| /* vi:set ts=8 sts=4 sw=4 noet: |
| * |
| * Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub() |
| */ |
| |
| // By default: do not create debugging logs or files related to regular |
| // expressions, even when compiling with -DDEBUG. |
| // Uncomment the second line to get the regexp debugging. |
| #undef DEBUG |
| // #define DEBUG |
| |
| #include "vim.h" |
| |
| #ifdef DEBUG |
| // show/save debugging data when BT engine is used |
| # define BT_REGEXP_DUMP |
| // save the debugging data to a file instead of displaying it |
| # define BT_REGEXP_LOG |
| # define BT_REGEXP_DEBUG_LOG |
| # define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log" |
| #endif |
| |
| #ifdef FEAT_RELTIME |
| static sig_atomic_t dummy_timeout_flag = 0; |
| static volatile sig_atomic_t *timeout_flag = &dummy_timeout_flag; |
| #endif |
| |
| /* |
| * Magic characters have a special meaning, they don't match literally. |
| * Magic characters are negative. This separates them from literal characters |
| * (possibly multi-byte). Only ASCII characters can be Magic. |
| */ |
| #define Magic(x) ((int)(x) - 256) |
| #define un_Magic(x) ((x) + 256) |
| #define is_Magic(x) ((x) < 0) |
| |
| static int |
| no_Magic(int x) |
| { |
| if (is_Magic(x)) |
| return un_Magic(x); |
| return x; |
| } |
| |
| static int |
| toggle_Magic(int x) |
| { |
| if (is_Magic(x)) |
| return un_Magic(x); |
| return Magic(x); |
| } |
| |
| #ifdef FEAT_RELTIME |
| static int timeout_nesting = 0; |
| |
| /* |
| * Start a timer that will cause the regexp to abort after "msec". |
| * This doesn't work well recursively. In case it happens anyway, the first |
| * set timeout will prevail, nested ones are ignored. |
| * The caller must make sure there is a matching disable_regexp_timeout() call! |
| */ |
| void |
| init_regexp_timeout(long msec) |
| { |
| if (timeout_nesting == 0) |
| timeout_flag = start_timeout(msec); |
| ++timeout_nesting; |
| } |
| |
| void |
| disable_regexp_timeout(void) |
| { |
| if (timeout_nesting == 0) |
| iemsg("disable_regexp_timeout() called without active timer"); |
| else if (--timeout_nesting == 0) |
| { |
| stop_timeout(); |
| timeout_flag = &dummy_timeout_flag; |
| } |
| } |
| #endif |
| |
| #if defined(FEAT_EVAL) || defined(PROTO) |
| # ifdef FEAT_RELTIME |
| static sig_atomic_t *saved_timeout_flag; |
| # endif |
| |
| /* |
| * Used at the debug prompt: disable the timeout so that expression evaluation |
| * can used patterns. |
| * Must be followed by calling restore_timeout_for_debugging(). |
| */ |
| void |
| save_timeout_for_debugging(void) |
| { |
| # ifdef FEAT_RELTIME |
| saved_timeout_flag = (sig_atomic_t *)timeout_flag; |
| timeout_flag = &dummy_timeout_flag; |
| # endif |
| } |
| |
| void |
| restore_timeout_for_debugging(void) |
| { |
| # ifdef FEAT_RELTIME |
| timeout_flag = saved_timeout_flag; |
| # endif |
| } |
| #endif |
| |
| /* |
| * The first byte of the BT regexp internal "program" is actually this magic |
| * number; the start node begins in the second byte. It's used to catch the |
| * most severe mutilation of the program by the caller. |
| */ |
| |
| #define REGMAGIC 0234 |
| |
| /* |
| * Utility definitions. |
| */ |
| #define UCHARAT(p) ((int)*(char_u *)(p)) |
| |
| // Used for an error (down from) vim_regcomp(): give the error message, set |
| // rc_did_emsg and return NULL |
| #define EMSG_RET_NULL(m) return (emsg((m)), rc_did_emsg = TRUE, (void *)NULL) |
| #define IEMSG_RET_NULL(m) return (iemsg((m)), rc_did_emsg = TRUE, (void *)NULL) |
| #define EMSG_RET_FAIL(m) return (emsg((m)), rc_did_emsg = TRUE, FAIL) |
| #define EMSG2_RET_NULL(m, c) return (semsg((const char *)(m), (c) ? "" : "\\"), rc_did_emsg = TRUE, (void *)NULL) |
| #define EMSG3_RET_NULL(m, c, a) return (semsg((const char *)(m), (c) ? "" : "\\", (a)), rc_did_emsg = TRUE, (void *)NULL) |
| #define EMSG2_RET_FAIL(m, c) return (semsg((const char *)(m), (c) ? "" : "\\"), rc_did_emsg = TRUE, FAIL) |
| #define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_(e_invalid_item_in_str_brackets), reg_magic == MAGIC_ALL) |
| |
| |
| #define MAX_LIMIT (32767L << 16L) |
| |
| #define NOT_MULTI 0 |
| #define MULTI_ONE 1 |
| #define MULTI_MULT 2 |
| |
| // return values for regmatch() |
| #define RA_FAIL 1 // something failed, abort |
| #define RA_CONT 2 // continue in inner loop |
| #define RA_BREAK 3 // break inner loop |
| #define RA_MATCH 4 // successful match |
| #define RA_NOMATCH 5 // didn't match |
| |
| /* |
| * Return NOT_MULTI if c is not a "multi" operator. |
| * Return MULTI_ONE if c is a single "multi" operator. |
| * Return MULTI_MULT if c is a multi "multi" operator. |
| */ |
| static int |
| re_multi_type(int c) |
| { |
| if (c == Magic('@') || c == Magic('=') || c == Magic('?')) |
| return MULTI_ONE; |
| if (c == Magic('*') || c == Magic('+') || c == Magic('{')) |
| return MULTI_MULT; |
| return NOT_MULTI; |
| } |
| |
| static char_u *reg_prev_sub = NULL; |
| static size_t reg_prev_sublen = 0; |
| |
| /* |
| * REGEXP_INRANGE contains all characters which are always special in a [] |
| * range after '\'. |
| * REGEXP_ABBR contains all characters which act as abbreviations after '\'. |
| * These are: |
| * \n - New line (NL). |
| * \r - Carriage Return (CR). |
| * \t - Tab (TAB). |
| * \e - Escape (ESC). |
| * \b - Backspace (Ctrl_H). |
| * \d - Character code in decimal, eg \d123 |
| * \o - Character code in octal, eg \o80 |
| * \x - Character code in hex, eg \x4a |
| * \u - Multibyte character code, eg \u20ac |
| * \U - Long multibyte character code, eg \U12345678 |
| */ |
| static char_u REGEXP_INRANGE[] = "]^-n\\"; |
| static char_u REGEXP_ABBR[] = "nrtebdoxuU"; |
| |
| /* |
| * Translate '\x' to its control character, except "\n", which is Magic. |
| */ |
| static int |
| backslash_trans(int c) |
| { |
| switch (c) |
| { |
| case 'r': return CAR; |
| case 't': return TAB; |
| case 'e': return ESC; |
| case 'b': return BS; |
| } |
| return c; |
| } |
| |
| enum |
| { |
| CLASS_ALNUM = 0, |
| CLASS_ALPHA, |
| CLASS_BLANK, |
| CLASS_CNTRL, |
| CLASS_DIGIT, |
| CLASS_GRAPH, |
| CLASS_LOWER, |
| CLASS_PRINT, |
| CLASS_PUNCT, |
| CLASS_SPACE, |
| CLASS_UPPER, |
| CLASS_XDIGIT, |
| CLASS_TAB, |
| CLASS_RETURN, |
| CLASS_BACKSPACE, |
| CLASS_ESCAPE, |
| CLASS_IDENT, |
| CLASS_KEYWORD, |
| CLASS_FNAME, |
| CLASS_NONE = 99 |
| }; |
| |
| /* |
| * Check for a character class name "[:name:]". "pp" points to the '['. |
| * Returns one of the CLASS_ items. CLASS_NONE means that no item was |
| * recognized. Otherwise "pp" is advanced to after the item. |
| */ |
| static int |
| get_char_class(char_u **pp) |
| { |
| // must be sorted by the 'value' field because it is used by bsearch()! |
| static keyvalue_T char_class_tab[] = |
| { |
| KEYVALUE_ENTRY(CLASS_ALNUM, "alnum:]"), |
| KEYVALUE_ENTRY(CLASS_ALPHA, "alpha:]"), |
| KEYVALUE_ENTRY(CLASS_BACKSPACE, "backspace:]"), |
| KEYVALUE_ENTRY(CLASS_BLANK, "blank:]"), |
| KEYVALUE_ENTRY(CLASS_CNTRL, "cntrl:]"), |
| KEYVALUE_ENTRY(CLASS_DIGIT, "digit:]"), |
| KEYVALUE_ENTRY(CLASS_ESCAPE, "escape:]"), |
| KEYVALUE_ENTRY(CLASS_FNAME, "fname:]"), |
| KEYVALUE_ENTRY(CLASS_GRAPH, "graph:]"), |
| KEYVALUE_ENTRY(CLASS_IDENT, "ident:]"), |
| KEYVALUE_ENTRY(CLASS_KEYWORD, "keyword:]"), |
| KEYVALUE_ENTRY(CLASS_LOWER, "lower:]"), |
| KEYVALUE_ENTRY(CLASS_PRINT, "print:]"), |
| KEYVALUE_ENTRY(CLASS_PUNCT, "punct:]"), |
| KEYVALUE_ENTRY(CLASS_RETURN, "return:]"), |
| KEYVALUE_ENTRY(CLASS_SPACE, "space:]"), |
| KEYVALUE_ENTRY(CLASS_TAB, "tab:]"), |
| KEYVALUE_ENTRY(CLASS_UPPER, "upper:]"), |
| KEYVALUE_ENTRY(CLASS_XDIGIT, "xdigit:]") |
| }; |
| |
| // check that the value of "pp" has a chance of matching |
| if ((*pp)[1] == ':' && ASCII_ISLOWER((*pp)[2]) |
| && ASCII_ISLOWER((*pp)[3]) && ASCII_ISLOWER((*pp)[4])) |
| { |
| keyvalue_T target; |
| keyvalue_T *entry; |
| // this function can be called repeatedly with the same value for "pp" |
| // so we cache the last found entry. |
| static keyvalue_T *last_entry = NULL; |
| |
| target.key = 0; |
| target.value = (char *)*pp + 2; |
| target.length = 0; // not used, see cmp_keyvalue_value_n() |
| |
| if (last_entry != NULL && cmp_keyvalue_value_n(&target, last_entry) == 0) |
| entry = last_entry; |
| else |
| entry = (keyvalue_T *)bsearch(&target, &char_class_tab, |
| ARRAY_LENGTH(char_class_tab), |
| sizeof(char_class_tab[0]), cmp_keyvalue_value_n); |
| if (entry != NULL) |
| { |
| last_entry = entry; |
| *pp += entry->length + 2; |
| return entry->key; |
| } |
| } |
| return CLASS_NONE; |
| } |
| |
| /* |
| * Specific version of character class functions. |
| * Using a table to keep this fast. |
| */ |
| static short class_tab[256]; |
| |
| #define RI_DIGIT 0x01 |
| #define RI_HEX 0x02 |
| #define RI_OCTAL 0x04 |
| #define RI_WORD 0x08 |
| #define RI_HEAD 0x10 |
| #define RI_ALPHA 0x20 |
| #define RI_LOWER 0x40 |
| #define RI_UPPER 0x80 |
| #define RI_WHITE 0x100 |
| |
| static void |
| init_class_tab(void) |
| { |
| int i; |
| static int done = FALSE; |
| |
| if (done) |
| return; |
| |
| for (i = 0; i < 256; ++i) |
| { |
| if (i >= '0' && i <= '7') |
| class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD; |
| else if (i >= '8' && i <= '9') |
| class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD; |
| else if (i >= 'a' && i <= 'f') |
| class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; |
| else if (i >= 'g' && i <= 'z') |
| class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; |
| else if (i >= 'A' && i <= 'F') |
| class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; |
| else if (i >= 'G' && i <= 'Z') |
| class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; |
| else if (i == '_') |
| class_tab[i] = RI_WORD + RI_HEAD; |
| else |
| class_tab[i] = 0; |
| } |
| class_tab[' '] |= RI_WHITE; |
| class_tab['\t'] |= RI_WHITE; |
| done = TRUE; |
| } |
| |
| #define ri_digit(c) ((c) < 0x100 && (class_tab[c] & RI_DIGIT)) |
| #define ri_hex(c) ((c) < 0x100 && (class_tab[c] & RI_HEX)) |
| #define ri_octal(c) ((c) < 0x100 && (class_tab[c] & RI_OCTAL)) |
| #define ri_word(c) ((c) < 0x100 && (class_tab[c] & RI_WORD)) |
| #define ri_head(c) ((c) < 0x100 && (class_tab[c] & RI_HEAD)) |
| #define ri_alpha(c) ((c) < 0x100 && (class_tab[c] & RI_ALPHA)) |
| #define ri_lower(c) ((c) < 0x100 && (class_tab[c] & RI_LOWER)) |
| #define ri_upper(c) ((c) < 0x100 && (class_tab[c] & RI_UPPER)) |
| #define ri_white(c) ((c) < 0x100 && (class_tab[c] & RI_WHITE)) |
| |
| // flags for regflags |
| #define RF_ICASE 1 // ignore case |
| #define RF_NOICASE 2 // don't ignore case |
| #define RF_HASNL 4 // can match a NL |
| #define RF_ICOMBINE 8 // ignore combining characters |
| #define RF_LOOKBH 16 // uses "\@<=" or "\@<!" |
| |
| /* |
| * Global work variables for vim_regcomp(). |
| */ |
| |
| static char_u *regparse; // Input-scan pointer. |
| static int regnpar; // () count. |
| static int wants_nfa; // regex should use NFA engine |
| #ifdef FEAT_SYN_HL |
| static int regnzpar; // \z() count. |
| static int re_has_z; // \z item detected |
| #endif |
| static unsigned regflags; // RF_ flags for prog |
| #if defined(FEAT_SYN_HL) || defined(PROTO) |
| static int had_eol; // TRUE when EOL found by vim_regcomp() |
| #endif |
| |
| static magic_T reg_magic; // magicness of the pattern |
| |
| static int reg_string; // matching with a string instead of a buffer |
| // line |
| static int reg_strict; // "[abc" is illegal |
| |
| /* |
| * META contains all characters that may be magic, except '^' and '$'. |
| */ |
| |
| // META[] is used often enough to justify turning it into a table. |
| static char_u META_flags[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| // % & ( ) * + . |
| 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, |
| // 1 2 3 4 5 6 7 8 9 < = > ? |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, |
| // @ A C D F H I K L M O |
| 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, |
| // P S U V W X Z [ _ |
| 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, |
| // a c d f h i k l m n o |
| 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, |
| // p s u v w x z { | ~ |
| 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1 |
| }; |
| |
| static int curchr; // currently parsed character |
| // Previous character. Note: prevchr is sometimes -1 when we are not at the |
| // start, eg in /[ ^I]^ the pattern was never found even if it existed, |
| // because ^ was taken to be magic -- webb |
| static int prevchr; |
| static int prevprevchr; // previous-previous character |
| static int nextchr; // used for ungetchr() |
| |
| // arguments for reg() |
| #define REG_NOPAREN 0 // toplevel reg() |
| #define REG_PAREN 1 // \(\) |
| #define REG_ZPAREN 2 // \z(\) |
| #define REG_NPAREN 3 // \%(\) |
| |
| typedef struct |
| { |
| char_u *regparse; |
| int prevchr_len; |
| int curchr; |
| int prevchr; |
| int prevprevchr; |
| int nextchr; |
| int at_start; |
| int prev_at_start; |
| int regnpar; |
| } parse_state_T; |
| |
| static void initchr(char_u *); |
| static int getchr(void); |
| static void skipchr_keepstart(void); |
| static int peekchr(void); |
| static void skipchr(void); |
| static void ungetchr(void); |
| static long gethexchrs(int maxinputlen); |
| static long getoctchrs(void); |
| static long getdecchrs(void); |
| static int coll_get_char(void); |
| static int prog_magic_wrong(void); |
| static int cstrncmp(char_u *s1, char_u *s2, int *n); |
| static char_u *cstrchr(char_u *, int); |
| static int re_mult_next(char *what); |
| static int reg_iswordc(int); |
| #ifdef FEAT_EVAL |
| static void report_re_switch(char_u *pat); |
| #endif |
| |
| static regengine_T bt_regengine; |
| static regengine_T nfa_regengine; |
| |
| /* |
| * Return TRUE if compiled regular expression "prog" can match a line break. |
| */ |
| int |
| re_multiline(regprog_T *prog) |
| { |
| return (prog->regflags & RF_HASNL); |
| } |
| |
| /* |
| * Check for an equivalence class name "[=a=]". "pp" points to the '['. |
| * Returns a character representing the class. Zero means that no item was |
| * recognized. Otherwise "pp" is advanced to after the item. |
| */ |
| static int |
| get_equi_class(char_u **pp) |
| { |
| int c; |
| int l = 1; |
| char_u *p = *pp; |
| |
| if (p[1] == '=' && p[2] != NUL) |
| { |
| if (has_mbyte) |
| l = (*mb_ptr2len)(p + 2); |
| if (p[l + 2] == '=' && p[l + 3] == ']') |
| { |
| if (has_mbyte) |
| c = mb_ptr2char(p + 2); |
| else |
| c = p[2]; |
| *pp += l + 4; |
| return c; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Check for a collating element "[.a.]". "pp" points to the '['. |
| * Returns a character. Zero means that no item was recognized. Otherwise |
| * "pp" is advanced to after the item. |
| * Currently only single characters are recognized! |
| */ |
| static int |
| get_coll_element(char_u **pp) |
| { |
| int c; |
| int l = 1; |
| char_u *p = *pp; |
| |
| if (p[0] != NUL && p[1] == '.' && p[2] != NUL) |
| { |
| if (has_mbyte) |
| l = (*mb_ptr2len)(p + 2); |
| if (p[l + 2] == '.' && p[l + 3] == ']') |
| { |
| if (has_mbyte) |
| c = mb_ptr2char(p + 2); |
| else |
| c = p[2]; |
| *pp += l + 4; |
| return c; |
| } |
| } |
| return 0; |
| } |
| |
| static int reg_cpo_lit; // 'cpoptions' contains 'l' flag |
| static int reg_cpo_bsl; // 'cpoptions' contains '\' flag |
| |
| static void |
| get_cpo_flags(void) |
| { |
| reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL; |
| reg_cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL; |
| } |
| |
| /* |
| * Skip over a "[]" range. |
| * "p" must point to the character after the '['. |
| * The returned pointer is on the matching ']', or the terminating NUL. |
| */ |
| static char_u * |
| skip_anyof(char_u *p) |
| { |
| int l; |
| |
| if (*p == '^') // Complement of range. |
| ++p; |
| if (*p == ']' || *p == '-') |
| ++p; |
| while (*p != NUL && *p != ']') |
| { |
| if (has_mbyte && (l = (*mb_ptr2len)(p)) > 1) |
| p += l; |
| else |
| if (*p == '-') |
| { |
| ++p; |
| if (*p != ']' && *p != NUL) |
| MB_PTR_ADV(p); |
| } |
| else if (*p == '\\' |
| && !reg_cpo_bsl |
| && (vim_strchr(REGEXP_INRANGE, p[1]) != NULL |
| || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, p[1]) != NULL))) |
| p += 2; |
| else if (*p == '[') |
| { |
| if (get_char_class(&p) == CLASS_NONE |
| && get_equi_class(&p) == 0 |
| && get_coll_element(&p) == 0 |
| && *p != NUL) |
| ++p; // it is not a class name and not NUL |
| } |
| else |
| ++p; |
| } |
| |
| return p; |
| } |
| |
| /* |
| * Skip past regular expression. |
| * Stop at end of "startp" or where "delim" is found ('/', '?', etc). |
| * Take care of characters with a backslash in front of it. |
| * Skip strings inside [ and ]. |
| */ |
| char_u * |
| skip_regexp( |
| char_u *startp, |
| int delim, |
| int magic) |
| { |
| return skip_regexp_ex(startp, delim, magic, NULL, NULL, NULL); |
| } |
| |
| /* |
| * Call skip_regexp() and when the delimiter does not match give an error and |
| * return NULL. |
| */ |
| char_u * |
| skip_regexp_err( |
| char_u *startp, |
| int delim, |
| int magic) |
| { |
| char_u *p = skip_regexp(startp, delim, magic); |
| |
| if (*p != delim) |
| { |
| semsg(_(e_missing_delimiter_after_search_pattern_str), startp); |
| return NULL; |
| } |
| return p; |
| } |
| |
| /* |
| * skip_regexp() with extra arguments: |
| * When "newp" is not NULL and "dirc" is '?', make an allocated copy of the |
| * expression and change "\?" to "?". If "*newp" is not NULL the expression |
| * is changed in-place. |
| * If a "\?" is changed to "?" then "dropped" is incremented, unless NULL. |
| * If "magic_val" is not NULL, returns the effective magicness of the pattern |
| */ |
| char_u * |
| skip_regexp_ex( |
| char_u *startp, |
| int dirc, |
| int magic, |
| char_u **newp, |
| int *dropped, |
| magic_T *magic_val) |
| { |
| magic_T mymagic; |
| char_u *p = startp; |
| size_t startplen = 0; |
| |
| if (magic) |
| mymagic = MAGIC_ON; |
| else |
| mymagic = MAGIC_OFF; |
| get_cpo_flags(); |
| |
| for (; p[0] != NUL; MB_PTR_ADV(p)) |
| { |
| if (p[0] == dirc) // found end of regexp |
| break; |
| if ((p[0] == '[' && mymagic >= MAGIC_ON) |
| || (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) |
| { |
| p = skip_anyof(p + 1); |
| if (p[0] == NUL) |
| break; |
| } |
| else if (p[0] == '\\' && p[1] != NUL) |
| { |
| if (dirc == '?' && newp != NULL && p[1] == '?') |
| { |
| // change "\?" to "?", make a copy first. |
| if (startplen == 0) |
| startplen = STRLEN(startp); |
| if (*newp == NULL) |
| { |
| *newp = vim_strnsave(startp, startplen); |
| if (*newp != NULL) |
| { |
| p = *newp + (p - startp); |
| startp = *newp; |
| } |
| } |
| if (dropped != NULL) |
| ++*dropped; |
| if (*newp != NULL) |
| mch_memmove(p, p + 1, startplen - ((p + 1) - startp) + 1); |
| else |
| ++p; |
| } |
| else |
| ++p; // skip next character |
| if (*p == 'v') |
| mymagic = MAGIC_ALL; |
| else if (*p == 'V') |
| mymagic = MAGIC_NONE; |
| } |
| } |
| if (magic_val != NULL) |
| *magic_val = mymagic; |
| return p; |
| } |
| |
| /* |
| * Functions for getting characters from the regexp input. |
| */ |
| static int prevchr_len; // byte length of previous char |
| static int at_start; // True when on the first character |
| static int prev_at_start; // True when on the second character |
| |
| /* |
| * Start parsing at "str". |
| */ |
| static void |
| initchr(char_u *str) |
| { |
| regparse = str; |
| prevchr_len = 0; |
| curchr = prevprevchr = prevchr = nextchr = -1; |
| at_start = TRUE; |
| prev_at_start = FALSE; |
| } |
| |
| /* |
| * Save the current parse state, so that it can be restored and parsing |
| * starts in the same state again. |
| */ |
| static void |
| save_parse_state(parse_state_T *ps) |
| { |
| ps->regparse = regparse; |
| ps->prevchr_len = prevchr_len; |
| ps->curchr = curchr; |
| ps->prevchr = prevchr; |
| ps->prevprevchr = prevprevchr; |
| ps->nextchr = nextchr; |
| ps->at_start = at_start; |
| ps->prev_at_start = prev_at_start; |
| ps->regnpar = regnpar; |
| } |
| |
| /* |
| * Restore a previously saved parse state. |
| */ |
| static void |
| restore_parse_state(parse_state_T *ps) |
| { |
| regparse = ps->regparse; |
| prevchr_len = ps->prevchr_len; |
| curchr = ps->curchr; |
| prevchr = ps->prevchr; |
| prevprevchr = ps->prevprevchr; |
| nextchr = ps->nextchr; |
| at_start = ps->at_start; |
| prev_at_start = ps->prev_at_start; |
| regnpar = ps->regnpar; |
| } |
| |
| |
| /* |
| * Get the next character without advancing. |
| */ |
| static int |
| peekchr(void) |
| { |
| static int after_slash = FALSE; |
| |
| if (curchr != -1) |
| return curchr; |
| |
| switch (curchr = regparse[0]) |
| { |
| case '.': |
| case '[': |
| case '~': |
| // magic when 'magic' is on |
| if (reg_magic >= MAGIC_ON) |
| curchr = Magic(curchr); |
| break; |
| case '(': |
| case ')': |
| case '{': |
| case '%': |
| case '+': |
| case '=': |
| case '?': |
| case '@': |
| case '!': |
| case '&': |
| case '|': |
| case '<': |
| case '>': |
| case '#': // future ext. |
| case '"': // future ext. |
| case '\'': // future ext. |
| case ',': // future ext. |
| case '-': // future ext. |
| case ':': // future ext. |
| case ';': // future ext. |
| case '`': // future ext. |
| case '/': // Can't be used in / command |
| // magic only after "\v" |
| if (reg_magic == MAGIC_ALL) |
| curchr = Magic(curchr); |
| break; |
| case '*': |
| // * is not magic as the very first character, eg "?*ptr", when |
| // after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But |
| // "\(\*" is not magic, thus must be magic if "after_slash" |
| if (reg_magic >= MAGIC_ON |
| && !at_start |
| && !(prev_at_start && prevchr == Magic('^')) |
| && (after_slash |
| || (prevchr != Magic('(') |
| && prevchr != Magic('&') |
| && prevchr != Magic('|')))) |
| curchr = Magic('*'); |
| break; |
| case '^': |
| // '^' is only magic as the very first character and if it's after |
| // "\(", "\|", "\&' or "\n" |
| if (reg_magic >= MAGIC_OFF |
| && (at_start |
| || reg_magic == MAGIC_ALL |
| || prevchr == Magic('(') |
| || prevchr == Magic('|') |
| || prevchr == Magic('&') |
| || prevchr == Magic('n') |
| || (no_Magic(prevchr) == '(' |
| && prevprevchr == Magic('%')))) |
| { |
| curchr = Magic('^'); |
| at_start = TRUE; |
| prev_at_start = FALSE; |
| } |
| break; |
| case '$': |
| // '$' is only magic as the very last char and if it's in front of |
| // either "\|", "\)", "\&", or "\n" |
| if (reg_magic >= MAGIC_OFF) |
| { |
| char_u *p = regparse + 1; |
| int is_magic_all = (reg_magic == MAGIC_ALL); |
| |
| // ignore \c \C \m \M \v \V and \Z after '$' |
| while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C' |
| || p[1] == 'm' || p[1] == 'M' |
| || p[1] == 'v' || p[1] == 'V' || p[1] == 'Z')) |
| { |
| if (p[1] == 'v') |
| is_magic_all = TRUE; |
| else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') |
| is_magic_all = FALSE; |
| p += 2; |
| } |
| if (p[0] == NUL |
| || (p[0] == '\\' |
| && (p[1] == '|' || p[1] == '&' || p[1] == ')' |
| || p[1] == 'n')) |
| || (is_magic_all |
| && (p[0] == '|' || p[0] == '&' || p[0] == ')')) |
| || reg_magic == MAGIC_ALL) |
| curchr = Magic('$'); |
| } |
| break; |
| case '\\': |
| { |
| int c = regparse[1]; |
| |
| if (c == NUL) |
| curchr = '\\'; // trailing '\' |
| else if (c <= '~' && META_flags[c]) |
| { |
| /* |
| * META contains everything that may be magic sometimes, |
| * except ^ and $ ("\^" and "\$" are only magic after |
| * "\V"). We now fetch the next character and toggle its |
| * magicness. Therefore, \ is so meta-magic that it is |
| * not in META. |
| */ |
| curchr = -1; |
| prev_at_start = at_start; |
| at_start = FALSE; // be able to say "/\*ptr" |
| ++regparse; |
| ++after_slash; |
| peekchr(); |
| --regparse; |
| --after_slash; |
| curchr = toggle_Magic(curchr); |
| } |
| else if (vim_strchr(REGEXP_ABBR, c)) |
| { |
| /* |
| * Handle abbreviations, like "\t" for TAB -- webb |
| */ |
| curchr = backslash_trans(c); |
| } |
| else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) |
| curchr = toggle_Magic(c); |
| else |
| { |
| /* |
| * Next character can never be (made) magic? |
| * Then backslashing it won't do anything. |
| */ |
| if (has_mbyte) |
| curchr = (*mb_ptr2char)(regparse + 1); |
| else |
| curchr = c; |
| } |
| break; |
| } |
| |
| default: |
| if (has_mbyte) |
| curchr = (*mb_ptr2char)(regparse); |
| } |
| |
| return curchr; |
| } |
| |
| /* |
| * Eat one lexed character. Do this in a way that we can undo it. |
| */ |
| static void |
| skipchr(void) |
| { |
| // peekchr() eats a backslash, do the same here |
| if (*regparse == '\\') |
| prevchr_len = 1; |
| else |
| prevchr_len = 0; |
| if (regparse[prevchr_len] != NUL) |
| { |
| if (enc_utf8) |
| // exclude composing chars that mb_ptr2len does include |
| prevchr_len += utf_ptr2len(regparse + prevchr_len); |
| else if (has_mbyte) |
| prevchr_len += (*mb_ptr2len)(regparse + prevchr_len); |
| else |
| ++prevchr_len; |
| } |
| regparse += prevchr_len; |
| prev_at_start = at_start; |
| at_start = FALSE; |
| prevprevchr = prevchr; |
| prevchr = curchr; |
| curchr = nextchr; // use previously unget char, or -1 |
| nextchr = -1; |
| } |
| |
| /* |
| * Skip a character while keeping the value of prev_at_start for at_start. |
| * prevchr and prevprevchr are also kept. |
| */ |
| static void |
| skipchr_keepstart(void) |
| { |
| int as = prev_at_start; |
| int pr = prevchr; |
| int prpr = prevprevchr; |
| |
| skipchr(); |
| at_start = as; |
| prevchr = pr; |
| prevprevchr = prpr; |
| } |
| |
| /* |
| * Get the next character from the pattern. We know about magic and such, so |
| * therefore we need a lexical analyzer. |
| */ |
| static int |
| getchr(void) |
| { |
| int chr = peekchr(); |
| |
| skipchr(); |
| return chr; |
| } |
| |
| /* |
| * put character back. Works only once! |
| */ |
| static void |
| ungetchr(void) |
| { |
| nextchr = curchr; |
| curchr = prevchr; |
| prevchr = prevprevchr; |
| at_start = prev_at_start; |
| prev_at_start = FALSE; |
| |
| // Backup regparse, so that it's at the same position as before the |
| // getchr(). |
| regparse -= prevchr_len; |
| } |
| |
| /* |
| * Get and return the value of the hex string at the current position. |
| * Return -1 if there is no valid hex number. |
| * The position is updated: |
| * blahblah\%x20asdf |
| * before-^ ^-after |
| * The parameter controls the maximum number of input characters. This will be |
| * 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence. |
| */ |
| static long |
| gethexchrs(int maxinputlen) |
| { |
| long_u nr = 0; |
| int c; |
| int i; |
| |
| for (i = 0; i < maxinputlen; ++i) |
| { |
| c = regparse[0]; |
| if (!vim_isxdigit(c)) |
| break; |
| nr <<= 4; |
| nr |= hex2nr(c); |
| ++regparse; |
| } |
| |
| if (i == 0) |
| return -1; |
| return (long)nr; |
| } |
| |
| /* |
| * Get and return the value of the decimal string immediately after the |
| * current position. Return -1 for invalid. Consumes all digits. |
| */ |
| static long |
| getdecchrs(void) |
| { |
| long_u nr = 0; |
| int c; |
| int i; |
| |
| for (i = 0; ; ++i) |
| { |
| c = regparse[0]; |
| if (c < '0' || c > '9') |
| break; |
| nr *= 10; |
| nr += c - '0'; |
| ++regparse; |
| curchr = -1; // no longer valid |
| } |
| |
| if (i == 0) |
| return -1; |
| return (long)nr; |
| } |
| |
| /* |
| * get and return the value of the octal string immediately after the current |
| * position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle |
| * numbers > 377 correctly (for example, 400 is treated as 40) and doesn't |
| * treat 8 or 9 as recognised characters. Position is updated: |
| * blahblah\%o210asdf |
| * before-^ ^-after |
| */ |
| static long |
| getoctchrs(void) |
| { |
| long_u nr = 0; |
| int c; |
| int i; |
| |
| for (i = 0; i < 3 && nr < 040; ++i) |
| { |
| c = regparse[0]; |
| if (c < '0' || c > '7') |
| break; |
| nr <<= 3; |
| nr |= hex2nr(c); |
| ++regparse; |
| } |
| |
| if (i == 0) |
| return -1; |
| return (long)nr; |
| } |
| |
| /* |
| * read_limits - Read two integers to be taken as a minimum and maximum. |
| * If the first character is '-', then the range is reversed. |
| * Should end with 'end'. If minval is missing, zero is default, if maxval is |
| * missing, a very big number is the default. |
| */ |
| static int |
| read_limits(long *minval, long *maxval) |
| { |
| int reverse = FALSE; |
| char_u *first_char; |
| long tmp; |
| |
| if (*regparse == '-') |
| { |
| // Starts with '-', so reverse the range later |
| regparse++; |
| reverse = TRUE; |
| } |
| first_char = regparse; |
| *minval = getdigits(®parse); |
| if (*regparse == ',') // There is a comma |
| { |
| if (vim_isdigit(*++regparse)) |
| *maxval = getdigits(®parse); |
| else |
| *maxval = MAX_LIMIT; |
| } |
| else if (VIM_ISDIGIT(*first_char)) |
| *maxval = *minval; // It was \{n} or \{-n} |
| else |
| *maxval = MAX_LIMIT; // It was \{} or \{-} |
| if (*regparse == '\\') |
| regparse++; // Allow either \{...} or \{...\} |
| if (*regparse != '}') |
| EMSG2_RET_FAIL(_(e_syntax_error_in_str_curlies), |
| reg_magic == MAGIC_ALL); |
| |
| /* |
| * Reverse the range if there was a '-', or make sure it is in the right |
| * order otherwise. |
| */ |
| if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) |
| { |
| tmp = *minval; |
| *minval = *maxval; |
| *maxval = tmp; |
| } |
| skipchr(); // let's be friends with the lexer again |
| return OK; |
| } |
| |
| /* |
| * vim_regexec and friends |
| */ |
| |
| /* |
| * Global work variables for vim_regexec(). |
| */ |
| |
| static void cleanup_subexpr(void); |
| #ifdef FEAT_SYN_HL |
| static void cleanup_zsubexpr(void); |
| #endif |
| static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum, colnr_T end_col, int *bytelen); |
| |
| /* |
| * Sometimes need to save a copy of a line. Since alloc()/free() is very |
| * slow, we keep one allocated piece of memory and only re-allocate it when |
| * it's too small. It's freed in bt_regexec_both() when finished. |
| */ |
| static char_u *reg_tofree = NULL; |
| static unsigned reg_tofreelen; |
| |
| /* |
| * Structure used to store the execution state of the regex engine. |
| * Which ones are set depends on whether a single-line or multi-line match is |
| * done: |
| * single-line multi-line |
| * reg_match ®match_T NULL |
| * reg_mmatch NULL ®mmatch_T |
| * reg_startp reg_match->startp <invalid> |
| * reg_endp reg_match->endp <invalid> |
| * reg_startpos <invalid> reg_mmatch->startpos |
| * reg_endpos <invalid> reg_mmatch->endpos |
| * reg_win NULL window in which to search |
| * reg_buf curbuf buffer in which to search |
| * reg_firstlnum <invalid> first line in which to search |
| * reg_maxline 0 last line nr |
| * reg_line_lbr FALSE or TRUE FALSE |
| */ |
| typedef struct { |
| regmatch_T *reg_match; |
| regmmatch_T *reg_mmatch; |
| |
| char_u **reg_startp; |
| char_u **reg_endp; |
| lpos_T *reg_startpos; |
| lpos_T *reg_endpos; |
| |
| win_T *reg_win; |
| buf_T *reg_buf; |
| linenr_T reg_firstlnum; |
| linenr_T reg_maxline; |
| int reg_line_lbr; // "\n" in string is line break |
| |
| // The current match-position is stord in these variables: |
| linenr_T lnum; // line number, relative to first line |
| char_u *line; // start of current line |
| char_u *input; // current input, points into "line" |
| |
| int need_clear_subexpr; // subexpressions still need to be cleared |
| #ifdef FEAT_SYN_HL |
| int need_clear_zsubexpr; // extmatch subexpressions still need to be |
| // cleared |
| #endif |
| |
| // Internal copy of 'ignorecase'. It is set at each call to vim_regexec(). |
| // Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern |
| // contains '\c' or '\C' the value is overruled. |
| int reg_ic; |
| |
| // Similar to "reg_ic", but only for 'combining' characters. Set with \Z |
| // flag in the regexp. Defaults to false, always. |
| int reg_icombine; |
| |
| // Copy of "rmm_maxcol": maximum column to search for a match. Zero when |
| // there is no maximum. |
| colnr_T reg_maxcol; |
| |
| // State for the NFA engine regexec. |
| int nfa_has_zend; // NFA regexp \ze operator encountered. |
| int nfa_has_backref; // NFA regexp \1 .. \9 encountered. |
| int nfa_nsubexpr; // Number of sub expressions actually being used |
| // during execution. 1 if only the whole match |
| // (subexpr 0) is used. |
| // listid is global, so that it increases on recursive calls to |
| // nfa_regmatch(), which means we don't have to clear the lastlist field of |
| // all the states. |
| int nfa_listid; |
| int nfa_alt_listid; |
| |
| #ifdef FEAT_SYN_HL |
| int nfa_has_zsubexpr; // NFA regexp has \z( ), set zsubexpr. |
| #endif |
| } regexec_T; |
| |
| static regexec_T rex; |
| static int rex_in_use = FALSE; |
| |
| /* |
| * Return TRUE if character 'c' is included in 'iskeyword' option for |
| * "reg_buf" buffer. |
| */ |
| static int |
| reg_iswordc(int c) |
| { |
| return vim_iswordc_buf(c, rex.reg_buf); |
| } |
| |
| #ifdef FEAT_EVAL |
| static int can_f_submatch = FALSE; // TRUE when submatch() can be used |
| |
| // This struct is used for reg_submatch(). Needed for when the |
| // substitution string is an expression that contains a call to substitute() |
| // and submatch(). |
| typedef struct { |
| regmatch_T *sm_match; |
| regmmatch_T *sm_mmatch; |
| linenr_T sm_firstlnum; |
| linenr_T sm_maxline; |
| int sm_line_lbr; |
| } regsubmatch_T; |
| |
| static regsubmatch_T rsm; // can only be used when can_f_submatch is TRUE |
| #endif |
| |
| typedef enum |
| { |
| RGLF_LINE = 0x01, |
| RGLF_LENGTH = 0x02 |
| #ifdef FEAT_EVAL |
| , |
| RGLF_SUBMATCH = 0x04 |
| #endif |
| } reg_getline_flags_T; |
| |
| // |
| // common code for reg_getline(), reg_getline_len(), reg_getline_submatch() and |
| // reg_getline_submatch_len(). |
| // the flags argument (which is a bitmask) controls what info is to be returned and whether |
| // or not submatch is in effect. |
| // note: |
| // submatch is available only if FEAT_EVAL is defined. |
| static void |
| reg_getline_common(linenr_T lnum, reg_getline_flags_T flags, char_u **line, colnr_T *length) |
| { |
| int get_line = flags & RGLF_LINE; |
| int get_length = flags & RGLF_LENGTH; |
| linenr_T firstlnum; |
| linenr_T maxline; |
| |
| #ifdef FEAT_EVAL |
| if (flags & RGLF_SUBMATCH) |
| { |
| firstlnum = rsm.sm_firstlnum + lnum; |
| maxline = rsm.sm_maxline; |
| } |
| else |
| #endif |
| { |
| firstlnum = rex.reg_firstlnum + lnum; |
| maxline = rex.reg_maxline; |
| } |
| |
| // when looking behind for a match/no-match lnum is negative. but we |
| // can't go before line 1. |
| if (firstlnum < 1) |
| { |
| if (get_line) |
| *line = NULL; |
| if (get_length) |
| *length = 0; |
| |
| return; |
| } |
| |
| if (lnum > maxline) |
| { |
| // must have matched the "\n" in the last line. |
| if (get_line) |
| *line = (char_u *)""; |
| if (get_length) |
| *length = 0; |
| |
| return; |
| } |
| |
| if (get_line) |
| *line = ml_get_buf(rex.reg_buf, firstlnum, FALSE); |
| if (get_length) |
| *length = ml_get_buf_len(rex.reg_buf, firstlnum); |
| } |
| |
| /* |
| * Get pointer to the line "lnum", which is relative to "reg_firstlnum". |
| */ |
| static char_u * |
| reg_getline(linenr_T lnum) |
| { |
| char_u *line; |
| |
| reg_getline_common(lnum, RGLF_LINE, &line, NULL); |
| |
| return line; |
| } |
| |
| /* |
| * Get length of line "lnum", which is relative to "reg_firstlnum". |
| */ |
| static colnr_T |
| reg_getline_len(linenr_T lnum) |
| { |
| colnr_T length; |
| |
| reg_getline_common(lnum, RGLF_LENGTH, NULL, &length); |
| |
| return length; |
| } |
| |
| #ifdef FEAT_SYN_HL |
| static char_u *reg_startzp[NSUBEXP]; // Workspace to mark beginning |
| static char_u *reg_endzp[NSUBEXP]; // and end of \z(...\) matches |
| static lpos_T reg_startzpos[NSUBEXP]; // idem, beginning pos |
| static lpos_T reg_endzpos[NSUBEXP]; // idem, end pos |
| #endif |
| |
| // TRUE if using multi-line regexp. |
| #define REG_MULTI (rex.reg_match == NULL) |
| |
| #ifdef FEAT_SYN_HL |
| /* |
| * Create a new extmatch and mark it as referenced once. |
| */ |
| static reg_extmatch_T * |
| make_extmatch(void) |
| { |
| reg_extmatch_T *em; |
| |
| em = ALLOC_CLEAR_ONE(reg_extmatch_T); |
| if (em != NULL) |
| em->refcnt = 1; |
| return em; |
| } |
| |
| /* |
| * Add a reference to an extmatch. |
| */ |
| reg_extmatch_T * |
| ref_extmatch(reg_extmatch_T *em) |
| { |
| if (em != NULL) |
| em->refcnt++; |
| return em; |
| } |
| |
| /* |
| * Remove a reference to an extmatch. If there are no references left, free |
| * the info. |
| */ |
| void |
| unref_extmatch(reg_extmatch_T *em) |
| { |
| int i; |
| |
| if (em != NULL && --em->refcnt <= 0) |
| { |
| for (i = 0; i < NSUBEXP; ++i) |
| vim_free(em->matches[i]); |
| vim_free(em); |
| } |
| } |
| #endif |
| |
| /* |
| * Get class of previous character. |
| */ |
| static int |
| reg_prev_class(void) |
| { |
| if (rex.input > rex.line) |
| return mb_get_class_buf(rex.input - 1 |
| - (*mb_head_off)(rex.line, rex.input - 1), rex.reg_buf); |
| return -1; |
| } |
| |
| /* |
| * Return TRUE if the current rex.input position matches the Visual area. |
| */ |
| static int |
| reg_match_visual(void) |
| { |
| pos_T top, bot; |
| linenr_T lnum; |
| colnr_T col; |
| win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; |
| int mode; |
| colnr_T start, end; |
| colnr_T start2, end2; |
| colnr_T cols; |
| colnr_T curswant; |
| |
| // Check if the buffer is the current buffer and not using a string. |
| if (rex.reg_buf != curbuf || VIsual.lnum == 0 || !REG_MULTI) |
| return FALSE; |
| |
| if (VIsual_active) |
| { |
| if (LT_POS(VIsual, wp->w_cursor)) |
| { |
| top = VIsual; |
| bot = wp->w_cursor; |
| } |
| else |
| { |
| top = wp->w_cursor; |
| bot = VIsual; |
| } |
| mode = VIsual_mode; |
| curswant = wp->w_curswant; |
| } |
| else |
| { |
| if (LT_POS(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) |
| { |
| top = curbuf->b_visual.vi_start; |
| bot = curbuf->b_visual.vi_end; |
| } |
| else |
| { |
| top = curbuf->b_visual.vi_end; |
| bot = curbuf->b_visual.vi_start; |
| } |
| // a substitute command may have removed some lines |
| if (bot.lnum > curbuf->b_ml.ml_line_count) |
| bot.lnum = curbuf->b_ml.ml_line_count; |
| mode = curbuf->b_visual.vi_mode; |
| curswant = curbuf->b_visual.vi_curswant; |
| } |
| lnum = rex.lnum + rex.reg_firstlnum; |
| if (lnum < top.lnum || lnum > bot.lnum) |
| return FALSE; |
| |
| col = (colnr_T)(rex.input - rex.line); |
| if (mode == 'v') |
| { |
| if ((lnum == top.lnum && col < top.col) |
| || (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) |
| return FALSE; |
| } |
| else if (mode == Ctrl_V) |
| { |
| getvvcol(wp, &top, &start, NULL, &end); |
| getvvcol(wp, &bot, &start2, NULL, &end2); |
| if (start2 < start) |
| start = start2; |
| if (end2 > end) |
| end = end2; |
| if (top.col == MAXCOL || bot.col == MAXCOL || curswant == MAXCOL) |
| end = MAXCOL; |
| |
| // getvvcol() flushes rex.line, need to get it again |
| rex.line = reg_getline(rex.lnum); |
| rex.input = rex.line + col; |
| |
| cols = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, rex.line, col); |
| if (cols < start || cols > end - (*p_sel == 'e')) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* |
| * Check the regexp program for its magic number. |
| * Return TRUE if it's wrong. |
| */ |
| static int |
| prog_magic_wrong(void) |
| { |
| regprog_T *prog; |
| |
| prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog; |
| if (prog->engine == &nfa_regengine) |
| // For NFA matcher we don't check the magic |
| return FALSE; |
| |
| if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) |
| { |
| iemsg(e_corrupted_regexp_program); |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| /* |
| * Cleanup the subexpressions, if this wasn't done yet. |
| * This construction is used to clear the subexpressions only when they are |
| * used (to increase speed). |
| */ |
| static void |
| cleanup_subexpr(void) |
| { |
| if (!rex.need_clear_subexpr) |
| return; |
| |
| if (REG_MULTI) |
| { |
| // Use 0xff to set lnum to -1 |
| vim_memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP); |
| vim_memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP); |
| } |
| else |
| { |
| vim_memset(rex.reg_startp, 0, sizeof(char_u *) * NSUBEXP); |
| vim_memset(rex.reg_endp, 0, sizeof(char_u *) * NSUBEXP); |
| } |
| rex.need_clear_subexpr = FALSE; |
| } |
| |
| #ifdef FEAT_SYN_HL |
| static void |
| cleanup_zsubexpr(void) |
| { |
| if (!rex.need_clear_zsubexpr) |
| return; |
| |
| if (REG_MULTI) |
| { |
| // Use 0xff to set lnum to -1 |
| vim_memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP); |
| vim_memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP); |
| } |
| else |
| { |
| vim_memset(reg_startzp, 0, sizeof(char_u *) * NSUBEXP); |
| vim_memset(reg_endzp, 0, sizeof(char_u *) * NSUBEXP); |
| } |
| rex.need_clear_zsubexpr = FALSE; |
| } |
| #endif |
| |
| /* |
| * Advance rex.lnum, rex.line and rex.input to the next line. |
| */ |
| static void |
| reg_nextline(void) |
| { |
| rex.line = reg_getline(++rex.lnum); |
| rex.input = rex.line; |
| fast_breakcheck(); |
| } |
| |
| /* |
| * Check whether a backreference matches. |
| * Returns RA_FAIL, RA_NOMATCH or RA_MATCH. |
| * If "bytelen" is not NULL, it is set to the byte length of the match in the |
| * last line. |
| */ |
| static int |
| match_with_backref( |
| linenr_T start_lnum, |
| colnr_T start_col, |
| linenr_T end_lnum, |
| colnr_T end_col, |
| int *bytelen) |
| { |
| linenr_T clnum = start_lnum; |
| colnr_T ccol = start_col; |
| int len; |
| char_u *p; |
| |
| if (bytelen != NULL) |
| *bytelen = 0; |
| for (;;) |
| { |
| // Since getting one line may invalidate the other, need to make copy. |
| // Slow! |
| if (rex.line != reg_tofree) |
| { |
| len = (int)STRLEN(rex.line); |
| if (reg_tofree == NULL || len >= (int)reg_tofreelen) |
| { |
| len += 50; // get some extra |
| vim_free(reg_tofree); |
| reg_tofree = alloc(len); |
| if (reg_tofree == NULL) |
| return RA_FAIL; // out of memory! |
| reg_tofreelen = len; |
| } |
| STRCPY(reg_tofree, rex.line); |
| rex.input = reg_tofree + (rex.input - rex.line); |
| rex.line = reg_tofree; |
| } |
| |
| // Get the line to compare with. |
| p = reg_getline(clnum); |
| if (clnum == end_lnum) |
| len = end_col - ccol; |
| else |
| len = (int)reg_getline_len(clnum) - ccol; |
| |
| if (cstrncmp(p + ccol, rex.input, &len) != 0) |
| return RA_NOMATCH; // doesn't match |
| if (bytelen != NULL) |
| *bytelen += len; |
| if (clnum == end_lnum) |
| break; // match and at end! |
| if (rex.lnum >= rex.reg_maxline) |
| return RA_NOMATCH; // text too short |
| |
| // Advance to next line. |
| reg_nextline(); |
| if (bytelen != NULL) |
| *bytelen = 0; |
| ++clnum; |
| ccol = 0; |
| if (got_int) |
| return RA_FAIL; |
| } |
| |
| // found a match! Note that rex.line may now point to a copy of the line, |
| // that should not matter. |
| return RA_MATCH; |
| } |
| |
| /* |
| * Used in a place where no * or \+ can follow. |
| */ |
| static int |
| re_mult_next(char *what) |
| { |
| if (re_multi_type(peekchr()) == MULTI_MULT) |
| { |
| semsg(_(e_nfa_regexp_cannot_repeat_str), what); |
| rc_did_emsg = TRUE; |
| return FAIL; |
| } |
| return OK; |
| } |
| |
| typedef struct |
| { |
| int a, b, c; |
| } decomp_T; |
| |
| |
| // 0xfb20 - 0xfb4f |
| static decomp_T decomp_table[0xfb4f-0xfb20+1] = |
| { |
| {0x5e2,0,0}, // 0xfb20 alt ayin |
| {0x5d0,0,0}, // 0xfb21 alt alef |
| {0x5d3,0,0}, // 0xfb22 alt dalet |
| {0x5d4,0,0}, // 0xfb23 alt he |
| {0x5db,0,0}, // 0xfb24 alt kaf |
| {0x5dc,0,0}, // 0xfb25 alt lamed |
| {0x5dd,0,0}, // 0xfb26 alt mem-sofit |
| {0x5e8,0,0}, // 0xfb27 alt resh |
| {0x5ea,0,0}, // 0xfb28 alt tav |
| {'+', 0, 0}, // 0xfb29 alt plus |
| {0x5e9, 0x5c1, 0}, // 0xfb2a shin+shin-dot |
| {0x5e9, 0x5c2, 0}, // 0xfb2b shin+sin-dot |
| {0x5e9, 0x5c1, 0x5bc}, // 0xfb2c shin+shin-dot+dagesh |
| {0x5e9, 0x5c2, 0x5bc}, // 0xfb2d shin+sin-dot+dagesh |
| {0x5d0, 0x5b7, 0}, // 0xfb2e alef+patah |
| {0x5d0, 0x5b8, 0}, // 0xfb2f alef+qamats |
| {0x5d0, 0x5b4, 0}, // 0xfb30 alef+hiriq |
| {0x5d1, 0x5bc, 0}, // 0xfb31 bet+dagesh |
| {0x5d2, 0x5bc, 0}, // 0xfb32 gimel+dagesh |
| {0x5d3, 0x5bc, 0}, // 0xfb33 dalet+dagesh |
| {0x5d4, 0x5bc, 0}, // 0xfb34 he+dagesh |
| {0x5d5, 0x5bc, 0}, // 0xfb35 vav+dagesh |
| {0x5d6, 0x5bc, 0}, // 0xfb36 zayin+dagesh |
| {0xfb37, 0, 0}, // 0xfb37 -- UNUSED |
| {0x5d8, 0x5bc, 0}, // 0xfb38 tet+dagesh |
| {0x5d9, 0x5bc, 0}, // 0xfb39 yud+dagesh |
| {0x5da, 0x5bc, 0}, // 0xfb3a kaf sofit+dagesh |
| {0x5db, 0x5bc, 0}, // 0xfb3b kaf+dagesh |
| {0x5dc, 0x5bc, 0}, // 0xfb3c lamed+dagesh |
| {0xfb3d, 0, 0}, // 0xfb3d -- UNUSED |
| {0x5de, 0x5bc, 0}, // 0xfb3e mem+dagesh |
| {0xfb3f, 0, 0}, // 0xfb3f -- UNUSED |
| {0x5e0, 0x5bc, 0}, // 0xfb40 nun+dagesh |
| {0x5e1, 0x5bc, 0}, // 0xfb41 samech+dagesh |
| {0xfb42, 0, 0}, // 0xfb42 -- UNUSED |
| {0x5e3, 0x5bc, 0}, // 0xfb43 pe sofit+dagesh |
| {0x5e4, 0x5bc,0}, // 0xfb44 pe+dagesh |
| {0xfb45, 0, 0}, // 0xfb45 -- UNUSED |
| {0x5e6, 0x5bc, 0}, // 0xfb46 tsadi+dagesh |
| {0x5e7, 0x5bc, 0}, // 0xfb47 qof+dagesh |
| {0x5e8, 0x5bc, 0}, // 0xfb48 resh+dagesh |
| {0x5e9, 0x5bc, 0}, // 0xfb49 shin+dagesh |
| {0x5ea, 0x5bc, 0}, // 0xfb4a tav+dagesh |
| {0x5d5, 0x5b9, 0}, // 0xfb4b vav+holam |
| {0x5d1, 0x5bf, 0}, // 0xfb4c bet+rafe |
| {0x5db, 0x5bf, 0}, // 0xfb4d kaf+rafe |
| {0x5e4, 0x5bf, 0}, // 0xfb4e pe+rafe |
| {0x5d0, 0x5dc, 0} // 0xfb4f alef-lamed |
| }; |
| |
| static void |
| mb_decompose(int c, int *c1, int *c2, int *c3) |
| { |
| decomp_T d; |
| |
| if (c >= 0xfb20 && c <= 0xfb4f) |
| { |
| d = decomp_table[c - 0xfb20]; |
| *c1 = d.a; |
| *c2 = d.b; |
| *c3 = d.c; |
| } |
| else |
| { |
| *c1 = c; |
| *c2 = *c3 = 0; |
| } |
| } |
| |
| /* |
| * Compare two strings, ignore case if rex.reg_ic set. |
| * Return 0 if strings match, non-zero otherwise. |
| * Correct the length "*n" when composing characters are ignored. |
| */ |
| static int |
| cstrncmp(char_u *s1, char_u *s2, int *n) |
| { |
| int result; |
| |
| if (!rex.reg_ic) |
| result = STRNCMP(s1, s2, *n); |
| else |
| result = MB_STRNICMP(s1, s2, *n); |
| |
| // if it failed and it's utf8 and we want to combineignore: |
| if (result != 0 && enc_utf8 && rex.reg_icombine) |
| { |
| char_u *str1, *str2; |
| int c1, c2, c11, c12; |
| int junk; |
| |
| // we have to handle the strcmp ourselves, since it is necessary to |
| // deal with the composing characters by ignoring them: |
| str1 = s1; |
| str2 = s2; |
| c1 = c2 = 0; |
| while ((int)(str1 - s1) < *n) |
| { |
| c1 = mb_ptr2char_adv(&str1); |
| c2 = mb_ptr2char_adv(&str2); |
| |
| // Decompose the character if necessary, into 'base' characters. |
| // Currently hard-coded for Hebrew, Arabic to be done... |
| if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) |
| { |
| // decomposition necessary? |
| mb_decompose(c1, &c11, &junk, &junk); |
| mb_decompose(c2, &c12, &junk, &junk); |
| c1 = c11; |
| c2 = c12; |
| if (c11 != c12 |
| && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) |
| break; |
| } |
| } |
| result = c2 - c1; |
| if (result == 0) |
| *n = (int)(str2 - s2); |
| } |
| |
| return result; |
| } |
| |
| /* |
| * cstrchr: This function is used a lot for simple searches, keep it fast! |
| */ |
| static char_u * |
| cstrchr(char_u *s, int c) |
| { |
| char_u *p; |
| int cc; |
| |
| if (!rex.reg_ic || (!enc_utf8 && mb_char2len(c) > 1)) |
| return vim_strchr(s, c); |
| |
| // tolower() and toupper() can be slow, comparing twice should be a lot |
| // faster (esp. when using MS Visual C++!). |
| // For UTF-8 need to use folded case. |
| if (enc_utf8 && c > 0x80) |
| cc = utf_fold(c); |
| else |
| if (MB_ISUPPER(c)) |
| cc = MB_TOLOWER(c); |
| else if (MB_ISLOWER(c)) |
| cc = MB_TOUPPER(c); |
| else |
| return vim_strchr(s, c); |
| |
| if (has_mbyte) |
| { |
| for (p = s; *p != NUL; p += (*mb_ptr2len)(p)) |
| { |
| if (enc_utf8 && c > 0x80) |
| { |
| int uc = utf_ptr2char(p); |
| |
| // Do not match an illegal byte. E.g. 0xff matches 0xc3 0xbf, |
| // not 0xff. |
| if ((uc < 0x80 || uc != *p) && utf_fold(uc) == cc) |
| return p; |
| } |
| else if (*p == c || *p == cc) |
| return p; |
| } |
| } |
| else |
| // Faster version for when there are no multi-byte characters. |
| for (p = s; *p != NUL; ++p) |
| if (*p == c || *p == cc) |
| return p; |
| |
| return NULL; |
| } |
| |
| //////////////////////////////////////////////////////////////// |
| // regsub stuff // |
| //////////////////////////////////////////////////////////////// |
| |
| typedef void (*fptr_T)(int *, int); |
| |
| static int vim_regsub_both(char_u *source, typval_T *expr, char_u *dest, int destlen, int flags); |
| |
| static void |
| do_upper(int *d, int c) |
| { |
| *d = MB_TOUPPER(c); |
| } |
| |
| static void |
| do_lower(int *d, int c) |
| { |
| *d = MB_TOLOWER(c); |
| } |
| |
| /* |
| * regtilde(): Replace tildes in the pattern by the old pattern. |
| * |
| * Short explanation of the tilde: It stands for the previous replacement |
| * pattern. If that previous pattern also contains a ~ we should go back a |
| * step further... But we insert the previous pattern into the current one |
| * and remember that. |
| * This still does not handle the case where "magic" changes. So require the |
| * user to keep his hands off of "magic". |
| * |
| * The tildes are parsed once before the first call to vim_regsub(). |
| */ |
| char_u * |
| regtilde(char_u *source, int magic) |
| { |
| char_u *newsub = source; |
| char_u *p; |
| size_t newsublen = 0; |
| char_u tilde[3] = {'~', NUL, NUL}; |
| size_t tildelen = 1; |
| int error = FALSE; |
| |
| if (!magic) |
| { |
| tilde[0] = '\\'; |
| tilde[1] = '~'; |
| tilde[2] = NUL; |
| tildelen = 2; |
| } |
| |
| for (p = newsub; *p; ++p) |
| { |
| if (STRNCMP(p, tilde, tildelen) == 0) |
| { |
| size_t prefixlen = p - newsub; // not including the tilde |
| char_u *postfix = p + tildelen; |
| size_t postfixlen; |
| size_t tmpsublen; |
| |
| if (newsublen == 0) |
| newsublen = STRLEN(newsub); |
| newsublen -= tildelen; |
| postfixlen = newsublen - prefixlen; |
| tmpsublen = prefixlen + reg_prev_sublen + postfixlen; |
| |
| if (tmpsublen > 0 && reg_prev_sub != NULL) |
| { |
| char_u *tmpsub; |
| |
| // Avoid making the text longer than MAXCOL, it will cause |
| // trouble at some point. |
| if (tmpsublen > MAXCOL) |
| { |
| emsg(_(e_resulting_text_too_long)); |
| error = TRUE; |
| break; |
| } |
| |
| tmpsub = alloc(tmpsublen + 1); |
| if (tmpsub == NULL) |
| { |
| emsg(_(e_out_of_memory)); |
| error = TRUE; |
| break; |
| } |
| |
| // copy prefix |
| mch_memmove(tmpsub, newsub, prefixlen); |
| // interpret tilde |
| mch_memmove(tmpsub + prefixlen, reg_prev_sub, reg_prev_sublen); |
| // copy postfix |
| STRCPY(tmpsub + prefixlen + reg_prev_sublen, postfix); |
| |
| if (newsub != source) // allocated newsub before |
| vim_free(newsub); |
| newsub = tmpsub; |
| newsublen = tmpsublen; |
| p = newsub + prefixlen + reg_prev_sublen; |
| } |
| else |
| mch_memmove(p, postfix, postfixlen + 1); // remove the tilde (+1 for the NUL) |
| |
| --p; |
| } |
| else |
| { |
| if (*p == '\\' && p[1]) // skip escaped characters |
| ++p; |
| if (has_mbyte) |
| p += (*mb_ptr2len)(p) - 1; |
| } |
| } |
| |
| if (error) |
| { |
| if (newsub != source) |
| vim_free(newsub); |
| return source; |
| } |
| |
| // Store a copy of newsub in reg_prev_sub. It is always allocated, |
| // because recursive calls may make the returned string invalid. |
| // Only store it if there something to store. |
| newsublen = p - newsub; |
| if (newsublen == 0) |
| VIM_CLEAR(reg_prev_sub); |
| else |
| { |
| vim_free(reg_prev_sub); |
| reg_prev_sub = vim_strnsave(newsub, newsublen); |
| } |
| |
| if (reg_prev_sub == NULL) |
| reg_prev_sublen = 0; |
| else |
| reg_prev_sublen = newsublen; |
| |
| return newsub; |
| } |
| |
| #ifdef FEAT_EVAL |
| |
| /* |
| * Put the submatches in "argv[argskip]" which is a list passed into |
| * call_func() by vim_regsub_both(). |
| */ |
| static int |
| fill_submatch_list(int argc UNUSED, typval_T *argv, int argskip, ufunc_T *fp) |
| { |
| listitem_T *li; |
| int i; |
| char_u *s; |
| typval_T *listarg = argv + argskip; |
| |
| if (!has_varargs(fp) && fp->uf_args.ga_len <= argskip) |
| // called function doesn't take a submatches argument |
| return argskip; |
| |
| // Relies on sl_list to be the first item in staticList10_T. |
| init_static_list((staticList10_T *)(listarg->vval.v_list)); |
| |
| // There are always 10 list items in staticList10_T. |
| li = listarg->vval.v_list->lv_first; |
| for (i = 0; i < 10; ++i) |
| { |
| s = rsm.sm_match->startp[i]; |
| if (s == NULL || rsm.sm_match->endp[i] == NULL) |
| s = NULL; |
| else |
| s = vim_strnsave(s, rsm.sm_match->endp[i] - s); |
| li->li_tv.v_type = VAR_STRING; |
| li->li_tv.vval.v_string = s; |
| li = li->li_next; |
| } |
| return argskip + 1; |
| } |
| |
| static void |
| clear_submatch_list(staticList10_T *sl) |
| { |
| int i; |
| |
| for (i = 0; i < 10; ++i) |
| vim_free(sl->sl_items[i].li_tv.vval.v_string); |
| } |
| #endif |
| |
| /* |
| * vim_regsub() - perform substitutions after a vim_regexec() or |
| * vim_regexec_multi() match. |
| * |
| * If "flags" has REGSUB_COPY really copy into "dest[destlen]". |
| * Otherwise nothing is copied, only compute the length of the result. |
| * |
| * If "flags" has REGSUB_MAGIC then behave like 'magic' is set. |
| * |
| * If "flags" has REGSUB_BACKSLASH a backslash will be removed later, need to |
| * double them to keep them, and insert a backslash before a CR to avoid it |
| * being replaced with a line break later. |
| * |
| * Note: The matched text must not change between the call of |
| * vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back |
| * references invalid! |
| * |
| * Returns the size of the replacement, including terminating NUL. |
| */ |
| int |
| vim_regsub( |
| regmatch_T *rmp, |
| char_u *source, |
| typval_T *expr, |
| char_u *dest, |
| int destlen, |
| int flags) |
| { |
| int result; |
| regexec_T rex_save; |
| int rex_in_use_save = rex_in_use; |
| |
| if (rex_in_use) |
| // Being called recursively, save the state. |
| rex_save = rex; |
| rex_in_use = TRUE; |
| |
| rex.reg_match = rmp; |
| rex.reg_mmatch = NULL; |
| rex.reg_maxline = 0; |
| rex.reg_buf = curbuf; |
| rex.reg_line_lbr = TRUE; |
| result = vim_regsub_both(source, expr, dest, destlen, flags); |
| |
| rex_in_use = rex_in_use_save; |
| if (rex_in_use) |
| rex = rex_save; |
| |
| return result; |
| } |
| |
| int |
| vim_regsub_multi( |
| regmmatch_T *rmp, |
| linenr_T lnum, |
| char_u *source, |
| char_u *dest, |
| int destlen, |
| int flags) |
| { |
| int result; |
| regexec_T rex_save; |
| int rex_in_use_save = rex_in_use; |
| |
| if (rex_in_use) |
| // Being called recursively, save the state. |
| rex_save = rex; |
| rex_in_use = TRUE; |
| |
| rex.reg_match = NULL; |
| rex.reg_mmatch = rmp; |
| rex.reg_buf = curbuf; // always works on the current buffer! |
| rex.reg_firstlnum = lnum; |
| rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum; |
| rex.reg_line_lbr = FALSE; |
| result = vim_regsub_both(source, NULL, dest, destlen, flags); |
| |
| rex_in_use = rex_in_use_save; |
| if (rex_in_use) |
| rex = rex_save; |
| |
| return result; |
| } |
| |
| #if defined(FEAT_EVAL) || defined(PROTO) |
| // When nesting more than a couple levels it's probably a mistake. |
| # define MAX_REGSUB_NESTING 4 |
| static char_u *eval_result[MAX_REGSUB_NESTING] = {NULL, NULL, NULL, NULL}; |
| |
| # if defined(EXITFREE) || defined(PROTO) |
| void |
| free_resub_eval_result(void) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_REGSUB_NESTING; ++i) |
| VIM_CLEAR(eval_result[i]); |
| } |
| # endif |
| #endif |
| |
| static int |
| vim_regsub_both( |
| char_u *source, |
| typval_T *expr, |
| char_u *dest, |
| int destlen, |
| int flags) |
| { |
| char_u *src; |
| char_u *dst; |
| char_u *s; |
| int c; |
| int cc; |
| int no = -1; |
| fptr_T func_all = (fptr_T)NULL; |
| fptr_T func_one = (fptr_T)NULL; |
| linenr_T clnum = 0; // init for GCC |
| int len = 0; // init for GCC |
| #ifdef FEAT_EVAL |
| static int nesting = 0; |
| int nested; |
| #endif |
| int copy = flags & REGSUB_COPY; |
| |
| // Be paranoid... |
| if ((source == NULL && expr == NULL) || dest == NULL) |
| { |
| iemsg(e_null_argument); |
| return 0; |
| } |
| if (prog_magic_wrong()) |
| return 0; |
| #ifdef FEAT_EVAL |
| if (nesting == MAX_REGSUB_NESTING) |
| { |
| emsg(_(e_substitute_nesting_too_deep)); |
| return 0; |
| } |
| nested = nesting; |
| #endif |
| src = source; |
| dst = dest; |
| |
| /* |
| * When the substitute part starts with "\=" evaluate it as an expression. |
| */ |
| if (expr != NULL || (source[0] == '\\' && source[1] == '=')) |
| { |
| #ifdef FEAT_EVAL |
| // To make sure that the length doesn't change between checking the |
| // length and copying the string, and to speed up things, the |
| // resulting string is saved from the call with |
| // "flags & REGSUB_COPY" == 0 to the call with |
| // "flags & REGSUB_COPY" != 0. |
| if (copy) |
| { |
| if (eval_result[nested] != NULL) |
| { |
| int eval_len = (int)STRLEN(eval_result[nested]); |
| |
| if (eval_len < destlen) |
| { |
| STRCPY(dest, eval_result[nested]); |
| dst += eval_len; |
| VIM_CLEAR(eval_result[nested]); |
| } |
| } |
| } |
| else |
| { |
| int prev_can_f_submatch = can_f_submatch; |
| regsubmatch_T rsm_save; |
| |
| VIM_CLEAR(eval_result[nested]); |
| |
| // The expression may contain substitute(), which calls us |
| // recursively. Make sure submatch() gets the text from the first |
| // level. |
| if (can_f_submatch) |
| rsm_save = rsm; |
| can_f_submatch = TRUE; |
| rsm.sm_match = rex.reg_match; |
| rsm.sm_mmatch = rex.reg_mmatch; |
| rsm.sm_firstlnum = rex.reg_firstlnum; |
| rsm.sm_maxline = rex.reg_maxline; |
| rsm.sm_line_lbr = rex.reg_line_lbr; |
| |
| // Although unlikely, it is possible that the expression invokes a |
| // substitute command (it might fail, but still). Therefore keep |
| // an array of eval results. |
| ++nesting; |
| |
| if (expr != NULL) |
| { |
| typval_T argv[2]; |
| char_u buf[NUMBUFLEN]; |
| typval_T rettv; |
| staticList10_T matchList; |
| funcexe_T funcexe; |
| |
| rettv.v_type = VAR_STRING; |
| rettv.vval.v_string = NULL; |
| argv[0].v_type = VAR_LIST; |
| argv[0].vval.v_list = &matchList.sl_list; |
| matchList.sl_list.lv_len = 0; |
| CLEAR_FIELD(funcexe); |
| funcexe.fe_argv_func = fill_submatch_list; |
| funcexe.fe_evaluate = TRUE; |
| if (expr->v_type == VAR_FUNC) |
| { |
| s = expr->vval.v_string; |
| call_func(s, -1, &rettv, 1, argv, &funcexe); |
| } |
| else if (expr->v_type == VAR_PARTIAL) |
| { |
| partial_T *partial = expr->vval.v_partial; |
| |
| s = partial_name(partial); |
| funcexe.fe_partial = partial; |
| call_func(s, -1, &rettv, 1, argv, &funcexe); |
| } |
| else if (expr->v_type == VAR_INSTR) |
| { |
| exe_typval_instr(expr, &rettv); |
| } |
| if (matchList.sl_list.lv_len > 0) |
| // fill_submatch_list() was called |
| clear_submatch_list(&matchList); |
| |
| if (rettv.v_type == VAR_UNKNOWN) |
| // something failed, no need to report another error |
| eval_result[nested] = NULL; |
| else |
| { |
| eval_result[nested] = tv_get_string_buf_chk(&rettv, buf); |
| if (eval_result[nested] != NULL) |
| eval_result[nested] = vim_strsave(eval_result[nested]); |
| } |
| clear_tv(&rettv); |
| } |
| else if (substitute_instr != NULL) |
| // Execute instructions from ISN_SUBSTITUTE. |
| eval_result[nested] = exe_substitute_instr(); |
| else |
| eval_result[nested] = eval_to_string(source + 2, TRUE, FALSE); |
| --nesting; |
| |
| if (eval_result[nested] != NULL) |
| { |
| int had_backslash = FALSE; |
| |
| for (s = eval_result[nested]; *s != NUL; MB_PTR_ADV(s)) |
| { |
| // Change NL to CR, so that it becomes a line break, |
| // unless called from vim_regexec_nl(). |
| // Skip over a backslashed character. |
| if (*s == NL && !rsm.sm_line_lbr) |
| *s = CAR; |
| else if (*s == '\\' && s[1] != NUL) |
| { |
| ++s; |
| /* Change NL to CR here too, so that this works: |
| * :s/abc\\\ndef/\="aaa\\\nbbb"/ on text: |
| * abc\ |
| * def |
| * Not when called from vim_regexec_nl(). |
| */ |
| if (*s == NL && !rsm.sm_line_lbr) |
| *s = CAR; |
| had_backslash = TRUE; |
| } |
| } |
| if (had_backslash && (flags & REGSUB_BACKSLASH)) |
| { |
| // Backslashes will be consumed, need to double them. |
| s = vim_strsave_escaped(eval_result[nested], (char_u *)"\\"); |
| if (s != NULL) |
| { |
| vim_free(eval_result[nested]); |
| eval_result[nested] = s; |
| } |
| } |
| |
| dst += STRLEN(eval_result[nested]); |
| } |
| |
| can_f_submatch = prev_can_f_submatch; |
| if (can_f_submatch) |
| rsm = rsm_save; |
| } |
| #endif |
| } |
| else |
| while ((c = *src++) != NUL) |
| { |
| if (c == '&' && (flags & REGSUB_MAGIC)) |
| no = 0; |
| else if (c == '\\' && *src != NUL) |
| { |
| if (*src == '&' && !(flags & REGSUB_MAGIC)) |
| { |
| ++src; |
| no = 0; |
| } |
| else if ('0' <= *src && *src <= '9') |
| { |
| no = *src++ - '0'; |
| } |
| else if (vim_strchr((char_u *)"uUlLeE", *src)) |
| { |
| switch (*src++) |
| { |
| case 'u': func_one = do_upper; |
| continue; |
| case 'U': func_all = do_upper; |
| continue; |
| case 'l': func_one = do_lower; |
| continue; |
| case 'L': func_all = do_lower; |
| continue; |
| case 'e': |
| case 'E': func_one = func_all = (fptr_T)NULL; |
| continue; |
| } |
| } |
| } |
| if (no < 0) // Ordinary character. |
| { |
| if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) |
| { |
| // Copy a special key as-is. |
| if (copy) |
| { |
| if (dst + 3 > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| *dst++ = c; |
| *dst++ = *src++; |
| *dst++ = *src++; |
| } |
| else |
| { |
| dst += 3; |
| src += 2; |
| } |
| continue; |
| } |
| |
| if (c == '\\' && *src != NUL) |
| { |
| // Check for abbreviations -- webb |
| switch (*src) |
| { |
| case 'r': c = CAR; ++src; break; |
| case 'n': c = NL; ++src; break; |
| case 't': c = TAB; ++src; break; |
| // Oh no! \e already has meaning in subst pat :-( |
| // case 'e': c = ESC; ++src; break; |
| case 'b': c = Ctrl_H; ++src; break; |
| |
| // If "backslash" is TRUE the backslash will be removed |
| // later. Used to insert a literal CR. |
| default: if (flags & REGSUB_BACKSLASH) |
| { |
| if (copy) |
| { |
| if (dst + 1 > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| *dst = '\\'; |
| } |
| ++dst; |
| } |
| c = *src++; |
| } |
| } |
| else if (has_mbyte) |
| c = mb_ptr2char(src - 1); |
| |
| // Write to buffer, if copy is set. |
| if (func_one != (fptr_T)NULL) |
| { |
| func_one(&cc, c); |
| func_one = NULL; |
| } |
| else if (func_all != (fptr_T)NULL) |
| func_all(&cc, c); |
| else // just copy |
| cc = c; |
| |
| if (has_mbyte) |
| { |
| int totlen = mb_ptr2len(src - 1); |
| int charlen = mb_char2len(cc); |
| |
| if (copy) |
| { |
| if (dst + charlen > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| mb_char2bytes(cc, dst); |
| } |
| dst += charlen - 1; |
| if (enc_utf8) |
| { |
| int clen = utf_ptr2len(src - 1); |
| |
| // If the character length is shorter than "totlen", there |
| // are composing characters; copy them as-is. |
| if (clen < totlen) |
| { |
| if (copy) |
| { |
| if (dst + totlen - clen > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| mch_memmove(dst + 1, src - 1 + clen, |
| (size_t)(totlen - clen)); |
| } |
| dst += totlen - clen; |
| } |
| } |
| src += totlen - 1; |
| } |
| else if (copy) |
| { |
| if (dst + 1 > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| *dst = cc; |
| } |
| dst++; |
| } |
| else |
| { |
| if (REG_MULTI) |
| { |
| clnum = rex.reg_mmatch->startpos[no].lnum; |
| if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) |
| s = NULL; |
| else |
| { |
| s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col; |
| if (rex.reg_mmatch->endpos[no].lnum == clnum) |
| len = rex.reg_mmatch->endpos[no].col |
| - rex.reg_mmatch->startpos[no].col; |
| else |
| len = (int)reg_getline_len(clnum) - rex.reg_mmatch->startpos[no].col; |
| } |
| } |
| else |
| { |
| s = rex.reg_match->startp[no]; |
| if (rex.reg_match->endp[no] == NULL) |
| s = NULL; |
| else |
| len = (int)(rex.reg_match->endp[no] - s); |
| } |
| if (s != NULL) |
| { |
| for (;;) |
| { |
| if (len == 0) |
| { |
| if (REG_MULTI) |
| { |
| if (rex.reg_mmatch->endpos[no].lnum == clnum) |
| break; |
| if (copy) |
| { |
| if (dst + 1 > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| *dst = CAR; |
| } |
| ++dst; |
| s = reg_getline(++clnum); |
| if (rex.reg_mmatch->endpos[no].lnum == clnum) |
| len = rex.reg_mmatch->endpos[no].col; |
| else |
| len = (int)reg_getline_len(clnum); |
| } |
| else |
| break; |
| } |
| else if (*s == NUL) // we hit NUL. |
| { |
| if (copy) |
| iemsg(e_damaged_match_string); |
| goto exit; |
| } |
| else |
| { |
| if ((flags & REGSUB_BACKSLASH) |
| && (*s == CAR || *s == '\\')) |
| { |
| /* |
| * Insert a backslash in front of a CR, otherwise |
| * it will be replaced by a line break. |
| * Number of backslashes will be halved later, |
| * double them here. |
| */ |
| if (copy) |
| { |
| if (dst + 2 > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| dst[0] = '\\'; |
| dst[1] = *s; |
| } |
| dst += 2; |
| } |
| else |
| { |
| if (has_mbyte) |
| c = mb_ptr2char(s); |
| else |
| c = *s; |
| |
| if (func_one != (fptr_T)NULL) |
| { |
| func_one(&cc, c); |
| func_one = NULL; |
| } |
| else if (func_all != (fptr_T)NULL) |
| func_all(&cc, c); |
| else // just copy |
| cc = c; |
| |
| if (has_mbyte) |
| { |
| int l; |
| int charlen; |
| |
| // Copy composing characters separately, one |
| // at a time. |
| if (enc_utf8) |
| l = utf_ptr2len(s) - 1; |
| else |
| l = mb_ptr2len(s) - 1; |
| |
| s += l; |
| len -= l; |
| charlen = mb_char2len(cc); |
| if (copy) |
| { |
| if (dst + charlen > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| mb_char2bytes(cc, dst); |
| } |
| dst += charlen - 1; |
| } |
| else if (copy) |
| { |
| if (dst + 1 > dest + destlen) |
| { |
| iemsg("vim_regsub_both(): not enough space"); |
| return 0; |
| } |
| *dst = cc; |
| } |
| dst++; |
| } |
| |
| ++s; |
| --len; |
| } |
| } |
| } |
| no = -1; |
| } |
| } |
| if (copy) |
| *dst = NUL; |
| |
| exit: |
| return (int)((dst - dest) + 1); |
| } |
| |
| #ifdef FEAT_EVAL |
| |
| static char_u * |
| reg_getline_submatch(linenr_T lnum) |
| { |
| char_u *line; |
| |
| reg_getline_common(lnum, RGLF_LINE | RGLF_SUBMATCH, &line, NULL); |
| |
| return line; |
| } |
| |
| static colnr_T |
| reg_getline_submatch_len(linenr_T lnum) |
| { |
| colnr_T length; |
| |
| reg_getline_common(lnum, RGLF_LENGTH | RGLF_SUBMATCH, NULL, &length); |
| |
| return length; |
| } |
| |
| /* |
| * Used for the submatch() function: get the string from the n'th submatch in |
| * allocated memory. |
| * Returns NULL when not in a ":s" command and for a non-existing submatch. |
| */ |
| char_u * |
| reg_submatch(int no) |
| { |
| char_u *retval = NULL; |
| char_u *s; |
| int len; |
| int round; |
| linenr_T lnum; |
| |
| if (!can_f_submatch || no < 0) |
| return NULL; |
| |
| if (rsm.sm_match == NULL) |
| { |
| /* |
| * First round: compute the length and allocate memory. |
| * Second round: copy the text. |
| */ |
| for (round = 1; round <= 2; ++round) |
| { |
| lnum = rsm.sm_mmatch->startpos[no].lnum; |
| if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) |
| return NULL; |
| |
| s = reg_getline_submatch(lnum); |
| if (s == NULL) // anti-crash check, cannot happen? |
| break; |
| s += rsm.sm_mmatch->startpos[no].col; |
| if (rsm.sm_mmatch->endpos[no].lnum == lnum) |
| { |
| // Within one line: take form start to end col. |
| len = rsm.sm_mmatch->endpos[no].col |
| - rsm.sm_mmatch->startpos[no].col; |
| if (round == 2) |
| vim_strncpy(retval, s, len); |
| ++len; |
| } |
| else |
| { |
| // Multiple lines: take start line from start col, middle |
| // lines completely and end line up to end col. |
| len = (int)reg_getline_submatch_len(lnum) - rsm.sm_mmatch->startpos[no].col; |
| if (round == 2) |
| { |
| STRCPY(retval, s); |
| retval[len] = '\n'; |
| } |
| ++len; |
| ++lnum; |
| while (lnum < rsm.sm_mmatch->endpos[no].lnum) |
| { |
| s = reg_getline_submatch(lnum); |
| if (round == 2) |
| STRCPY(retval + len, s); |
| len += (int)reg_getline_submatch_len(lnum); |
| if (round == 2) |
| retval[len] = '\n'; |
| ++len; |
| ++lnum; |
| } |
| if (round == 2) |
| STRNCPY(retval + len, reg_getline_submatch(lnum), |
| rsm.sm_mmatch->endpos[no].col); |
| len += rsm.sm_mmatch->endpos[no].col; |
| if (round == 2) |
| retval[len] = NUL; |
| ++len; |
| } |
| |
| if (retval == NULL) |
| { |
| retval = alloc(len); |
| if (retval == NULL) |
| return NULL; |
| } |
| } |
| } |
| else |
| { |
| s = rsm.sm_match->startp[no]; |
| if (s == NULL || rsm.sm_match->endp[no] == NULL) |
| retval = NULL; |
| else |
| retval = vim_strnsave(s, rsm.sm_match->endp[no] - s); |
| } |
| |
| return retval; |
| } |
| |
| /* |
| * Used for the submatch() function with the optional non-zero argument: get |
| * the list of strings from the n'th submatch in allocated memory with NULs |
| * represented in NLs. |
| * Returns a list of allocated strings. Returns NULL when not in a ":s" |
| * command, for a non-existing submatch and for any error. |
| */ |
| list_T * |
| reg_submatch_list(int no) |
| { |
| char_u *s; |
| linenr_T slnum; |
| linenr_T elnum; |
| colnr_T scol; |
| colnr_T ecol; |
| int i; |
| list_T *list; |
| int error = FALSE; |
| |
| if (!can_f_submatch || no < 0) |
| return NULL; |
| |
| if (rsm.sm_match == NULL) |
| { |
| slnum = rsm.sm_mmatch->startpos[no].lnum; |
| elnum = rsm.sm_mmatch->endpos[no].lnum; |
| if (slnum < 0 || elnum < 0) |
| return NULL; |
| |
| scol = rsm.sm_mmatch->startpos[no].col; |
| ecol = rsm.sm_mmatch->endpos[no].col; |
| |
| list = list_alloc(); |
| if (list == NULL) |
| return NULL; |
| |
| s = reg_getline_submatch(slnum) + scol; |
| if (slnum == elnum) |
| { |
| if (list_append_string(list, s, ecol - scol) == FAIL) |
| error = TRUE; |
| } |
| else |
| { |
| int max_lnum = elnum - slnum; |
| |
| if (list_append_string(list, s, -1) == FAIL) |
| error = TRUE; |
| for (i = 1; i < max_lnum; i++) |
| { |
| s = reg_getline_submatch(slnum + i); |
| if (list_append_string(list, s, -1) == FAIL) |
| error = TRUE; |
| } |
| s = reg_getline_submatch(elnum); |
| if (list_append_string(list, s, ecol) == FAIL) |
| error = TRUE; |
| } |
| } |
| else |
| { |
| s = rsm.sm_match->startp[no]; |
| if (s == NULL || rsm.sm_match->endp[no] == NULL) |
| return NULL; |
| list = list_alloc(); |
| if (list == NULL) |
| return NULL; |
| if (list_append_string(list, s, |
| (int)(rsm.sm_match->endp[no] - s)) == FAIL) |
| error = TRUE; |
| } |
| |
| if (error) |
| { |
| list_free(list); |
| return NULL; |
| } |
| ++list->lv_refcount; |
| return list; |
| } |
| #endif |
| |
| /* |
| * Initialize the values used for matching against multiple lines |
| */ |
| static void |
| init_regexec_multi( |
| regmmatch_T *rmp, |
| win_T *win, // window in which to search or NULL |
| buf_T *buf, // buffer in which to search |
| linenr_T lnum) // nr of line to start looking for match |
| { |
| rex.reg_match = NULL; |
| rex.reg_mmatch = rmp; |
| rex.reg_buf = buf; |
| rex.reg_win = win; |
| rex.reg_firstlnum = lnum; |
| rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum; |
| rex.reg_line_lbr = FALSE; |
| rex.reg_ic = rmp->rmm_ic; |
| rex.reg_icombine = FALSE; |
| rex.reg_maxcol = rmp->rmm_maxcol; |
| } |
| |
| #include "regexp_bt.c" |
| |
| static regengine_T bt_regengine = |
| { |
| bt_regcomp, |
| bt_regfree, |
| bt_regexec_nl, |
| bt_regexec_multi |
| #ifdef DEBUG |
| ,(char_u *)"" |
| #endif |
| }; |
| |
| #include "regexp_nfa.c" |
| |
| static regengine_T nfa_regengine = |
| { |
| nfa_regcomp, |
| nfa_regfree, |
| nfa_regexec_nl, |
| nfa_regexec_multi |
| #ifdef DEBUG |
| ,(char_u *)"" |
| #endif |
| }; |
| |
| // Which regexp engine to use? Needed for vim_regcomp(). |
| // Must match with 'regexpengine'. |
| static int regexp_engine = 0; |
| |
| #ifdef DEBUG |
| static char_u regname[][30] = { |
| "AUTOMATIC Regexp Engine", |
| "BACKTRACKING Regexp Engine", |
| "NFA Regexp Engine" |
| }; |
| #endif |
| |
| /* |
| * Compile a regular expression into internal code. |
| * Returns the program in allocated memory. |
| * Use vim_regfree() to free the memory. |
| * Returns NULL for an error. |
| */ |
| regprog_T * |
| vim_regcomp(char_u *expr_arg, int re_flags) |
| { |
| regprog_T *prog = NULL; |
| char_u *expr = expr_arg; |
| int called_emsg_before; |
| |
| regexp_engine = p_re; |
| |
| // Check for prefix "\%#=", that sets the regexp engine |
| if (STRNCMP(expr, "\\%#=", 4) == 0) |
| { |
| int newengine = expr[4] - '0'; |
| |
| if (newengine == AUTOMATIC_ENGINE |
| || newengine == BACKTRACKING_ENGINE |
| || newengine == NFA_ENGINE) |
| { |
| regexp_engine = expr[4] - '0'; |
| expr += 5; |
| #ifdef DEBUG |
| smsg("New regexp mode selected (%d): %s", |
| regexp_engine, regname[newengine]); |
| #endif |
| } |
| else |
| { |
| emsg(_(e_percent_hash_can_only_be_followed_by_zero_one_two_automatic_engine_will_be_used)); |
| regexp_engine = AUTOMATIC_ENGINE; |
| } |
| } |
| #ifdef DEBUG |
| bt_regengine.expr = expr; |
| nfa_regengine.expr = expr; |
| #endif |
| // reg_iswordc() uses rex.reg_buf |
| rex.reg_buf = curbuf; |
| |
| /* |
| * First try the NFA engine, unless backtracking was requested. |
| */ |
| called_emsg_before = called_emsg; |
| if (regexp_engine != BACKTRACKING_ENGINE) |
| prog = nfa_regengine.regcomp(expr, |
| re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0)); |
| else |
| prog = bt_regengine.regcomp(expr, re_flags); |
| |
| // Check for error compiling regexp with initial engine. |
| if (prog == NULL) |
| { |
| #ifdef BT_REGEXP_DEBUG_LOG |
| if (regexp_engine == BACKTRACKING_ENGINE) // debugging log for BT engine |
| { |
| FILE *f; |
| f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a"); |
| if (f) |
| { |
| fprintf(f, "Syntax error in \"%s\"\n", expr); |
| fclose(f); |
| } |
| else |
| semsg("(NFA) Could not open \"%s\" to write !!!", |
| BT_REGEXP_DEBUG_LOG_NAME); |
| } |
| #endif |
| /* |
| * If the NFA engine failed, try the backtracking engine. |
| * The NFA engine also fails for patterns that it can't handle well |
| * but are still valid patterns, thus a retry should work. |
| * But don't try if an error message was given. |
| */ |
| if (regexp_engine == AUTOMATIC_ENGINE |
| && called_emsg == called_emsg_before) |
| { |
| regexp_engine = BACKTRACKING_ENGINE; |
| #ifdef FEAT_EVAL |
| report_re_switch(expr); |
| #endif |
| prog = bt_regengine.regcomp(expr, re_flags); |
| } |
| } |
| |
| if (prog != NULL) |
| { |
| // Store the info needed to call regcomp() again when the engine turns |
| // out to be very slow when executing it. |
| prog->re_engine = regexp_engine; |
| prog->re_flags = re_flags; |
| } |
| |
| return prog; |
| } |
| |
| /* |
| * Free a compiled regexp program, returned by vim_regcomp(). |
| */ |
| void |
| vim_regfree(regprog_T *prog) |
| { |
| if (prog != NULL) |
| prog->engine->regfree(prog); |
| } |
| |
| #if defined(EXITFREE) || defined(PROTO) |
| void |
| free_regexp_stuff(void) |
| { |
| ga_clear(®stack); |
| ga_clear(&backpos); |
| vim_free(reg_tofree); |
| vim_free(reg_prev_sub); |
| } |
| #endif |
| |
| #ifdef FEAT_EVAL |
| static void |
| report_re_switch(char_u *pat) |
| { |
| if (p_verbose > 0) |
| { |
| verbose_enter(); |
| msg_puts(_("Switching to backtracking RE engine for pattern: ")); |
| msg_puts((char *)pat); |
| verbose_leave(); |
| } |
| } |
| #endif |
| |
| #if defined(FEAT_X11) || defined(PROTO) |
| /* |
| * Return whether "prog" is currently being executed. |
| */ |
| int |
| regprog_in_use(regprog_T *prog) |
| { |
| return prog->re_in_use; |
| } |
| #endif |
| |
| /* |
| * Match a regexp against a string. |
| * "rmp->regprog" must be a compiled regexp as returned by vim_regcomp(). |
| * Note: "rmp->regprog" may be freed and changed. |
| * Uses curbuf for line count and 'iskeyword'. |
| * When "nl" is TRUE consider a "\n" in "line" to be a line break. |
| * |
| * Return TRUE if there is a match, FALSE if not. |
| */ |
| static int |
| vim_regexec_string( |
| regmatch_T *rmp, |
| char_u *line, // string to match against |
| colnr_T col, // column to start looking for match |
| int nl) |
| { |
| int result; |
| regexec_T rex_save; |
| int rex_in_use_save = rex_in_use; |
| |
| // Cannot use the same prog recursively, it contains state. |
| if (rmp->regprog->re_in_use) |
| { |
| emsg(_(e_cannot_use_pattern_recursively)); |
| return FALSE; |
| } |
| rmp->regprog->re_in_use = TRUE; |
| |
| if (rex_in_use) |
| // Being called recursively, save the state. |
| rex_save = rex; |
| rex_in_use = TRUE; |
| |
| rex.reg_startp = NULL; |
| rex.reg_endp = NULL; |
| rex.reg_startpos = NULL; |
| rex.reg_endpos = NULL; |
| |
| result = rmp->regprog->engine->regexec_nl(rmp, line, col, nl); |
| rmp->regprog->re_in_use = FALSE; |
| |
| // NFA engine aborted because it's very slow. |
| if (rmp->regprog->re_engine == AUTOMATIC_ENGINE |
| && result == NFA_TOO_EXPENSIVE) |
| { |
| int save_p_re = p_re; |
| int re_flags = rmp->regprog->re_flags; |
| char_u *pat = vim_strsave(((nfa_regprog_T *)rmp->regprog)->pattern); |
| |
| p_re = BACKTRACKING_ENGINE; |
| vim_regfree(rmp->regprog); |
| if (pat != NULL) |
| { |
| #ifdef FEAT_EVAL |
| report_re_switch(pat); |
| #endif |
| rmp->regprog = vim_regcomp(pat, re_flags); |
| if (rmp->regprog != NULL) |
| { |
| rmp->regprog->re_in_use = TRUE; |
| result = rmp->regprog->engine->regexec_nl(rmp, line, col, nl); |
| rmp->regprog->re_in_use = FALSE; |
| } |
| vim_free(pat); |
| } |
| |
| p_re = save_p_re; |
| } |
| |
| rex_in_use = rex_in_use_save; |
| if (rex_in_use) |
| rex = rex_save; |
| |
| return result > 0; |
| } |
| |
| #if defined(FEAT_SPELL) || defined(FEAT_EVAL) || defined(FEAT_X11) || defined(PROTO) |
| /* |
| * Note: "*prog" may be freed and changed. |
| * Return TRUE if there is a match, FALSE if not. |
| */ |
| int |
| vim_regexec_prog( |
| regprog_T **prog, |
| int ignore_case, |
| char_u *line, |
| colnr_T col) |
| { |
| int r; |
| regmatch_T regmatch; |
| |
| regmatch.regprog = *prog; |
| regmatch.rm_ic = ignore_case; |
| r = vim_regexec_string(®match, line, col, FALSE); |
| *prog = regmatch.regprog; |
| return r; |
| } |
| #endif |
| |
| /* |
| * Note: "rmp->regprog" may be freed and changed. |
| * Return TRUE if there is a match, FALSE if not. |
| */ |
| int |
| vim_regexec(regmatch_T *rmp, char_u *line, colnr_T col) |
| { |
| return vim_regexec_string(rmp, line, col, FALSE); |
| } |
| |
| /* |
| * Like vim_regexec(), but consider a "\n" in "line" to be a line break. |
| * Note: "rmp->regprog" may be freed and changed. |
| * Return TRUE if there is a match, FALSE if not. |
| */ |
| int |
| vim_regexec_nl(regmatch_T *rmp, char_u *line, colnr_T col) |
| { |
| return vim_regexec_string(rmp, line, col, TRUE); |
| } |
| |
| /* |
| * Match a regexp against multiple lines. |
| * "rmp->regprog" must be a compiled regexp as returned by vim_regcomp(). |
| * Note: "rmp->regprog" may be freed and changed, even set to NULL. |
| * Uses curbuf for line count and 'iskeyword'. |
| * |
| * Return zero if there is no match. Return number of lines contained in the |
| * match otherwise. |
| */ |
| long |
| vim_regexec_multi( |
| regmmatch_T *rmp, |
| win_T *win, // window in which to search or NULL |
| buf_T *buf, // buffer in which to search |
| linenr_T lnum, // nr of line to start looking for match |
| colnr_T col, // column to start looking for match |
| int *timed_out) // flag is set when timeout limit reached |
| { |
| int result; |
| regexec_T rex_save; |
| int rex_in_use_save = rex_in_use; |
| |
| // Cannot use the same prog recursively, it contains state. |
| if (rmp->regprog->re_in_use) |
| { |
| emsg(_(e_cannot_use_pattern_recursively)); |
| return FALSE; |
| } |
| rmp->regprog->re_in_use = TRUE; |
| |
| if (rex_in_use) |
| // Being called recursively, save the state. |
| rex_save = rex; |
| rex_in_use = TRUE; |
| |
| result = rmp->regprog->engine->regexec_multi( |
| rmp, win, buf, lnum, col, timed_out); |
| rmp->regprog->re_in_use = FALSE; |
| |
| // NFA engine aborted because it's very slow. |
| if (rmp->regprog->re_engine == AUTOMATIC_ENGINE |
| && result == NFA_TOO_EXPENSIVE) |
| { |
| int save_p_re = p_re; |
| int re_flags = rmp->regprog->re_flags; |
| char_u *pat = vim_strsave(((nfa_regprog_T *)rmp->regprog)->pattern); |
| |
| p_re = BACKTRACKING_ENGINE; |
| if (pat != NULL) |
| { |
| regprog_T *prev_prog = rmp->regprog; |
| |
| #ifdef FEAT_EVAL |
| report_re_switch(pat); |
| #endif |
| #ifdef FEAT_SYN_HL |
| // checking for \z misuse was already done when compiling for NFA, |
| // allow all here |
| reg_do_extmatch = REX_ALL; |
| #endif |
| rmp->regprog = vim_regcomp(pat, re_flags); |
| #ifdef FEAT_SYN_HL |
| reg_do_extmatch = 0; |
| #endif |
| if (rmp->regprog == NULL) |
| { |
| // Somehow compiling the pattern failed now, put back the |
| // previous one to avoid "regprog" becoming NULL. |
| rmp->regprog = prev_prog; |
| } |
| else |
| { |
| vim_regfree(prev_prog); |
| |
| rmp->regprog->re_in_use = TRUE; |
| result = rmp->regprog->engine->regexec_multi( |
| rmp, win, buf, lnum, col, timed_out); |
| rmp->regprog->re_in_use = FALSE; |
| } |
| vim_free(pat); |
| } |
| p_re = save_p_re; |
| } |
| |
| rex_in_use = rex_in_use_save; |
| if (rex_in_use) |
| rex = rex_save; |
| |
| return result <= 0 ? 0 : result; |
| } |