blob: 574f1b9261796364cd315fb3ab94ef5f3826ac13 [file] [log] [blame]
/*
* Copyright 2018, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "Codec2BufferUtils"
#define ATRACE_TAG ATRACE_TAG_VIDEO
#include <utils/Log.h>
#include <utils/Trace.h>
#include <libyuv.h>
#include <list>
#include <mutex>
#include <android/hardware_buffer.h>
#include <media/hardware/HardwareAPI.h>
#include <media/stagefright/foundation/ABuffer.h>
#include <media/stagefright/foundation/AMessage.h>
#include <media/stagefright/foundation/AUtils.h>
#include <media/stagefright/MediaCodecConstants.h>
#include <C2Debug.h>
#include "Codec2BufferUtils.h"
namespace android {
namespace {
/**
* A flippable, optimizable memcpy. Constructs such as (from ? src : dst)
* do not work as the results are always const.
*/
template<bool ToA, size_t S>
struct MemCopier {
template<typename A, typename B>
inline static void copy(A *a, const B *b, size_t size) {
__builtin_memcpy(a, b, size);
}
};
template<size_t S>
struct MemCopier<false, S> {
template<typename A, typename B>
inline static void copy(const A *a, B *b, size_t size) {
MemCopier<true, S>::copy(b, a, size);
}
};
/**
* Copies between a MediaImage and a graphic view.
*
* \param ToMediaImage whether to copy to (or from) the MediaImage
* \param view graphic view (could be ConstGraphicView or GraphicView depending on direction)
* \param img MediaImage data
* \param imgBase base of MediaImage (could be const uint8_t* or uint8_t* depending on direction)
*/
template<bool ToMediaImage, typename View, typename ImagePixel>
static status_t _ImageCopy(View &view, const MediaImage2 *img, ImagePixel *imgBase) {
// TODO: more efficient copying --- e.g. copy interleaved planes together, etc.
const C2PlanarLayout &layout = view.layout();
const size_t bpp = divUp(img->mBitDepthAllocated, 8u);
for (uint32_t i = 0; i < layout.numPlanes; ++i) {
typename std::conditional<ToMediaImage, uint8_t, const uint8_t>::type *imgRow =
imgBase + img->mPlane[i].mOffset;
typename std::conditional<ToMediaImage, const uint8_t, uint8_t>::type *viewRow =
viewRow = view.data()[i];
const C2PlaneInfo &plane = layout.planes[i];
if (plane.colSampling != img->mPlane[i].mHorizSubsampling
|| plane.rowSampling != img->mPlane[i].mVertSubsampling
|| plane.allocatedDepth != img->mBitDepthAllocated
|| plane.allocatedDepth < plane.bitDepth
// MediaImage only supports MSB values
|| plane.rightShift != plane.allocatedDepth - plane.bitDepth
|| (bpp > 1 && plane.endianness != plane.NATIVE)) {
return BAD_VALUE;
}
uint32_t planeW = img->mWidth / plane.colSampling;
uint32_t planeH = img->mHeight / plane.rowSampling;
bool canCopyByRow = (plane.colInc == bpp) && (img->mPlane[i].mColInc == bpp);
bool canCopyByPlane = canCopyByRow && (plane.rowInc == img->mPlane[i].mRowInc);
if (canCopyByPlane) {
MemCopier<ToMediaImage, 0>::copy(imgRow, viewRow, plane.rowInc * planeH);
} else if (canCopyByRow) {
for (uint32_t row = 0; row < planeH; ++row) {
MemCopier<ToMediaImage, 0>::copy(
imgRow, viewRow, std::min(plane.rowInc, img->mPlane[i].mRowInc));
imgRow += img->mPlane[i].mRowInc;
viewRow += plane.rowInc;
}
} else {
for (uint32_t row = 0; row < planeH; ++row) {
decltype(imgRow) imgPtr = imgRow;
decltype(viewRow) viewPtr = viewRow;
for (uint32_t col = 0; col < planeW; ++col) {
MemCopier<ToMediaImage, 0>::copy(imgPtr, viewPtr, bpp);
imgPtr += img->mPlane[i].mColInc;
viewPtr += plane.colInc;
}
imgRow += img->mPlane[i].mRowInc;
viewRow += plane.rowInc;
}
}
}
return OK;
}
} // namespace
status_t ImageCopy(uint8_t *imgBase, const MediaImage2 *img, const C2GraphicView &view) {
if (img == nullptr
|| imgBase == nullptr
|| view.crop().width != img->mWidth
|| view.crop().height != img->mHeight) {
return BAD_VALUE;
}
const uint8_t* src_y = view.data()[0];
const uint8_t* src_u = view.data()[1];
const uint8_t* src_v = view.data()[2];
int32_t src_stride_y = view.layout().planes[0].rowInc;
int32_t src_stride_u = view.layout().planes[1].rowInc;
int32_t src_stride_v = view.layout().planes[2].rowInc;
uint8_t* dst_y = imgBase + img->mPlane[0].mOffset;
uint8_t* dst_u = imgBase + img->mPlane[1].mOffset;
uint8_t* dst_v = imgBase + img->mPlane[2].mOffset;
int32_t dst_stride_y = img->mPlane[0].mRowInc;
int32_t dst_stride_u = img->mPlane[1].mRowInc;
int32_t dst_stride_v = img->mPlane[2].mRowInc;
int width = view.crop().width;
int height = view.crop().height;
if (IsNV12(view)) {
if (IsNV12(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV12->NV12");
libyuv::CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
libyuv::CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height / 2);
return OK;
} else if (IsNV21(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV12->NV21");
if (!libyuv::NV21ToNV12(src_y, src_stride_y, src_u, src_stride_u,
dst_y, dst_stride_y, dst_v, dst_stride_v, width, height)) {
return OK;
}
} else if (IsI420(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV12->I420");
if (!libyuv::NV12ToI420(src_y, src_stride_y, src_u, src_stride_u, dst_y, dst_stride_y,
dst_u, dst_stride_u, dst_v, dst_stride_v, width, height)) {
return OK;
}
}
} else if (IsNV21(view)) {
if (IsNV12(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV21->NV12");
if (!libyuv::NV21ToNV12(src_y, src_stride_y, src_v, src_stride_v,
dst_y, dst_stride_y, dst_u, dst_stride_u, width, height)) {
return OK;
}
} else if (IsNV21(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV21->NV21");
libyuv::CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
libyuv::CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height / 2);
return OK;
} else if (IsI420(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV21->I420");
if (!libyuv::NV21ToI420(src_y, src_stride_y, src_v, src_stride_v, dst_y, dst_stride_y,
dst_u, dst_stride_u, dst_v, dst_stride_v, width, height)) {
return OK;
}
}
} else if (IsI420(view)) {
if (IsNV12(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: I420->NV12");
if (!libyuv::I420ToNV12(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v,
dst_y, dst_stride_y, dst_u, dst_stride_u, width, height)) {
return OK;
}
} else if (IsNV21(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: I420->NV21");
if (!libyuv::I420ToNV21(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v,
dst_y, dst_stride_y, dst_v, dst_stride_v, width, height)) {
return OK;
}
} else if (IsI420(img)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: I420->I420");
libyuv::CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
libyuv::CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width / 2, height / 2);
libyuv::CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width / 2, height / 2);
return OK;
}
}
ScopedTrace trace(ATRACE_TAG, "ImageCopy: generic");
return _ImageCopy<true>(view, img, imgBase);
}
status_t ImageCopy(C2GraphicView &view, const uint8_t *imgBase, const MediaImage2 *img) {
if (img == nullptr
|| imgBase == nullptr
|| view.crop().width != img->mWidth
|| view.crop().height != img->mHeight) {
return BAD_VALUE;
}
const uint8_t* src_y = imgBase + img->mPlane[0].mOffset;
const uint8_t* src_u = imgBase + img->mPlane[1].mOffset;
const uint8_t* src_v = imgBase + img->mPlane[2].mOffset;
int32_t src_stride_y = img->mPlane[0].mRowInc;
int32_t src_stride_u = img->mPlane[1].mRowInc;
int32_t src_stride_v = img->mPlane[2].mRowInc;
uint8_t* dst_y = view.data()[0];
uint8_t* dst_u = view.data()[1];
uint8_t* dst_v = view.data()[2];
int32_t dst_stride_y = view.layout().planes[0].rowInc;
int32_t dst_stride_u = view.layout().planes[1].rowInc;
int32_t dst_stride_v = view.layout().planes[2].rowInc;
int width = view.crop().width;
int height = view.crop().height;
if (IsNV12(img)) {
if (IsNV12(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV12->NV12");
libyuv::CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
libyuv::CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height / 2);
return OK;
} else if (IsNV21(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV12->NV21");
if (!libyuv::NV21ToNV12(src_y, src_stride_y, src_u, src_stride_u,
dst_y, dst_stride_y, dst_v, dst_stride_v, width, height)) {
return OK;
}
} else if (IsI420(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV12->I420");
if (!libyuv::NV12ToI420(src_y, src_stride_y, src_u, src_stride_u, dst_y, dst_stride_y,
dst_u, dst_stride_u, dst_v, dst_stride_v, width, height)) {
return OK;
}
}
} else if (IsNV21(img)) {
if (IsNV12(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV21->NV12");
if (!libyuv::NV21ToNV12(src_y, src_stride_y, src_v, src_stride_v,
dst_y, dst_stride_y, dst_u, dst_stride_u, width, height)) {
return OK;
}
} else if (IsNV21(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV21->NV21");
libyuv::CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
libyuv::CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height / 2);
return OK;
} else if (IsI420(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: NV21->I420");
if (!libyuv::NV21ToI420(src_y, src_stride_y, src_v, src_stride_v, dst_y, dst_stride_y,
dst_u, dst_stride_u, dst_v, dst_stride_v, width, height)) {
return OK;
}
}
} else if (IsI420(img)) {
if (IsNV12(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: I420->NV12");
if (!libyuv::I420ToNV12(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v,
dst_y, dst_stride_y, dst_u, dst_stride_u, width, height)) {
return OK;
}
} else if (IsNV21(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: I420->NV21");
if (!libyuv::I420ToNV21(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v,
dst_y, dst_stride_y, dst_v, dst_stride_v, width, height)) {
return OK;
}
} else if (IsI420(view)) {
ScopedTrace trace(ATRACE_TAG, "ImageCopy: I420->I420");
libyuv::CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
libyuv::CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width / 2, height / 2);
libyuv::CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width / 2, height / 2);
return OK;
}
}
ScopedTrace trace(ATRACE_TAG, "ImageCopy: generic");
return _ImageCopy<false>(view, img, imgBase);
}
bool IsYUV420(const C2GraphicView &view) {
const C2PlanarLayout &layout = view.layout();
return (layout.numPlanes == 3
&& layout.type == C2PlanarLayout::TYPE_YUV
&& layout.planes[layout.PLANE_Y].channel == C2PlaneInfo::CHANNEL_Y
&& layout.planes[layout.PLANE_Y].allocatedDepth == 8
&& layout.planes[layout.PLANE_Y].bitDepth == 8
&& layout.planes[layout.PLANE_Y].rightShift == 0
&& layout.planes[layout.PLANE_Y].colSampling == 1
&& layout.planes[layout.PLANE_Y].rowSampling == 1
&& layout.planes[layout.PLANE_U].channel == C2PlaneInfo::CHANNEL_CB
&& layout.planes[layout.PLANE_U].allocatedDepth == 8
&& layout.planes[layout.PLANE_U].bitDepth == 8
&& layout.planes[layout.PLANE_U].rightShift == 0
&& layout.planes[layout.PLANE_U].colSampling == 2
&& layout.planes[layout.PLANE_U].rowSampling == 2
&& layout.planes[layout.PLANE_V].channel == C2PlaneInfo::CHANNEL_CR
&& layout.planes[layout.PLANE_V].allocatedDepth == 8
&& layout.planes[layout.PLANE_V].bitDepth == 8
&& layout.planes[layout.PLANE_V].rightShift == 0
&& layout.planes[layout.PLANE_V].colSampling == 2
&& layout.planes[layout.PLANE_V].rowSampling == 2);
}
bool IsYUV420_10bit(const C2GraphicView &view) {
const C2PlanarLayout &layout = view.layout();
return (layout.numPlanes == 3
&& layout.type == C2PlanarLayout::TYPE_YUV
&& layout.planes[layout.PLANE_Y].channel == C2PlaneInfo::CHANNEL_Y
&& layout.planes[layout.PLANE_Y].allocatedDepth == 16
&& layout.planes[layout.PLANE_Y].bitDepth == 10
&& layout.planes[layout.PLANE_Y].colSampling == 1
&& layout.planes[layout.PLANE_Y].rowSampling == 1
&& layout.planes[layout.PLANE_U].channel == C2PlaneInfo::CHANNEL_CB
&& layout.planes[layout.PLANE_U].allocatedDepth == 16
&& layout.planes[layout.PLANE_U].bitDepth == 10
&& layout.planes[layout.PLANE_U].colSampling == 2
&& layout.planes[layout.PLANE_U].rowSampling == 2
&& layout.planes[layout.PLANE_V].channel == C2PlaneInfo::CHANNEL_CR
&& layout.planes[layout.PLANE_V].allocatedDepth == 16
&& layout.planes[layout.PLANE_V].bitDepth == 10
&& layout.planes[layout.PLANE_V].colSampling == 2
&& layout.planes[layout.PLANE_V].rowSampling == 2);
}
bool IsNV12(const C2GraphicView &view) {
if (!IsYUV420(view)) {
return false;
}
const C2PlanarLayout &layout = view.layout();
return (layout.rootPlanes == 2
&& layout.planes[layout.PLANE_U].colInc == 2
&& layout.planes[layout.PLANE_U].rootIx == layout.PLANE_U
&& layout.planes[layout.PLANE_U].offset == 0
&& layout.planes[layout.PLANE_V].colInc == 2
&& layout.planes[layout.PLANE_V].rootIx == layout.PLANE_U
&& layout.planes[layout.PLANE_V].offset == 1);
}
bool IsP010(const C2GraphicView &view) {
if (!IsYUV420_10bit(view)) {
return false;
}
const C2PlanarLayout &layout = view.layout();
return (layout.rootPlanes == 2
&& layout.planes[layout.PLANE_U].colInc == 4
&& layout.planes[layout.PLANE_U].rootIx == layout.PLANE_U
&& layout.planes[layout.PLANE_U].offset == 0
&& layout.planes[layout.PLANE_V].colInc == 4
&& layout.planes[layout.PLANE_V].rootIx == layout.PLANE_U
&& layout.planes[layout.PLANE_V].offset == 2
&& layout.planes[layout.PLANE_Y].rightShift == 6
&& layout.planes[layout.PLANE_U].rightShift == 6
&& layout.planes[layout.PLANE_V].rightShift == 6);
}
bool IsNV21(const C2GraphicView &view) {
if (!IsYUV420(view)) {
return false;
}
const C2PlanarLayout &layout = view.layout();
return (layout.rootPlanes == 2
&& layout.planes[layout.PLANE_U].colInc == 2
&& layout.planes[layout.PLANE_U].rootIx == layout.PLANE_V
&& layout.planes[layout.PLANE_U].offset == 1
&& layout.planes[layout.PLANE_V].colInc == 2
&& layout.planes[layout.PLANE_V].rootIx == layout.PLANE_V
&& layout.planes[layout.PLANE_V].offset == 0);
}
bool IsI420(const C2GraphicView &view) {
if (!IsYUV420(view)) {
return false;
}
const C2PlanarLayout &layout = view.layout();
return (layout.rootPlanes == 3
&& layout.planes[layout.PLANE_U].colInc == 1
&& layout.planes[layout.PLANE_U].rootIx == layout.PLANE_U
&& layout.planes[layout.PLANE_U].offset == 0
&& layout.planes[layout.PLANE_V].colInc == 1
&& layout.planes[layout.PLANE_V].rootIx == layout.PLANE_V
&& layout.planes[layout.PLANE_V].offset == 0);
}
bool IsYUV420(const MediaImage2 *img) {
return (img->mType == MediaImage2::MEDIA_IMAGE_TYPE_YUV
&& img->mNumPlanes == 3
&& img->mBitDepth == 8
&& img->mBitDepthAllocated == 8
&& img->mPlane[0].mHorizSubsampling == 1
&& img->mPlane[0].mVertSubsampling == 1
&& img->mPlane[1].mHorizSubsampling == 2
&& img->mPlane[1].mVertSubsampling == 2
&& img->mPlane[2].mHorizSubsampling == 2
&& img->mPlane[2].mVertSubsampling == 2);
}
bool IsNV12(const MediaImage2 *img) {
if (!IsYUV420(img)) {
return false;
}
return (img->mPlane[1].mColInc == 2
&& img->mPlane[2].mColInc == 2
&& (img->mPlane[2].mOffset == img->mPlane[1].mOffset + 1));
}
bool IsNV21(const MediaImage2 *img) {
if (!IsYUV420(img)) {
return false;
}
return (img->mPlane[1].mColInc == 2
&& img->mPlane[2].mColInc == 2
&& (img->mPlane[1].mOffset == img->mPlane[2].mOffset + 1));
}
bool IsI420(const MediaImage2 *img) {
if (!IsYUV420(img)) {
return false;
}
return (img->mPlane[1].mColInc == 1
&& img->mPlane[2].mColInc == 1
&& img->mPlane[2].mOffset > img->mPlane[1].mOffset);
}
FlexLayout GetYuv420FlexibleLayout() {
static FlexLayout sLayout = []{
AHardwareBuffer_Desc desc = {
16, // width
16, // height
1, // layers
AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420,
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN,
0, // stride
0, // rfu0
0, // rfu1
};
AHardwareBuffer *buffer = nullptr;
int ret = AHardwareBuffer_allocate(&desc, &buffer);
if (ret != 0) {
return FLEX_LAYOUT_UNKNOWN;
}
class AutoCloser {
public:
AutoCloser(AHardwareBuffer *buffer) : mBuffer(buffer), mLocked(false) {}
~AutoCloser() {
if (mLocked) {
AHardwareBuffer_unlock(mBuffer, nullptr);
}
AHardwareBuffer_release(mBuffer);
}
void setLocked() { mLocked = true; }
private:
AHardwareBuffer *mBuffer;
bool mLocked;
} autoCloser(buffer);
AHardwareBuffer_Planes planes;
ret = AHardwareBuffer_lockPlanes(
buffer,
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN,
-1, // fence
nullptr, // rect
&planes);
if (ret != 0) {
AHardwareBuffer_release(buffer);
return FLEX_LAYOUT_UNKNOWN;
}
autoCloser.setLocked();
if (planes.planeCount != 3) {
return FLEX_LAYOUT_UNKNOWN;
}
if (planes.planes[0].pixelStride != 1) {
return FLEX_LAYOUT_UNKNOWN;
}
if (planes.planes[1].pixelStride == 1 && planes.planes[2].pixelStride == 1) {
return FLEX_LAYOUT_PLANAR;
}
if (planes.planes[1].pixelStride == 2 && planes.planes[2].pixelStride == 2) {
ssize_t uvDist =
static_cast<uint8_t *>(planes.planes[2].data) -
static_cast<uint8_t *>(planes.planes[1].data);
if (uvDist == 1) {
return FLEX_LAYOUT_SEMIPLANAR_UV;
} else if (uvDist == -1) {
return FLEX_LAYOUT_SEMIPLANAR_VU;
}
return FLEX_LAYOUT_UNKNOWN;
}
return FLEX_LAYOUT_UNKNOWN;
}();
return sLayout;
}
MediaImage2 CreateYUV420PlanarMediaImage2(
uint32_t width, uint32_t height, uint32_t stride, uint32_t vstride) {
return MediaImage2 {
.mType = MediaImage2::MEDIA_IMAGE_TYPE_YUV,
.mNumPlanes = 3,
.mWidth = width,
.mHeight = height,
.mBitDepth = 8,
.mBitDepthAllocated = 8,
.mPlane = {
{
.mOffset = 0,
.mColInc = 1,
.mRowInc = (int32_t)stride,
.mHorizSubsampling = 1,
.mVertSubsampling = 1,
},
{
.mOffset = stride * vstride,
.mColInc = 1,
.mRowInc = (int32_t)stride / 2,
.mHorizSubsampling = 2,
.mVertSubsampling = 2,
},
{
.mOffset = stride * vstride * 5 / 4,
.mColInc = 1,
.mRowInc = (int32_t)stride / 2,
.mHorizSubsampling = 2,
.mVertSubsampling = 2,
}
},
};
}
MediaImage2 CreateYUV420SemiPlanarMediaImage2(
uint32_t width, uint32_t height, uint32_t stride, uint32_t vstride) {
return MediaImage2 {
.mType = MediaImage2::MEDIA_IMAGE_TYPE_YUV,
.mNumPlanes = 3,
.mWidth = width,
.mHeight = height,
.mBitDepth = 8,
.mBitDepthAllocated = 8,
.mPlane = {
{
.mOffset = 0,
.mColInc = 1,
.mRowInc = (int32_t)stride,
.mHorizSubsampling = 1,
.mVertSubsampling = 1,
},
{
.mOffset = stride * vstride,
.mColInc = 2,
.mRowInc = (int32_t)stride,
.mHorizSubsampling = 2,
.mVertSubsampling = 2,
},
{
.mOffset = stride * vstride + 1,
.mColInc = 2,
.mRowInc = (int32_t)stride,
.mHorizSubsampling = 2,
.mVertSubsampling = 2,
}
},
};
}
// Matrix coefficient to convert RGB to Planar YUV data.
// Each sub-array represents the 3X3 coeff used with R, G and B
static const int16_t bt601Matrix[2][3][3] = {
{ { 77, 150, 29 }, { -43, -85, 128 }, { 128, -107, -21 } }, /* RANGE_FULL */
{ { 66, 129, 25 }, { -38, -74, 112 }, { 112, -94, -18 } }, /* RANGE_LIMITED */
};
static const int16_t bt709Matrix[2][3][3] = {
// TRICKY: 18 is adjusted to 19 so that sum of row 1 is 256
{ { 54, 183, 19 }, { -29, -99, 128 }, { 128, -116, -12 } }, /* RANGE_FULL */
// TRICKY: -87 is adjusted to -86 so that sum of row 2 is 0
{ { 47, 157, 16 }, { -26, -86, 112 }, { 112, -102, -10 } }, /* RANGE_LIMITED */
};
status_t ConvertRGBToPlanarYUV(
uint8_t *dstY, size_t dstStride, size_t dstVStride, size_t bufferSize,
const C2GraphicView &src, C2Color::matrix_t colorMatrix, C2Color::range_t colorRange) {
CHECK(dstY != nullptr);
if (dstStride * dstVStride * 3 / 2 > bufferSize) {
ALOGD("conversion buffer is too small for converting from RGB to YUV");
return NO_MEMORY;
}
uint8_t *dstU = dstY + dstStride * dstVStride;
uint8_t *dstV = dstU + (dstStride >> 1) * (dstVStride >> 1);
const C2PlanarLayout &layout = src.layout();
const uint8_t *pRed = src.data()[C2PlanarLayout::PLANE_R];
const uint8_t *pGreen = src.data()[C2PlanarLayout::PLANE_G];
const uint8_t *pBlue = src.data()[C2PlanarLayout::PLANE_B];
// set default range as limited
if (colorRange != C2Color::RANGE_FULL && colorRange != C2Color::RANGE_LIMITED) {
colorRange = C2Color::RANGE_LIMITED;
}
const int16_t (*weights)[3] =
(colorMatrix == C2Color::MATRIX_BT709) ?
bt709Matrix[colorRange - 1] : bt601Matrix[colorRange - 1];
uint8_t zeroLvl = colorRange == C2Color::RANGE_FULL ? 0 : 16;
uint8_t maxLvlLuma = colorRange == C2Color::RANGE_FULL ? 255 : 235;
uint8_t maxLvlChroma = colorRange == C2Color::RANGE_FULL ? 255 : 240;
#define CLIP3(min,v,max) (((v) < (min)) ? (min) : (((max) > (v)) ? (v) : (max)))
for (size_t y = 0; y < src.crop().height; ++y) {
for (size_t x = 0; x < src.crop().width; ++x) {
uint8_t r = *pRed;
uint8_t g = *pGreen;
uint8_t b = *pBlue;
unsigned luma = ((r * weights[0][0] + g * weights[0][1] + b * weights[0][2]) >> 8) +
zeroLvl;
dstY[x] = CLIP3(zeroLvl, luma, maxLvlLuma);
if ((x & 1) == 0 && (y & 1) == 0) {
unsigned U = ((r * weights[1][0] + g * weights[1][1] + b * weights[1][2]) >> 8) +
128;
unsigned V = ((r * weights[2][0] + g * weights[2][1] + b * weights[2][2]) >> 8) +
128;
dstU[x >> 1] = CLIP3(zeroLvl, U, maxLvlChroma);
dstV[x >> 1] = CLIP3(zeroLvl, V, maxLvlChroma);
}
pRed += layout.planes[C2PlanarLayout::PLANE_R].colInc;
pGreen += layout.planes[C2PlanarLayout::PLANE_G].colInc;
pBlue += layout.planes[C2PlanarLayout::PLANE_B].colInc;
}
if ((y & 1) == 0) {
dstU += dstStride >> 1;
dstV += dstStride >> 1;
}
pRed -= layout.planes[C2PlanarLayout::PLANE_R].colInc * src.width();
pGreen -= layout.planes[C2PlanarLayout::PLANE_G].colInc * src.width();
pBlue -= layout.planes[C2PlanarLayout::PLANE_B].colInc * src.width();
pRed += layout.planes[C2PlanarLayout::PLANE_R].rowInc;
pGreen += layout.planes[C2PlanarLayout::PLANE_G].rowInc;
pBlue += layout.planes[C2PlanarLayout::PLANE_B].rowInc;
dstY += dstStride;
}
return OK;
}
namespace {
/**
* A block of raw allocated memory.
*/
struct MemoryBlockPoolBlock {
MemoryBlockPoolBlock(size_t size)
: mData(new uint8_t[size]), mSize(mData ? size : 0) { }
~MemoryBlockPoolBlock() {
delete[] mData;
}
const uint8_t *data() const {
return mData;
}
size_t size() const {
return mSize;
}
C2_DO_NOT_COPY(MemoryBlockPoolBlock);
private:
uint8_t *mData;
size_t mSize;
};
/**
* A simple raw memory block pool implementation.
*/
struct MemoryBlockPoolImpl {
void release(std::list<MemoryBlockPoolBlock>::const_iterator block) {
std::lock_guard<std::mutex> lock(mMutex);
// return block to free blocks if it is the current size; otherwise, discard
if (block->size() == mCurrentSize) {
mFreeBlocks.splice(mFreeBlocks.begin(), mBlocksInUse, block);
} else {
mBlocksInUse.erase(block);
}
}
std::list<MemoryBlockPoolBlock>::const_iterator fetch(size_t size) {
std::lock_guard<std::mutex> lock(mMutex);
mFreeBlocks.remove_if([size](const MemoryBlockPoolBlock &block) -> bool {
return block.size() != size;
});
mCurrentSize = size;
if (mFreeBlocks.empty()) {
mBlocksInUse.emplace_front(size);
} else {
mBlocksInUse.splice(mBlocksInUse.begin(), mFreeBlocks, mFreeBlocks.begin());
}
return mBlocksInUse.begin();
}
MemoryBlockPoolImpl() = default;
C2_DO_NOT_COPY(MemoryBlockPoolImpl);
private:
std::mutex mMutex;
std::list<MemoryBlockPoolBlock> mFreeBlocks;
std::list<MemoryBlockPoolBlock> mBlocksInUse;
size_t mCurrentSize;
};
} // namespace
struct MemoryBlockPool::Impl : MemoryBlockPoolImpl {
};
struct MemoryBlock::Impl {
Impl(std::list<MemoryBlockPoolBlock>::const_iterator block,
std::shared_ptr<MemoryBlockPoolImpl> pool)
: mBlock(block), mPool(pool) {
}
~Impl() {
mPool->release(mBlock);
}
const uint8_t *data() const {
return mBlock->data();
}
size_t size() const {
return mBlock->size();
}
private:
std::list<MemoryBlockPoolBlock>::const_iterator mBlock;
std::shared_ptr<MemoryBlockPoolImpl> mPool;
};
MemoryBlock MemoryBlockPool::fetch(size_t size) {
std::list<MemoryBlockPoolBlock>::const_iterator poolBlock = mImpl->fetch(size);
return MemoryBlock(std::make_shared<MemoryBlock::Impl>(
poolBlock, std::static_pointer_cast<MemoryBlockPoolImpl>(mImpl)));
}
MemoryBlockPool::MemoryBlockPool()
: mImpl(std::make_shared<MemoryBlockPool::Impl>()) {
}
MemoryBlock::MemoryBlock(std::shared_ptr<MemoryBlock::Impl> impl)
: mImpl(impl) {
}
MemoryBlock::MemoryBlock() = default;
MemoryBlock::~MemoryBlock() = default;
const uint8_t* MemoryBlock::data() const {
return mImpl ? mImpl->data() : nullptr;
}
size_t MemoryBlock::size() const {
return mImpl ? mImpl->size() : 0;
}
MemoryBlock MemoryBlock::Allocate(size_t size) {
return MemoryBlockPool().fetch(size);
}
GraphicView2MediaImageConverter::GraphicView2MediaImageConverter(
const C2GraphicView &view, const sp<AMessage> &format, bool copy)
: mInitCheck(NO_INIT),
mView(view),
mWidth(view.width()),
mHeight(view.height()),
mAllocatedDepth(0),
mBackBufferSize(0),
mMediaImage(new ABuffer(sizeof(MediaImage2))) {
ATRACE_CALL();
if (!format->findInt32(KEY_COLOR_FORMAT, &mClientColorFormat)) {
mClientColorFormat = COLOR_FormatYUV420Flexible;
}
if (!format->findInt32("android._color-format", &mComponentColorFormat)) {
mComponentColorFormat = COLOR_FormatYUV420Flexible;
}
if (view.error() != C2_OK) {
ALOGD("Converter: view.error() = %d", view.error());
mInitCheck = BAD_VALUE;
return;
}
MediaImage2 *mediaImage = (MediaImage2 *)mMediaImage->base();
const C2PlanarLayout &layout = view.layout();
if (layout.numPlanes == 0) {
ALOGD("Converter: 0 planes");
mInitCheck = BAD_VALUE;
return;
}
memset(mediaImage, 0, sizeof(*mediaImage));
mAllocatedDepth = layout.planes[0].allocatedDepth;
uint32_t bitDepth = layout.planes[0].bitDepth;
// align width and height to support subsampling cleanly
uint32_t stride = align(view.crop().width, 2) * divUp(layout.planes[0].allocatedDepth, 8u);
uint32_t vStride = align(view.crop().height, 2);
bool tryWrapping = !copy;
switch (layout.type) {
case C2PlanarLayout::TYPE_YUV: {
mediaImage->mType = MediaImage2::MEDIA_IMAGE_TYPE_YUV;
if (layout.numPlanes != 3) {
ALOGD("Converter: %d planes for YUV layout", layout.numPlanes);
mInitCheck = BAD_VALUE;
return;
}
std::optional<int> clientBitDepth = {};
switch (mClientColorFormat) {
case COLOR_FormatYUVP010:
clientBitDepth = 10;
break;
case COLOR_FormatYUV411PackedPlanar:
case COLOR_FormatYUV411Planar:
case COLOR_FormatYUV420Flexible:
case COLOR_FormatYUV420PackedPlanar:
case COLOR_FormatYUV420PackedSemiPlanar:
case COLOR_FormatYUV420Planar:
case COLOR_FormatYUV420SemiPlanar:
case COLOR_FormatYUV422Flexible:
case COLOR_FormatYUV422PackedPlanar:
case COLOR_FormatYUV422PackedSemiPlanar:
case COLOR_FormatYUV422Planar:
case COLOR_FormatYUV422SemiPlanar:
case COLOR_FormatYUV444Flexible:
case COLOR_FormatYUV444Interleaved:
clientBitDepth = 8;
break;
default:
// no-op; used with optional
break;
}
// conversion fails if client bit-depth and the component bit-depth differs
if ((clientBitDepth) && (bitDepth != clientBitDepth.value())) {
ALOGD("Bit depth of client: %d and component: %d differs",
*clientBitDepth, bitDepth);
mInitCheck = BAD_VALUE;
return;
}
C2PlaneInfo yPlane = layout.planes[C2PlanarLayout::PLANE_Y];
C2PlaneInfo uPlane = layout.planes[C2PlanarLayout::PLANE_U];
C2PlaneInfo vPlane = layout.planes[C2PlanarLayout::PLANE_V];
if (yPlane.channel != C2PlaneInfo::CHANNEL_Y
|| uPlane.channel != C2PlaneInfo::CHANNEL_CB
|| vPlane.channel != C2PlaneInfo::CHANNEL_CR) {
ALOGD("Converter: not YUV layout");
mInitCheck = BAD_VALUE;
return;
}
bool yuv420888 = yPlane.rowSampling == 1 && yPlane.colSampling == 1
&& uPlane.rowSampling == 2 && uPlane.colSampling == 2
&& vPlane.rowSampling == 2 && vPlane.colSampling == 2;
if (yuv420888) {
for (uint32_t i = 0; i < 3; ++i) {
const C2PlaneInfo &plane = layout.planes[i];
if (plane.allocatedDepth != 8 || plane.bitDepth != 8) {
yuv420888 = false;
break;
}
}
yuv420888 = yuv420888 && yPlane.colInc == 1 && uPlane.rowInc == vPlane.rowInc;
}
int32_t copyFormat = mClientColorFormat;
if (yuv420888 && mClientColorFormat == COLOR_FormatYUV420Flexible) {
if (uPlane.colInc == 2 && vPlane.colInc == 2
&& yPlane.rowInc == uPlane.rowInc) {
copyFormat = COLOR_FormatYUV420PackedSemiPlanar;
} else if (uPlane.colInc == 1 && vPlane.colInc == 1
&& yPlane.rowInc == uPlane.rowInc * 2) {
copyFormat = COLOR_FormatYUV420PackedPlanar;
}
}
ALOGV("client_fmt=0x%x y:{colInc=%d rowInc=%d} u:{colInc=%d rowInc=%d} "
"v:{colInc=%d rowInc=%d}",
mClientColorFormat,
yPlane.colInc, yPlane.rowInc,
uPlane.colInc, uPlane.rowInc,
vPlane.colInc, vPlane.rowInc);
switch (copyFormat) {
case COLOR_FormatYUV420Flexible:
case COLOR_FormatYUV420Planar:
case COLOR_FormatYUV420PackedPlanar:
mediaImage->mPlane[mediaImage->Y].mOffset = 0;
mediaImage->mPlane[mediaImage->Y].mColInc = 1;
mediaImage->mPlane[mediaImage->Y].mRowInc = stride;
mediaImage->mPlane[mediaImage->Y].mHorizSubsampling = 1;
mediaImage->mPlane[mediaImage->Y].mVertSubsampling = 1;
mediaImage->mPlane[mediaImage->U].mOffset = stride * vStride;
mediaImage->mPlane[mediaImage->U].mColInc = 1;
mediaImage->mPlane[mediaImage->U].mRowInc = stride / 2;
mediaImage->mPlane[mediaImage->U].mHorizSubsampling = 2;
mediaImage->mPlane[mediaImage->U].mVertSubsampling = 2;
mediaImage->mPlane[mediaImage->V].mOffset = stride * vStride * 5 / 4;
mediaImage->mPlane[mediaImage->V].mColInc = 1;
mediaImage->mPlane[mediaImage->V].mRowInc = stride / 2;
mediaImage->mPlane[mediaImage->V].mHorizSubsampling = 2;
mediaImage->mPlane[mediaImage->V].mVertSubsampling = 2;
if (tryWrapping && mClientColorFormat != COLOR_FormatYUV420Flexible) {
tryWrapping = yuv420888 && uPlane.colInc == 1 && vPlane.colInc == 1
&& yPlane.rowInc == uPlane.rowInc * 2
&& view.data()[0] < view.data()[1]
&& view.data()[1] < view.data()[2];
}
break;
case COLOR_FormatYUV420SemiPlanar:
case COLOR_FormatYUV420PackedSemiPlanar:
mediaImage->mPlane[mediaImage->Y].mOffset = 0;
mediaImage->mPlane[mediaImage->Y].mColInc = 1;
mediaImage->mPlane[mediaImage->Y].mRowInc = stride;
mediaImage->mPlane[mediaImage->Y].mHorizSubsampling = 1;
mediaImage->mPlane[mediaImage->Y].mVertSubsampling = 1;
mediaImage->mPlane[mediaImage->U].mOffset = stride * vStride;
mediaImage->mPlane[mediaImage->U].mColInc = 2;
mediaImage->mPlane[mediaImage->U].mRowInc = stride;
mediaImage->mPlane[mediaImage->U].mHorizSubsampling = 2;
mediaImage->mPlane[mediaImage->U].mVertSubsampling = 2;
mediaImage->mPlane[mediaImage->V].mOffset = stride * vStride + 1;
mediaImage->mPlane[mediaImage->V].mColInc = 2;
mediaImage->mPlane[mediaImage->V].mRowInc = stride;
mediaImage->mPlane[mediaImage->V].mHorizSubsampling = 2;
mediaImage->mPlane[mediaImage->V].mVertSubsampling = 2;
if (tryWrapping && mClientColorFormat != COLOR_FormatYUV420Flexible) {
tryWrapping = yuv420888 && uPlane.colInc == 2 && vPlane.colInc == 2
&& yPlane.rowInc == uPlane.rowInc
&& view.data()[0] < view.data()[1]
&& view.data()[1] < view.data()[2];
}
break;
case COLOR_FormatYUVP010:
// stride is in bytes
mediaImage->mPlane[mediaImage->Y].mOffset = 0;
mediaImage->mPlane[mediaImage->Y].mColInc = 2;
mediaImage->mPlane[mediaImage->Y].mRowInc = stride;
mediaImage->mPlane[mediaImage->Y].mHorizSubsampling = 1;
mediaImage->mPlane[mediaImage->Y].mVertSubsampling = 1;
mediaImage->mPlane[mediaImage->U].mOffset = stride * vStride;
mediaImage->mPlane[mediaImage->U].mColInc = 4;
mediaImage->mPlane[mediaImage->U].mRowInc = stride;
mediaImage->mPlane[mediaImage->U].mHorizSubsampling = 2;
mediaImage->mPlane[mediaImage->U].mVertSubsampling = 2;
mediaImage->mPlane[mediaImage->V].mOffset = stride * vStride + 2;
mediaImage->mPlane[mediaImage->V].mColInc = 4;
mediaImage->mPlane[mediaImage->V].mRowInc = stride;
mediaImage->mPlane[mediaImage->V].mHorizSubsampling = 2;
mediaImage->mPlane[mediaImage->V].mVertSubsampling = 2;
if (tryWrapping) {
tryWrapping = yPlane.allocatedDepth == 16
&& uPlane.allocatedDepth == 16
&& vPlane.allocatedDepth == 16
&& yPlane.bitDepth == 10
&& uPlane.bitDepth == 10
&& vPlane.bitDepth == 10
&& yPlane.rightShift == 6
&& uPlane.rightShift == 6
&& vPlane.rightShift == 6
&& yPlane.rowSampling == 1 && yPlane.colSampling == 1
&& uPlane.rowSampling == 2 && uPlane.colSampling == 2
&& vPlane.rowSampling == 2 && vPlane.colSampling == 2
&& yPlane.colInc == 2
&& uPlane.colInc == 4
&& vPlane.colInc == 4
&& yPlane.rowInc == uPlane.rowInc
&& yPlane.rowInc == vPlane.rowInc;
}
break;
default: {
// default to fully planar format --- this will be overridden if wrapping
// TODO: keep interleaved format
int32_t colInc = divUp(mAllocatedDepth, 8u);
int32_t rowInc = stride * colInc / yPlane.colSampling;
mediaImage->mPlane[mediaImage->Y].mOffset = 0;
mediaImage->mPlane[mediaImage->Y].mColInc = colInc;
mediaImage->mPlane[mediaImage->Y].mRowInc = rowInc;
mediaImage->mPlane[mediaImage->Y].mHorizSubsampling = yPlane.colSampling;
mediaImage->mPlane[mediaImage->Y].mVertSubsampling = yPlane.rowSampling;
int32_t offset = rowInc * vStride / yPlane.rowSampling;
rowInc = stride * colInc / uPlane.colSampling;
mediaImage->mPlane[mediaImage->U].mOffset = offset;
mediaImage->mPlane[mediaImage->U].mColInc = colInc;
mediaImage->mPlane[mediaImage->U].mRowInc = rowInc;
mediaImage->mPlane[mediaImage->U].mHorizSubsampling = uPlane.colSampling;
mediaImage->mPlane[mediaImage->U].mVertSubsampling = uPlane.rowSampling;
offset += rowInc * vStride / uPlane.rowSampling;
rowInc = stride * colInc / vPlane.colSampling;
mediaImage->mPlane[mediaImage->V].mOffset = offset;
mediaImage->mPlane[mediaImage->V].mColInc = colInc;
mediaImage->mPlane[mediaImage->V].mRowInc = rowInc;
mediaImage->mPlane[mediaImage->V].mHorizSubsampling = vPlane.colSampling;
mediaImage->mPlane[mediaImage->V].mVertSubsampling = vPlane.rowSampling;
break;
}
}
break;
}
case C2PlanarLayout::TYPE_YUVA:
ALOGD("Converter: unrecognized color format "
"(client %d component %d) for YUVA layout",
mClientColorFormat, mComponentColorFormat);
mInitCheck = NO_INIT;
return;
case C2PlanarLayout::TYPE_RGB:
mediaImage->mType = MediaImage2::MEDIA_IMAGE_TYPE_RGB;
// TODO: support MediaImage layout
switch (mClientColorFormat) {
case COLOR_FormatSurface:
case COLOR_FormatRGBFlexible:
case COLOR_Format24bitBGR888:
case COLOR_Format24bitRGB888:
ALOGD("Converter: accept color format "
"(client %d component %d) for RGB layout",
mClientColorFormat, mComponentColorFormat);
break;
default:
ALOGD("Converter: unrecognized color format "
"(client %d component %d) for RGB layout",
mClientColorFormat, mComponentColorFormat);
mInitCheck = BAD_VALUE;
return;
}
if (layout.numPlanes != 3) {
ALOGD("Converter: %d planes for RGB layout", layout.numPlanes);
mInitCheck = BAD_VALUE;
return;
}
break;
case C2PlanarLayout::TYPE_RGBA:
mediaImage->mType = MediaImage2::MEDIA_IMAGE_TYPE_RGBA;
// TODO: support MediaImage layout
switch (mClientColorFormat) {
case COLOR_FormatSurface:
case COLOR_FormatRGBAFlexible:
case COLOR_Format32bitABGR8888:
case COLOR_Format32bitARGB8888:
case COLOR_Format32bitBGRA8888:
ALOGD("Converter: accept color format "
"(client %d component %d) for RGBA layout",
mClientColorFormat, mComponentColorFormat);
break;
default:
ALOGD("Converter: unrecognized color format "
"(client %d component %d) for RGBA layout",
mClientColorFormat, mComponentColorFormat);
mInitCheck = BAD_VALUE;
return;
}
if (layout.numPlanes != 4) {
ALOGD("Converter: %d planes for RGBA layout", layout.numPlanes);
mInitCheck = BAD_VALUE;
return;
}
break;
default:
mediaImage->mType = MediaImage2::MEDIA_IMAGE_TYPE_UNKNOWN;
if (layout.numPlanes == 1) {
const C2PlaneInfo &plane = layout.planes[0];
if (plane.colInc < 0 || plane.rowInc < 0) {
// Copy-only if we have negative colInc/rowInc
tryWrapping = false;
}
mediaImage->mPlane[0].mOffset = 0;
mediaImage->mPlane[0].mColInc = std::abs(plane.colInc);
mediaImage->mPlane[0].mRowInc = std::abs(plane.rowInc);
mediaImage->mPlane[0].mHorizSubsampling = plane.colSampling;
mediaImage->mPlane[0].mVertSubsampling = plane.rowSampling;
} else {
ALOGD("Converter: unrecognized layout: color format (client %d component %d)",
mClientColorFormat, mComponentColorFormat);
mInitCheck = NO_INIT;
return;
}
break;
}
if (tryWrapping) {
// try to map directly. check if the planes are near one another
const uint8_t *minPtr = mView.data()[0];
const uint8_t *maxPtr = mView.data()[0];
int32_t planeSize = 0;
for (uint32_t i = 0; i < layout.numPlanes; ++i) {
const C2PlaneInfo &plane = layout.planes[i];
int64_t planeStride = std::abs(plane.rowInc / plane.colInc);
ssize_t minOffset = plane.minOffset(
mWidth / plane.colSampling, mHeight / plane.rowSampling);
ssize_t maxOffset = plane.maxOffset(
mWidth / plane.colSampling, mHeight / plane.rowSampling);
if (minPtr > mView.data()[i] + minOffset) {
minPtr = mView.data()[i] + minOffset;
}
if (maxPtr < mView.data()[i] + maxOffset) {
maxPtr = mView.data()[i] + maxOffset;
}
planeSize += planeStride * divUp(mAllocatedDepth, 8u)
* align(mHeight, 64) / plane.rowSampling;
}
if (minPtr == mView.data()[0] && (maxPtr - minPtr) <= planeSize) {
// FIXME: this is risky as reading/writing data out of bound results
// in an undefined behavior, but gralloc does assume a
// contiguous mapping
for (uint32_t i = 0; i < layout.numPlanes; ++i) {
const C2PlaneInfo &plane = layout.planes[i];
mediaImage->mPlane[i].mOffset = mView.data()[i] - minPtr;
mediaImage->mPlane[i].mColInc = plane.colInc;
mediaImage->mPlane[i].mRowInc = plane.rowInc;
mediaImage->mPlane[i].mHorizSubsampling = plane.colSampling;
mediaImage->mPlane[i].mVertSubsampling = plane.rowSampling;
}
mWrapped = new ABuffer(const_cast<uint8_t *>(minPtr), maxPtr - minPtr);
ALOGV("Converter: wrapped (capacity=%zu)", mWrapped->capacity());
}
}
mediaImage->mNumPlanes = layout.numPlanes;
mediaImage->mWidth = view.crop().width;
mediaImage->mHeight = view.crop().height;
mediaImage->mBitDepth = bitDepth;
mediaImage->mBitDepthAllocated = mAllocatedDepth;
uint32_t bufferSize = 0;
for (uint32_t i = 0; i < layout.numPlanes; ++i) {
const C2PlaneInfo &plane = layout.planes[i];
if (plane.allocatedDepth < plane.bitDepth
|| plane.rightShift != plane.allocatedDepth - plane.bitDepth) {
ALOGD("rightShift value of %u unsupported", plane.rightShift);
mInitCheck = BAD_VALUE;
return;
}
if (plane.allocatedDepth > 8 && plane.endianness != C2PlaneInfo::NATIVE) {
ALOGD("endianness value of %u unsupported", plane.endianness);
mInitCheck = BAD_VALUE;
return;
}
if (plane.allocatedDepth != mAllocatedDepth || plane.bitDepth != bitDepth) {
ALOGD("different allocatedDepth/bitDepth per plane unsupported");
mInitCheck = BAD_VALUE;
return;
}
// stride is in bytes
bufferSize += stride * vStride / plane.rowSampling / plane.colSampling;
}
mBackBufferSize = bufferSize;
mInitCheck = OK;
}
status_t GraphicView2MediaImageConverter::initCheck() const { return mInitCheck; }
uint32_t GraphicView2MediaImageConverter::backBufferSize() const { return mBackBufferSize; }
sp<ABuffer> GraphicView2MediaImageConverter::wrap() const {
if (mBackBuffer == nullptr) {
return mWrapped;
}
return nullptr;
}
bool GraphicView2MediaImageConverter::setBackBuffer(const sp<ABuffer> &backBuffer) {
if (backBuffer == nullptr) {
return false;
}
if (backBuffer->capacity() < mBackBufferSize) {
return false;
}
backBuffer->setRange(0, mBackBufferSize);
mBackBuffer = backBuffer;
return true;
}
status_t GraphicView2MediaImageConverter::copyToMediaImage() {
ATRACE_CALL();
if (mInitCheck != OK) {
return mInitCheck;
}
return ImageCopy(mBackBuffer->base(), getMediaImage(), mView);
}
const sp<ABuffer> &GraphicView2MediaImageConverter::imageData() const { return mMediaImage; }
MediaImage2 *GraphicView2MediaImageConverter::getMediaImage() {
return (MediaImage2 *)mMediaImage->base();
}
} // namespace android