|  | /* | 
|  | * Copyright (C) 2007 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "AudioResampler" | 
|  | //#define LOG_NDEBUG 0 | 
|  |  | 
|  | #include <pthread.h> | 
|  | #include <stdint.h> | 
|  | #include <stdlib.h> | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #include <cutils/properties.h> | 
|  | #include <log/log.h> | 
|  |  | 
|  | #include <audio_utils/primitives.h> | 
|  | #include <media/AudioResampler.h> | 
|  | #include "AudioResamplerSinc.h" | 
|  | #include "AudioResamplerCubic.h" | 
|  | #include "AudioResamplerDyn.h" | 
|  |  | 
|  | #ifdef __arm__ | 
|  | // bug 13102576 | 
|  | //#define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1 | 
|  | #endif | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | class AudioResamplerOrder1 : public AudioResampler { | 
|  | public: | 
|  | AudioResamplerOrder1(int inChannelCount, int32_t sampleRate) : | 
|  | AudioResampler(inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) { | 
|  | } | 
|  | virtual size_t resample(int32_t* out, size_t outFrameCount, | 
|  | AudioBufferProvider* provider); | 
|  | private: | 
|  | // number of bits used in interpolation multiply - 15 bits avoids overflow | 
|  | static const int kNumInterpBits = 15; | 
|  |  | 
|  | // bits to shift the phase fraction down to avoid overflow | 
|  | static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits; | 
|  |  | 
|  | void init() {} | 
|  | size_t resampleMono16(int32_t* out, size_t outFrameCount, | 
|  | AudioBufferProvider* provider); | 
|  | size_t resampleStereo16(int32_t* out, size_t outFrameCount, | 
|  | AudioBufferProvider* provider); | 
|  | #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1 | 
|  | void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, | 
|  | size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, | 
|  | uint32_t &phaseFraction, uint32_t phaseIncrement); | 
|  | void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, | 
|  | size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, | 
|  | uint32_t &phaseFraction, uint32_t phaseIncrement); | 
|  | #endif  // ASM_ARM_RESAMP1 | 
|  |  | 
|  | static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) { | 
|  | return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits); | 
|  | } | 
|  | static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) { | 
|  | *frac += inc; | 
|  | *index += (size_t)(*frac >> kNumPhaseBits); | 
|  | *frac &= kPhaseMask; | 
|  | } | 
|  | int mX0L; | 
|  | int mX0R; | 
|  | }; | 
|  |  | 
|  | /*static*/ | 
|  | const double AudioResampler::kPhaseMultiplier = 1L << AudioResampler::kNumPhaseBits; | 
|  |  | 
|  | bool AudioResampler::qualityIsSupported(src_quality quality) | 
|  | { | 
|  | switch (quality) { | 
|  | case DEFAULT_QUALITY: | 
|  | case LOW_QUALITY: | 
|  | case MED_QUALITY: | 
|  | case HIGH_QUALITY: | 
|  | case VERY_HIGH_QUALITY: | 
|  | case DYN_LOW_QUALITY: | 
|  | case DYN_MED_QUALITY: | 
|  | case DYN_HIGH_QUALITY: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | static pthread_once_t once_control = PTHREAD_ONCE_INIT; | 
|  | static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY; | 
|  |  | 
|  | void AudioResampler::init_routine() | 
|  | { | 
|  | char value[PROPERTY_VALUE_MAX]; | 
|  | if (property_get("af.resampler.quality", value, NULL) > 0) { | 
|  | char *endptr; | 
|  | unsigned long l = strtoul(value, &endptr, 0); | 
|  | if (*endptr == '\0') { | 
|  | defaultQuality = (src_quality) l; | 
|  | ALOGD("forcing AudioResampler quality to %d", defaultQuality); | 
|  | if (defaultQuality < DEFAULT_QUALITY || defaultQuality > DYN_HIGH_QUALITY) { | 
|  | defaultQuality = DEFAULT_QUALITY; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t AudioResampler::qualityMHz(src_quality quality) | 
|  | { | 
|  | switch (quality) { | 
|  | default: | 
|  | case DEFAULT_QUALITY: | 
|  | case LOW_QUALITY: | 
|  | return 3; | 
|  | case MED_QUALITY: | 
|  | return 6; | 
|  | case HIGH_QUALITY: | 
|  | return 20; | 
|  | case VERY_HIGH_QUALITY: | 
|  | return 34; | 
|  | case DYN_LOW_QUALITY: | 
|  | return 4; | 
|  | case DYN_MED_QUALITY: | 
|  | return 6; | 
|  | case DYN_HIGH_QUALITY: | 
|  | return 12; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable | 
|  | static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; | 
|  | static uint32_t currentMHz = 0; | 
|  |  | 
|  | AudioResampler* AudioResampler::create(audio_format_t format, int inChannelCount, | 
|  | int32_t sampleRate, src_quality quality) { | 
|  |  | 
|  | bool atFinalQuality; | 
|  | if (quality == DEFAULT_QUALITY) { | 
|  | // read the resampler default quality property the first time it is needed | 
|  | int ok = pthread_once(&once_control, init_routine); | 
|  | if (ok != 0) { | 
|  | ALOGE("%s pthread_once failed: %d", __func__, ok); | 
|  | } | 
|  | quality = defaultQuality; | 
|  | atFinalQuality = false; | 
|  | } else { | 
|  | atFinalQuality = true; | 
|  | } | 
|  |  | 
|  | /* if the caller requests DEFAULT_QUALITY and af.resampler.property | 
|  | * has not been set, the target resampler quality is set to DYN_MED_QUALITY, | 
|  | * and allowed to "throttle" down to DYN_LOW_QUALITY if necessary | 
|  | * due to estimated CPU load of having too many active resamplers | 
|  | * (the code below the if). | 
|  | */ | 
|  | if (quality == DEFAULT_QUALITY) { | 
|  | quality = DYN_MED_QUALITY; | 
|  | } | 
|  |  | 
|  | // naive implementation of CPU load throttling doesn't account for whether resampler is active | 
|  | pthread_mutex_lock(&mutex); | 
|  | for (;;) { | 
|  | uint32_t deltaMHz = qualityMHz(quality); | 
|  | uint32_t newMHz = currentMHz + deltaMHz; | 
|  | if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) { | 
|  | ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d", | 
|  | currentMHz, newMHz, deltaMHz, quality); | 
|  | currentMHz = newMHz; | 
|  | break; | 
|  | } | 
|  | // not enough CPU available for proposed quality level, so try next lowest level | 
|  | switch (quality) { | 
|  | default: | 
|  | case LOW_QUALITY: | 
|  | atFinalQuality = true; | 
|  | break; | 
|  | case MED_QUALITY: | 
|  | quality = LOW_QUALITY; | 
|  | break; | 
|  | case HIGH_QUALITY: | 
|  | quality = MED_QUALITY; | 
|  | break; | 
|  | case VERY_HIGH_QUALITY: | 
|  | quality = HIGH_QUALITY; | 
|  | break; | 
|  | case DYN_LOW_QUALITY: | 
|  | atFinalQuality = true; | 
|  | break; | 
|  | case DYN_MED_QUALITY: | 
|  | quality = DYN_LOW_QUALITY; | 
|  | break; | 
|  | case DYN_HIGH_QUALITY: | 
|  | quality = DYN_MED_QUALITY; | 
|  | break; | 
|  | } | 
|  | } | 
|  | pthread_mutex_unlock(&mutex); | 
|  |  | 
|  | AudioResampler* resampler; | 
|  |  | 
|  | switch (quality) { | 
|  | default: | 
|  | case LOW_QUALITY: | 
|  | ALOGV("Create linear Resampler"); | 
|  | LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); | 
|  | resampler = new AudioResamplerOrder1(inChannelCount, sampleRate); | 
|  | break; | 
|  | case MED_QUALITY: | 
|  | ALOGV("Create cubic Resampler"); | 
|  | LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); | 
|  | resampler = new AudioResamplerCubic(inChannelCount, sampleRate); | 
|  | break; | 
|  | case HIGH_QUALITY: | 
|  | ALOGV("Create HIGH_QUALITY sinc Resampler"); | 
|  | LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); | 
|  | resampler = new AudioResamplerSinc(inChannelCount, sampleRate); | 
|  | break; | 
|  | case VERY_HIGH_QUALITY: | 
|  | ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality); | 
|  | LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); | 
|  | resampler = new AudioResamplerSinc(inChannelCount, sampleRate, quality); | 
|  | break; | 
|  | case DYN_LOW_QUALITY: | 
|  | case DYN_MED_QUALITY: | 
|  | case DYN_HIGH_QUALITY: | 
|  | ALOGV("Create dynamic Resampler = %d", quality); | 
|  | if (format == AUDIO_FORMAT_PCM_FLOAT) { | 
|  | resampler = new AudioResamplerDyn<float, float, float>(inChannelCount, | 
|  | sampleRate, quality); | 
|  | } else { | 
|  | LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT); | 
|  | if (quality == DYN_HIGH_QUALITY) { | 
|  | resampler = new AudioResamplerDyn<int32_t, int16_t, int32_t>(inChannelCount, | 
|  | sampleRate, quality); | 
|  | } else { | 
|  | resampler = new AudioResamplerDyn<int16_t, int16_t, int32_t>(inChannelCount, | 
|  | sampleRate, quality); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // initialize resampler | 
|  | resampler->init(); | 
|  | return resampler; | 
|  | } | 
|  |  | 
|  | AudioResampler::AudioResampler(int inChannelCount, | 
|  | int32_t sampleRate, src_quality quality) : | 
|  | mChannelCount(inChannelCount), | 
|  | mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0), | 
|  | mPhaseFraction(0), | 
|  | mQuality(quality) { | 
|  |  | 
|  | const int maxChannels = quality < DYN_LOW_QUALITY ? 2 : 8; | 
|  | if (inChannelCount < 1 | 
|  | || inChannelCount > maxChannels) { | 
|  | LOG_ALWAYS_FATAL("Unsupported sample format %d quality %d channels", | 
|  | quality, inChannelCount); | 
|  | } | 
|  | if (sampleRate <= 0) { | 
|  | LOG_ALWAYS_FATAL("Unsupported sample rate %d Hz", sampleRate); | 
|  | } | 
|  |  | 
|  | // initialize common members | 
|  | mVolume[0] = mVolume[1] = 0; | 
|  | mBuffer.frameCount = 0; | 
|  | } | 
|  |  | 
|  | AudioResampler::~AudioResampler() { | 
|  | pthread_mutex_lock(&mutex); | 
|  | src_quality quality = getQuality(); | 
|  | uint32_t deltaMHz = qualityMHz(quality); | 
|  | int32_t newMHz = currentMHz - deltaMHz; | 
|  | ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d", | 
|  | currentMHz, newMHz, deltaMHz, quality); | 
|  | LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz); | 
|  | currentMHz = newMHz; | 
|  | pthread_mutex_unlock(&mutex); | 
|  | } | 
|  |  | 
|  | void AudioResampler::setSampleRate(int32_t inSampleRate) { | 
|  | mInSampleRate = inSampleRate; | 
|  | mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate); | 
|  | } | 
|  |  | 
|  | void AudioResampler::setVolume(float left, float right) { | 
|  | // TODO: Implement anti-zipper filter | 
|  | // convert to U4.12 for internal integer use (round down) | 
|  | // integer volume values are clamped to 0 to UNITY_GAIN. | 
|  | mVolume[0] = u4_12_from_float(clampFloatVol(left)); | 
|  | mVolume[1] = u4_12_from_float(clampFloatVol(right)); | 
|  | } | 
|  |  | 
|  | void AudioResampler::reset() { | 
|  | mInputIndex = 0; | 
|  | mPhaseFraction = 0; | 
|  | mBuffer.frameCount = 0; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | size_t AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount, | 
|  | AudioBufferProvider* provider) { | 
|  |  | 
|  | // should never happen, but we overflow if it does | 
|  | // ALOG_ASSERT(outFrameCount < 32767); | 
|  |  | 
|  | // select the appropriate resampler | 
|  | switch (mChannelCount) { | 
|  | case 1: | 
|  | return resampleMono16(out, outFrameCount, provider); | 
|  | case 2: | 
|  | return resampleStereo16(out, outFrameCount, provider); | 
|  | default: | 
|  | LOG_ALWAYS_FATAL("invalid channel count: %d", mChannelCount); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount, | 
|  | AudioBufferProvider* provider) { | 
|  |  | 
|  | int32_t vl = mVolume[0]; | 
|  | int32_t vr = mVolume[1]; | 
|  |  | 
|  | size_t inputIndex = mInputIndex; | 
|  | uint32_t phaseFraction = mPhaseFraction; | 
|  | uint32_t phaseIncrement = mPhaseIncrement; | 
|  | size_t outputIndex = 0; | 
|  | size_t outputSampleCount = outFrameCount * 2; | 
|  | size_t inFrameCount = getInFrameCountRequired(outFrameCount); | 
|  |  | 
|  | // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", | 
|  | //      outFrameCount, inputIndex, phaseFraction, phaseIncrement); | 
|  |  | 
|  | while (outputIndex < outputSampleCount) { | 
|  |  | 
|  | // buffer is empty, fetch a new one | 
|  | while (mBuffer.frameCount == 0) { | 
|  | mBuffer.frameCount = inFrameCount; | 
|  | provider->getNextBuffer(&mBuffer); | 
|  | if (mBuffer.raw == NULL) { | 
|  | goto resampleStereo16_exit; | 
|  | } | 
|  |  | 
|  | // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); | 
|  | if (mBuffer.frameCount > inputIndex) break; | 
|  |  | 
|  | inputIndex -= mBuffer.frameCount; | 
|  | mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; | 
|  | mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; | 
|  | provider->releaseBuffer(&mBuffer); | 
|  | // mBuffer.frameCount == 0 now so we reload a new buffer | 
|  | } | 
|  |  | 
|  | int16_t *in = mBuffer.i16; | 
|  |  | 
|  | // handle boundary case | 
|  | while (inputIndex == 0) { | 
|  | // ALOGE("boundary case"); | 
|  | out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction); | 
|  | out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction); | 
|  | Advance(&inputIndex, &phaseFraction, phaseIncrement); | 
|  | if (outputIndex == outputSampleCount) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // process input samples | 
|  | // ALOGE("general case"); | 
|  |  | 
|  | #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1 | 
|  | if (inputIndex + 2 < mBuffer.frameCount) { | 
|  | int32_t* maxOutPt; | 
|  | int32_t maxInIdx; | 
|  |  | 
|  | maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop | 
|  | maxInIdx = mBuffer.frameCount - 2; | 
|  | AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, | 
|  | phaseFraction, phaseIncrement); | 
|  | } | 
|  | #endif  // ASM_ARM_RESAMP1 | 
|  |  | 
|  | while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { | 
|  | out[outputIndex++] += vl * Interp(in[inputIndex*2-2], | 
|  | in[inputIndex*2], phaseFraction); | 
|  | out[outputIndex++] += vr * Interp(in[inputIndex*2-1], | 
|  | in[inputIndex*2+1], phaseFraction); | 
|  | Advance(&inputIndex, &phaseFraction, phaseIncrement); | 
|  | } | 
|  |  | 
|  | // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); | 
|  |  | 
|  | // if done with buffer, save samples | 
|  | if (inputIndex >= mBuffer.frameCount) { | 
|  | inputIndex -= mBuffer.frameCount; | 
|  |  | 
|  | // ALOGE("buffer done, new input index %d", inputIndex); | 
|  |  | 
|  | mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; | 
|  | mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; | 
|  | provider->releaseBuffer(&mBuffer); | 
|  |  | 
|  | // verify that the releaseBuffer resets the buffer frameCount | 
|  | // ALOG_ASSERT(mBuffer.frameCount == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); | 
|  |  | 
|  | resampleStereo16_exit: | 
|  | // save state | 
|  | mInputIndex = inputIndex; | 
|  | mPhaseFraction = phaseFraction; | 
|  | return outputIndex / 2 /* channels for stereo */; | 
|  | } | 
|  |  | 
|  | size_t AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount, | 
|  | AudioBufferProvider* provider) { | 
|  |  | 
|  | int32_t vl = mVolume[0]; | 
|  | int32_t vr = mVolume[1]; | 
|  |  | 
|  | size_t inputIndex = mInputIndex; | 
|  | uint32_t phaseFraction = mPhaseFraction; | 
|  | uint32_t phaseIncrement = mPhaseIncrement; | 
|  | size_t outputIndex = 0; | 
|  | size_t outputSampleCount = outFrameCount * 2; | 
|  | size_t inFrameCount = getInFrameCountRequired(outFrameCount); | 
|  |  | 
|  | // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", | 
|  | //      outFrameCount, inputIndex, phaseFraction, phaseIncrement); | 
|  | while (outputIndex < outputSampleCount) { | 
|  | // buffer is empty, fetch a new one | 
|  | while (mBuffer.frameCount == 0) { | 
|  | mBuffer.frameCount = inFrameCount; | 
|  | provider->getNextBuffer(&mBuffer); | 
|  | if (mBuffer.raw == NULL) { | 
|  | mInputIndex = inputIndex; | 
|  | mPhaseFraction = phaseFraction; | 
|  | goto resampleMono16_exit; | 
|  | } | 
|  | // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); | 
|  | if (mBuffer.frameCount >  inputIndex) break; | 
|  |  | 
|  | inputIndex -= mBuffer.frameCount; | 
|  | mX0L = mBuffer.i16[mBuffer.frameCount-1]; | 
|  | provider->releaseBuffer(&mBuffer); | 
|  | // mBuffer.frameCount == 0 now so we reload a new buffer | 
|  | } | 
|  | int16_t *in = mBuffer.i16; | 
|  |  | 
|  | // handle boundary case | 
|  | while (inputIndex == 0) { | 
|  | // ALOGE("boundary case"); | 
|  | int32_t sample = Interp(mX0L, in[0], phaseFraction); | 
|  | out[outputIndex++] += vl * sample; | 
|  | out[outputIndex++] += vr * sample; | 
|  | Advance(&inputIndex, &phaseFraction, phaseIncrement); | 
|  | if (outputIndex == outputSampleCount) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // process input samples | 
|  | // ALOGE("general case"); | 
|  |  | 
|  | #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1 | 
|  | if (inputIndex + 2 < mBuffer.frameCount) { | 
|  | int32_t* maxOutPt; | 
|  | int32_t maxInIdx; | 
|  |  | 
|  | maxOutPt = out + (outputSampleCount - 2); | 
|  | maxInIdx = (int32_t)mBuffer.frameCount - 2; | 
|  | AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, | 
|  | phaseFraction, phaseIncrement); | 
|  | } | 
|  | #endif  // ASM_ARM_RESAMP1 | 
|  |  | 
|  | while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { | 
|  | int32_t sample = Interp(in[inputIndex-1], in[inputIndex], | 
|  | phaseFraction); | 
|  | out[outputIndex++] += vl * sample; | 
|  | out[outputIndex++] += vr * sample; | 
|  | Advance(&inputIndex, &phaseFraction, phaseIncrement); | 
|  | } | 
|  |  | 
|  |  | 
|  | // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); | 
|  |  | 
|  | // if done with buffer, save samples | 
|  | if (inputIndex >= mBuffer.frameCount) { | 
|  | inputIndex -= mBuffer.frameCount; | 
|  |  | 
|  | // ALOGE("buffer done, new input index %d", inputIndex); | 
|  |  | 
|  | mX0L = mBuffer.i16[mBuffer.frameCount-1]; | 
|  | provider->releaseBuffer(&mBuffer); | 
|  |  | 
|  | // verify that the releaseBuffer resets the buffer frameCount | 
|  | // ALOG_ASSERT(mBuffer.frameCount == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); | 
|  |  | 
|  | resampleMono16_exit: | 
|  | // save state | 
|  | mInputIndex = inputIndex; | 
|  | mPhaseFraction = phaseFraction; | 
|  | return outputIndex; | 
|  | } | 
|  |  | 
|  | #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1 | 
|  |  | 
|  | /******************************************************************* | 
|  | * | 
|  | *   AsmMono16Loop | 
|  | *   asm optimized monotonic loop version; one loop is 2 frames | 
|  | *   Input: | 
|  | *       in : pointer on input samples | 
|  | *       maxOutPt : pointer on first not filled | 
|  | *       maxInIdx : index on first not used | 
|  | *       outputIndex : pointer on current output index | 
|  | *       out : pointer on output buffer | 
|  | *       inputIndex : pointer on current input index | 
|  | *       vl, vr : left and right gain | 
|  | *       phaseFraction : pointer on current phase fraction | 
|  | *       phaseIncrement | 
|  | *   Ouput: | 
|  | *       outputIndex : | 
|  | *       out : updated buffer | 
|  | *       inputIndex : index of next to use | 
|  | *       phaseFraction : phase fraction for next interpolation | 
|  | * | 
|  | *******************************************************************/ | 
|  | __attribute__((noinline)) | 
|  | void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, | 
|  | size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, | 
|  | uint32_t &phaseFraction, uint32_t phaseIncrement) | 
|  | { | 
|  | (void)maxOutPt; // remove unused parameter warnings | 
|  | (void)maxInIdx; | 
|  | (void)outputIndex; | 
|  | (void)out; | 
|  | (void)inputIndex; | 
|  | (void)vl; | 
|  | (void)vr; | 
|  | (void)phaseFraction; | 
|  | (void)phaseIncrement; | 
|  | (void)in; | 
|  | #define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex) | 
|  |  | 
|  | asm( | 
|  | "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n" | 
|  | // get parameters | 
|  | "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction | 
|  | "   ldr r6, [r6]\n"                         // phaseFraction | 
|  | "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex | 
|  | "   ldr r7, [r7]\n"                         // inputIndex | 
|  | "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out | 
|  | "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex | 
|  | "   ldr r0, [r0]\n"                         // outputIndex | 
|  | "   add r8, r8, r0, asl #2\n"               // curOut | 
|  | "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement | 
|  | "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl | 
|  | "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr | 
|  |  | 
|  | // r0 pin, x0, Samp | 
|  |  | 
|  | // r1 in | 
|  | // r2 maxOutPt | 
|  | // r3 maxInIdx | 
|  |  | 
|  | // r4 x1, i1, i3, Out1 | 
|  | // r5 out0 | 
|  |  | 
|  | // r6 frac | 
|  | // r7 inputIndex | 
|  | // r8 curOut | 
|  |  | 
|  | // r9 inc | 
|  | // r10 vl | 
|  | // r11 vr | 
|  |  | 
|  | // r12 | 
|  | // r13 sp | 
|  | // r14 | 
|  |  | 
|  | // the following loop works on 2 frames | 
|  |  | 
|  | "1:\n" | 
|  | "   cmp r8, r2\n"                   // curOut - maxCurOut | 
|  | "   bcs 2f\n" | 
|  |  | 
|  | #define MO_ONE_FRAME \ | 
|  | "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\ | 
|  | "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\ | 
|  | "   ldr r5, [r8]\n"                 /* out[outputIndex] */\ | 
|  | "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\ | 
|  | "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\ | 
|  | "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\ | 
|  | "   mov r4, r4, lsl #2\n"           /* <<2 */\ | 
|  | "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\ | 
|  | "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\ | 
|  | "   add r0, r0, r4\n"               /* x0 - (..) */\ | 
|  | "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\ | 
|  | "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\ | 
|  | "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\ | 
|  | "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\ | 
|  | "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\ | 
|  | "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */ | 
|  |  | 
|  | MO_ONE_FRAME    // frame 1 | 
|  | MO_ONE_FRAME    // frame 2 | 
|  |  | 
|  | "   cmp r7, r3\n"                   // inputIndex - maxInIdx | 
|  | "   bcc 1b\n" | 
|  | "2:\n" | 
|  |  | 
|  | "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ... | 
|  | // save modified values | 
|  | "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction | 
|  | "   str r6, [r0]\n"                         // phaseFraction | 
|  | "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex | 
|  | "   str r7, [r0]\n"                         // inputIndex | 
|  | "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out | 
|  | "   sub r8, r0\n"                           // curOut - out | 
|  | "   asr r8, #2\n"                           // new outputIndex | 
|  | "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex | 
|  | "   str r8, [r0]\n"                         // save outputIndex | 
|  |  | 
|  | "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n" | 
|  | ); | 
|  | } | 
|  |  | 
|  | /******************************************************************* | 
|  | * | 
|  | *   AsmStereo16Loop | 
|  | *   asm optimized stereo loop version; one loop is 2 frames | 
|  | *   Input: | 
|  | *       in : pointer on input samples | 
|  | *       maxOutPt : pointer on first not filled | 
|  | *       maxInIdx : index on first not used | 
|  | *       outputIndex : pointer on current output index | 
|  | *       out : pointer on output buffer | 
|  | *       inputIndex : pointer on current input index | 
|  | *       vl, vr : left and right gain | 
|  | *       phaseFraction : pointer on current phase fraction | 
|  | *       phaseIncrement | 
|  | *   Ouput: | 
|  | *       outputIndex : | 
|  | *       out : updated buffer | 
|  | *       inputIndex : index of next to use | 
|  | *       phaseFraction : phase fraction for next interpolation | 
|  | * | 
|  | *******************************************************************/ | 
|  | __attribute__((noinline)) | 
|  | void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, | 
|  | size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, | 
|  | uint32_t &phaseFraction, uint32_t phaseIncrement) | 
|  | { | 
|  | (void)maxOutPt; // remove unused parameter warnings | 
|  | (void)maxInIdx; | 
|  | (void)outputIndex; | 
|  | (void)out; | 
|  | (void)inputIndex; | 
|  | (void)vl; | 
|  | (void)vr; | 
|  | (void)phaseFraction; | 
|  | (void)phaseIncrement; | 
|  | (void)in; | 
|  | #define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex) | 
|  | asm( | 
|  | "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n" | 
|  | // get parameters | 
|  | "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction | 
|  | "   ldr r6, [r6]\n"                         // phaseFraction | 
|  | "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex | 
|  | "   ldr r7, [r7]\n"                         // inputIndex | 
|  | "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out | 
|  | "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex | 
|  | "   ldr r0, [r0]\n"                         // outputIndex | 
|  | "   add r8, r8, r0, asl #2\n"               // curOut | 
|  | "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement | 
|  | "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl | 
|  | "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr | 
|  |  | 
|  | // r0 pin, x0, Samp | 
|  |  | 
|  | // r1 in | 
|  | // r2 maxOutPt | 
|  | // r3 maxInIdx | 
|  |  | 
|  | // r4 x1, i1, i3, out1 | 
|  | // r5 out0 | 
|  |  | 
|  | // r6 frac | 
|  | // r7 inputIndex | 
|  | // r8 curOut | 
|  |  | 
|  | // r9 inc | 
|  | // r10 vl | 
|  | // r11 vr | 
|  |  | 
|  | // r12 temporary | 
|  | // r13 sp | 
|  | // r14 | 
|  |  | 
|  | "3:\n" | 
|  | "   cmp r8, r2\n"                   // curOut - maxCurOut | 
|  | "   bcs 4f\n" | 
|  |  | 
|  | #define ST_ONE_FRAME \ | 
|  | "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\ | 
|  | \ | 
|  | "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\ | 
|  | \ | 
|  | "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\ | 
|  | "   ldr r5, [r8]\n"                 /* out[outputIndex] */\ | 
|  | "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\ | 
|  | "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\ | 
|  | "   mov r4, r4, lsl #2\n"           /* <<2 */\ | 
|  | "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\ | 
|  | "   add r12, r12, r4\n"             /* x0 - (..) */\ | 
|  | "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\ | 
|  | "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\ | 
|  | "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\ | 
|  | \ | 
|  | "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\ | 
|  | "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\ | 
|  | "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\ | 
|  | "   mov r12, r12, lsl #2\n"         /* <<2 */\ | 
|  | "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\ | 
|  | "   add r12, r0, r12\n"             /* x0 - (..) */\ | 
|  | "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\ | 
|  | "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\ | 
|  | \ | 
|  | "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\ | 
|  | "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */ | 
|  |  | 
|  | ST_ONE_FRAME    // frame 1 | 
|  | ST_ONE_FRAME    // frame 1 | 
|  |  | 
|  | "   cmp r7, r3\n"                       // inputIndex - maxInIdx | 
|  | "   bcc 3b\n" | 
|  | "4:\n" | 
|  |  | 
|  | "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ... | 
|  | // save modified values | 
|  | "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction | 
|  | "   str r6, [r0]\n"                         // phaseFraction | 
|  | "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex | 
|  | "   str r7, [r0]\n"                         // inputIndex | 
|  | "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out | 
|  | "   sub r8, r0\n"                           // curOut - out | 
|  | "   asr r8, #2\n"                           // new outputIndex | 
|  | "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex | 
|  | "   str r8, [r0]\n"                         // save outputIndex | 
|  |  | 
|  | "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n" | 
|  | ); | 
|  | } | 
|  |  | 
|  | #endif  // ASM_ARM_RESAMP1 | 
|  |  | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | } // namespace android |