARIES, primaries);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_TRANSFER_CHARACTERISTICS, transfer);
if (codec_return != AOM_CODEC_OK) goto BailOut;
codec_return = aom_codec_control(mCodecContext, AV1E_SET_MATRIX_COEFFICIENTS, matrixCoeffs);
if (codec_return != AOM_CODEC_OK) goto BailOut;
BailOut:
return codec_return;
}
status_t C2SoftAomEnc::initEncoder() {
aom_codec_err_t codec_return;
status_t result = UNKNOWN_ERROR;
{
IntfImpl::Lock lock = mIntf->lock();
// Fetch config
mSize = mIntf->getSize_l();
mBitrate = mIntf->getBitrate_l();
mBitrateMode = mIntf->getBitrateMode_l();
mFrameRate = mIntf->getFrameRate_l();
mIntraRefresh = mIntf->getIntraRefresh_l();
mRequestSync = mIntf->getRequestSync_l();
mColorAspects = mIntf->getCodedColorAspects_l();
mQuality = mIntf->getQuality_l();
mComplexity = mIntf->getComplexity_l();
}
switch (mBitrateMode->value) {
case C2Config::BITRATE_CONST:
mBitrateControlMode = AOM_CBR;
break;
case C2Config::BITRATE_IGNORE:
mBitrateControlMode = AOM_Q;
break;
case C2Config::BITRATE_VARIABLE:
[[fallthrough]];
default:
mBitrateControlMode = AOM_VBR;
break;
}
mCodecInterface = aom_codec_av1_cx();
if (!mCodecInterface) goto CleanUp;
ALOGD("AOM: initEncoder. BRMode: %u. KF: %u. QP: %u - %u, 10Bit: %d, comlexity %d",
(uint32_t)mBitrateControlMode,
mIntf->getSyncFramePeriod(), mMinQuantizer, mMaxQuantizer, mIs10Bit, mComplexity->value);
mCodecConfiguration = new aom_codec_enc_cfg_t;
if (!mCodecConfiguration) goto CleanUp;
codec_return = aom_codec_enc_config_default(mCodecInterface, mCodecConfiguration,
AOM_USAGE_REALTIME); // RT mode
if (codec_return != AOM_CODEC_OK) {
ALOGE("Error populating default configuration for aom encoder.");
goto CleanUp;
}
mCodecConfiguration->g_w = mSize->width;
mCodecConfiguration->g_h = mSize->height;
mCodecConfiguration->g_bit_depth = mIs10Bit ? AOM_BITS_10 : AOM_BITS_8;
mCodecConfiguration->g_input_bit_depth = mIs10Bit ? 10 : 8;
mCodecConfiguration->g_threads = 0;
mCodecConfiguration->g_error_resilient = 0;
// timebase unit is microsecond
// g_timebase is in seconds (i.e. 1/1000000 seconds)
mCodecConfiguration->g_timebase.num = 1;
mCodecConfiguration->g_timebase.den = 1000000;
// rc_target_bitrate is in kbps, mBitrate in bps
mCodecConfiguration->rc_target_bitrate = (mBitrate->value + 500) / 1000;
mCodecConfiguration->rc_end_usage = mBitrateControlMode == AOM_Q ? AOM_Q : AOM_CBR;
// Disable frame drop - not allowed in MediaCodec now.
mCodecConfiguration->rc_dropframe_thresh = 0;
// Disable lagged encoding.
mCodecConfiguration->g_lag_in_frames = 0;
// Disable spatial resizing.
mCodecConfiguration->rc_resize_mode = 0;
// Single-pass mode.
mCodecConfiguration->g_pass = AOM_RC_ONE_PASS;
// Maximum key frame interval - for CBR boost to 3000
mCodecConfiguration->kf_max_dist = 3000;
// Encoder determines optimal key frame placement automatically.
mCodecConfiguration->kf_mode = AOM_KF_AUTO;
// The amount of data that may be buffered by the decoding
// application in ms.
mCodecConfiguration->rc_buf_sz = 1000;
if (mBitrateControlMode == AOM_CBR) {
// Initial value of the buffer level in ms.
mCodecConfiguration->rc_buf_initial_sz = 500;
// Amount of data that the encoder should try to maintain in ms.
mCodecConfiguration->rc_buf_optimal_sz = 600;
// Maximum amount of bits that can be subtracted from the target
// bitrate - expressed as percentage of the target bitrate.
mCodecConfiguration->rc_undershoot_pct = 100;
// Maximum amount of bits that can be added to the target
// bitrate - expressed as percentage of the target bitrate.
mCodecConfiguration->rc_overshoot_pct = 10;
} else {
// Maximum amount of bits that can be subtracted from the target
// bitrate - expressed as percentage of the target bitrate.
mCodecConfiguration->rc_undershoot_pct = 100;
// Maximum amount of bits that can be added to the target
// bitrate - expressed as percentage of the target bitrate.
mCodecConfiguration->rc_overshoot_pct = 100;
}
if (mIntf->getSyncFramePeriod() >= 0) {
mCodecConfiguration->kf_max_dist = mIntf->getSyncFramePeriod();
mCodecConfiguration->kf_min_dist = mIntf->getSyncFramePeriod();
mCodecConfiguration->kf_mode = AOM_KF_AUTO;
}
if (mMinQuantizer > 0) {
mCodecConfiguration->rc_min_quantizer = mMinQuantizer;
}
if (mMaxQuantizer > 0) {
mCodecConfiguration->rc_max_quantizer = mMaxQuantizer;
} else {
if (mBitrateControlMode == AOM_VBR) {
// For VBR we are limiting MaxQP to 52 (down 11 steps) to maintain quality
// 52 comes from experiments done on libaom standalone app
mCodecConfiguration->rc_max_quantizer = 52;
}
}
mCodecContext = new aom_codec_ctx_t;
if (!mCodecContext) goto CleanUp;
codec_return = aom_codec_enc_init(mCodecContext, mCodecInterface, mCodecConfiguration,
mIs10Bit ? AOM_CODEC_USE_HIGHBITDEPTH : 0);
if (codec_return != AOM_CODEC_OK) {
ALOGE("Error initializing aom encoder");
goto CleanUp;
}
codec_return = setupCodecParameters();
if (codec_return != AOM_CODEC_OK) {
ALOGE("Error setting up codec parameters");
goto CleanUp;
}
mHeadersReceived = false;
{
uint32_t width = mSize->width;
uint32_t height = mSize->height;
if (((uint64_t)width * height) > ((uint64_t)INT32_MAX / 3)) {
ALOGE("b/25812794, Buffer size is too big, width=%u, height=%u.", width, height);
} else {
uint32_t stride = (width + mStrideAlign - 1) & ~(mStrideAlign - 1);
uint32_t vstride = (height + mStrideAlign - 1) & ~(mStrideAlign - 1);
mConversionBuffer = MemoryBlock::Allocate(stride * vstride * 3 / (mIs10Bit? 1 : 2));
if (!mConversionBuffer.size()) {
ALOGE("Allocating conversion buffer failed.");
} else {
mNumInputFrames = -1;
return OK;
}
}
}
CleanUp:
onRelease();
return result;
}
void C2SoftAomEnc::process(const std::unique_ptr<C2Work>& work,
const std::shared_ptr<C2BlockPool>& pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 1u;
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError || mSignalledOutputEos) {
work->result = C2_BAD_VALUE;
return;
}
std::shared_ptr<C2GraphicView> rView;
std::shared_ptr<C2Buffer> inputBuffer;
if (!work->input.buffers.empty()) {
inputBuffer = work->input.buffers[0];
rView = std::make_shared<C2GraphicView>(
inputBuffer->data().graphicBlocks().front().map().get());
if (rView->error() != C2_OK) {
ALOGE("graphic view map err = %d", rView->error());
work->result = C2_CORRUPTED;
return;
}
} else {
ALOGV("Empty input Buffer");
uint32_t flags = 0;
if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
return;
}
bool end_of_stream = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
aom_image_t raw_frame;
const C2PlanarLayout& layout = rView->layout();
if (!mHeadersReceived) {
mIs10Bit = (layout.planes[layout.PLANE_Y].bitDepth == 10);
// Re-Initialize encoder
if (mCodecContext){
onRelease();
}
}
if (!mCodecContext && OK != initEncoder()) {
ALOGE("Failed to initialize encoder");
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
//(b/279387842)
//workaround for incorrect crop size in view when using surface mode
rView->setCrop_be(C2Rect(mSize->width, mSize->height));
if (!mHeadersReceived) {
Av1Config av1_config;
constexpr uint32_t header_length = 2048;
uint8_t header[header_length];
size_t header_bytes;
aom_fixed_buf_t* obu_sequence_header = aom_codec_get_global_headers(mCodecContext);
int ret = 1;
if (obu_sequence_header) {
if (get_av1config_from_obu(reinterpret_cast<const uint8_t*>(obu_sequence_header->buf),
obu_sequence_header->sz, false, &av1_config) == 0) {
ret = write_av1config(&av1_config, header_length, &header_bytes, header);
} else {
ALOGE("Can not get config");
}
free(obu_sequence_header->buf);
free(obu_sequence_header);
}
if (ret) {
ALOGE("Can not write config");
mSignalledError = true;
work->result = C2_NO_MEMORY;
work->workletsProcessed = 1u;
return;
}
mHeadersReceived = true;
std::unique_ptr<C2StreamInitDataInfo::output> csd =
C2StreamInitDataInfo::output::AllocUnique(header_bytes, 0u);
if (!csd) {
ALOGE("CSD allocation failed");
mSignalledError = true;
work->result = C2_NO_MEMORY;
work->workletsProcessed = 1u;
return;
}
memcpy(csd->m.value, header, header_bytes);
work->worklets.front()->output.configUpdate.push_back(std::move(csd));
ALOGV("CSD Produced of size %zu bytes", header_bytes);
}
const C2ConstGraphicBlock inBuffer = inputBuffer->data().graphicBlocks().front();
if (inBuffer.width() < mSize->width || inBuffer.height() < mSize->height) {
ALOGE("unexpected Input buffer attributes %d(%d) x %d(%d)", inBuffer.width(), mSize->width,
inBuffer.height(), mSize->height);
mSignalledError = true;
work->result = C2_BAD_VALUE;
return;
}
uint32_t width = mSize->width;
uint32_t height = mSize->height;
if (width > 0x8000 || height > 0x8000) {
ALOGE("Image too big: %u x %u", width, height);
work->result = C2_BAD_VALUE;
return;
}
uint32_t stride = (width + mStrideAlign - 1) & ~(mStrideAlign - 1);
uint32_t vstride = (height + mStrideAlign - 1) & ~(mStrideAlign - 1);
switch (layout.type) {
case C2PlanarLayout::TYPE_RGB:
case C2PlanarLayout::TYPE_RGBA: {
std::shared_ptr<C2StreamColorAspectsInfo::output> colorAspects;
{
IntfImpl::Lock lock = mIntf->lock();
colorAspects = mIntf->getCodedColorAspects_l();
}
ConvertRGBToPlanarYUV(mConversionBuffer.data(), stride, vstride,
mConversionBuffer.size(), *rView.get(), colorAspects->matrix,
colorAspects->range);
aom_img_wrap(&raw_frame, AOM_IMG_FMT_I420, width, height, mStrideAlign,
mConversionBuffer.data());
break;
}
case C2PlanarLayout::TYPE_YUV: {
const bool isYUV420_10bit = IsYUV420_10bit(*rView);
if (!IsYUV420(*rView) && !isYUV420_10bit) {
ALOGE("input is not YUV420");
work->result = C2_BAD_VALUE;
return;
}
if (!isYUV420_10bit) {
if (IsI420(*rView)) {
// I420 compatible - though with custom offset and stride
aom_img_wrap(&raw_frame, AOM_IMG_FMT_I420, width, height, mStrideAlign,
(uint8_t*)rView->data()[0]);
raw_frame.planes[1] = (uint8_t*)rView->data()[1];
raw_frame.planes[2] = (uint8_t*)rView->data()[2];
raw_frame.stride[0] = layout.planes[layout.PLANE_Y].rowInc;
raw_frame.stride[1] = layout.planes[layout.PLANE_U].rowInc;
raw_frame.stride[2] = layout.planes[layout.PLANE_V].rowInc;
} else {
// TODO(kyslov): Add image wrap for NV12
// copy to I420
MediaImage2 img = CreateYUV420PlanarMediaImage2(width, height, stride, vstride);
if (mConversionBuffer.size() >= stride * vstride * 3 / 2) {
status_t err = ImageCopy(mConversionBuffer.data(), &img, *rView);
if (err != OK) {
ALOGE("Buffer conversion failed: %d", err);
work->result = C2_BAD_VALUE;
return;
}
aom_img_wrap(&raw_frame, AOM_IMG_FMT_I420, stride, vstride, mStrideAlign,
mConversionBuffer.data());
aom_img_set_rect(&raw_frame, 0, 0, width, height, 0);
} else {
ALOGE("Conversion buffer is too small: %u x %u for %zu", stride, vstride,
mConversionBuffer.size());
work->result = C2_BAD_VALUE;
return;
}
}
} else { // 10 bits
if (IsP010(*rView)) {
if (mConversionBuffer.size() >= stride * vstride * 3) {
uint16_t *dstY, *dstU, *dstV;
dstY = (uint16_t*)mConversionBuffer.data();
dstU = dstY + stride * vstride;
dstV = dstU + (stride * vstride) / 4;
convertP010ToYUV420Planar16(dstY, dstU, dstV, (uint16_t*)(rView->data()[0]),
(uint16_t*)(rView->data()[1]),
layout.planes[layout.PLANE_Y].rowInc / 2,
layout.planes[layout.PLANE_U].rowInc / 2,
stride, stride / 2, stride / 2, stride,
vstride);
aom_img_wrap(&raw_frame, AOM_IMG_FMT_I42016, stride, vstride, mStrideAlign,
mConversionBuffer.data());
aom_img_set_rect(&raw_frame, 0, 0, width, height, 0);
} else {
ALOGE("Conversion buffer is too small: %u x %u for %zu", stride, vstride,
mConversionBuffer.size());
work->result = C2_BAD_VALUE;
return;
}
} else {
ALOGE("Image format conversion is not supported.");
work->result = C2_BAD_VALUE;
return;
}
}
break;
}
case C2PlanarLayout::TYPE_YUVA: {
if (mConversionBuffer.size() >= stride * vstride * 3) {
uint16_t *dstY, *dstU, *dstV;
dstY = (uint16_t*)mConversionBuffer.data();
dstU = dstY + stride * vstride;
dstV = dstU + (stride * vstride) / 4;
convertRGBA1010102ToYUV420Planar16(dstY, dstU, dstV, (uint32_t*)(rView->data()[0]),
layout.planes[layout.PLANE_Y].rowInc / 4, stride,
vstride, mColorAspects->matrix,
mColorAspects->range);
aom_img_wrap(&raw_frame, AOM_IMG_FMT_I42016, stride, vstride, mStrideAlign,
mConversionBuffer.data());
aom_img_set_rect(&raw_frame, 0, 0, width, height, 0);
} else {
ALOGE("Conversion buffer is too small: %u x %u for %zu", stride, vstride,
mConversionBuffer.size());
work->result = C2_BAD_VALUE;
return;
}
break;
}
default:
ALOGE("Unrecognized plane type: %d", layout.type);
work->result = C2_BAD_VALUE;
return;
}
aom_enc_frame_flags_t flags = 0;
// handle dynamic config parameters
{
IntfImpl::Lock lock = mIntf->lock();
std::shared_ptr<C2StreamIntraRefreshTuning::output> intraRefresh =
mIntf->getIntraRefresh_l();
std::shared_ptr<C2StreamBitrateInfo::output> bitrate = mIntf->getBitrate_l();
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> requestSync =
mIntf->getRequestSync_l();
lock.unlock();
if (intraRefresh != mIntraRefresh) {
mIntraRefresh = intraRefresh;
ALOGV("Got mIntraRefresh request");
}
if (requestSync != mRequestSync) {
// we can handle IDR immediately
if (requestSync->value) {
// unset request
C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE);
std::vector<std::unique_ptr<C2SettingResult>> failures;
mIntf->config({&clearSync}, C2_MAY_BLOCK, &failures);
ALOGV("Got sync request");
flags |= AOM_EFLAG_FORCE_KF;
}
mRequestSync = requestSync;
}
if (bitrate != mBitrate) {
mBitrate = bitrate;
mCodecConfiguration->rc_target_bitrate = (mBitrate->value + 500) / 1000;
aom_codec_err_t res = aom_codec_enc_config_set(mCodecContext, mCodecConfiguration);
if (res != AOM_CODEC_OK) {
ALOGE("aom encoder failed to update bitrate: %s", aom_codec_err_to_string(res));
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
}
}
uint64_t input_timestamp = work->input.ordinal.timestamp.peekull();
uint32_t frame_duration;
if (input_timestamp > mLastTimestamp) {
frame_duration = (uint32_t)(input_timestamp - mLastTimestamp);
} else {
// Use default of 30 fps in case of 0 frame rate.
float frame_rate = mFrameRate->value;
if (frame_rate < 0.001) {
frame_rate = 30.0;
}
frame_duration = (uint32_t)(1000000 / frame_rate + 0.5);
}
mLastTimestamp = input_timestamp;
aom_codec_err_t codec_return =
aom_codec_encode(mCodecContext, &raw_frame, input_timestamp, frame_duration, flags);
if (codec_return != AOM_CODEC_OK) {
ALOGE("aom encoder failed to encode frame");
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
bool populated = false;
aom_codec_iter_t encoded_packet_iterator = nullptr;
const aom_codec_cx_pkt_t* encoded_packet;
while ((encoded_packet = aom_codec_get_cx_data(mCodecContext, &encoded_packet_iterator))) {
if (encoded_packet->kind == AOM_CODEC_CX_FRAME_PKT) {
std::shared_ptr<C2LinearBlock> block;
C2MemoryUsage usage = {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
c2_status_t err = pool->fetchLinearBlock(encoded_packet->data.frame.sz, usage, &block);
if (err != C2_OK) {
ALOGE("fetchLinearBlock for Output failed with status %d", err);
work->result = C2_NO_MEMORY;
return;
}
C2WriteView wView = block->map().get();
if (wView.error()) {
ALOGE("write view map failed %d", wView.error());
work->result = C2_CORRUPTED;
return;
}
memcpy(wView.data(), encoded_packet->data.frame.buf, encoded_packet->data.frame.sz);
++mNumInputFrames;
ALOGD("bytes generated %zu", encoded_packet->data.frame.sz);
uint32_t flags = 0;
if (end_of_stream) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
std::shared_ptr<C2Buffer> buffer =
createLinearBuffer(block, 0, encoded_packet->data.frame.sz);
if (encoded_packet->data.frame.flags & AOM_FRAME_IS_KEY) {
buffer->setInfo(std::make_shared<C2StreamPictureTypeMaskInfo::output>(
0u /* stream id */, C2Config::SYNC_FRAME));
}
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal = work->input.ordinal;
work->worklets.front()->output.ordinal.timestamp = encoded_packet->data.frame.pts;
work->workletsProcessed = 1u;
populated = true;
if (end_of_stream) {
mSignalledOutputEos = true;
ALOGV("signalled End Of Stream");
}
}
}
if (!populated) {
work->workletsProcessed = 0u;
}
}
c2_status_t C2SoftAomEnc::drain(uint32_t drainMode, const std::shared_ptr<C2BlockPool>& pool) {
(void)pool;
if (drainMode == NO_DRAIN) {
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
}
if (drainMode == DRAIN_CHAIN) {
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
}
return C2_OK;
}
class C2SoftAomEncFactory : public C2ComponentFactory {
public:
C2SoftAomEncFactory()
: mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GetCodec2PlatformComponentStore()->getParamReflector())) {}
virtual c2_status_t createComponent(c2_node_id_t id,
std::shared_ptr<C2Component>* const component,
std::function<void(C2Component*)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2SoftAomEnc(COMPONENT_NAME, id,
std::make_shared<C2SoftAomEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual c2_status_t createInterface(
c2_node_id_t id, std::shared_ptr<C2ComponentInterface>* const interface,
std::function<void(C2ComponentInterface*)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2SoftAomEnc::IntfImpl>(
COMPONENT_NAME, id, std::make_shared<C2SoftAomEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual ~C2SoftAomEncFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
__attribute__((cfi_canonical_jump_table)) extern "C" ::C2ComponentFactory* CreateCodec2Factory() {
ALOGV("in %s", __func__);
return new ::android::C2SoftAomEncFactory();
}
__attribute__((cfi_canonical_jump_table)) extern "C" void DestroyCodec2Factory(
::C2ComponentFactory* factory) {
ALOGV("in %s", __func__);
delete factory;
}