| /* vi:set ts=8 sts=4 sw=4 noet: |
| * |
| * NFA regular expression implementation. |
| * |
| * This file is included in "regexp.c". |
| */ |
| |
| /* |
| * Logging of NFA engine. |
| * |
| * The NFA engine can write four log files: |
| * - Error log: Contains NFA engine's fatal errors. |
| * - Dump log: Contains compiled NFA state machine's information. |
| * - Run log: Contains information of matching procedure. |
| * - Debug log: Contains detailed information of matching procedure. Can be |
| * disabled by undefining NFA_REGEXP_DEBUG_LOG. |
| * The first one can also be used without debug mode. |
| * The last three are enabled when compiled as debug mode and individually |
| * disabled by commenting them out. |
| * The log files can get quite big! |
| * To disable all of this when compiling Vim for debugging, undefine DEBUG in |
| * regexp.c |
| */ |
| #ifdef DEBUG |
| # define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log" |
| # define ENABLE_LOG |
| # define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log" |
| # define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log" |
| # define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log" |
| #endif |
| |
| // Added to NFA_ANY - NFA_NUPPER_IC to include a NL. |
| #define NFA_ADD_NL 31 |
| |
| enum |
| { |
| NFA_SPLIT = -1024, |
| NFA_MATCH, |
| NFA_EMPTY, // matches 0-length |
| |
| NFA_START_COLL, // [abc] start |
| NFA_END_COLL, // [abc] end |
| NFA_START_NEG_COLL, // [^abc] start |
| NFA_END_NEG_COLL, // [^abc] end (postfix only) |
| NFA_RANGE, // range of the two previous items |
| // (postfix only) |
| NFA_RANGE_MIN, // low end of a range |
| NFA_RANGE_MAX, // high end of a range |
| |
| NFA_CONCAT, // concatenate two previous items (postfix |
| // only) |
| NFA_OR, // \| (postfix only) |
| NFA_STAR, // greedy * (postfix only) |
| NFA_STAR_NONGREEDY, // non-greedy * (postfix only) |
| NFA_QUEST, // greedy \? (postfix only) |
| NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only) |
| |
| NFA_BOL, // ^ Begin line |
| NFA_EOL, // $ End line |
| NFA_BOW, // \< Begin word |
| NFA_EOW, // \> End word |
| NFA_BOF, // \%^ Begin file |
| NFA_EOF, // \%$ End file |
| NFA_NEWL, |
| NFA_ZSTART, // Used for \zs |
| NFA_ZEND, // Used for \ze |
| NFA_NOPEN, // Start of subexpression marked with \%( |
| NFA_NCLOSE, // End of subexpr. marked with \%( ... \) |
| NFA_START_INVISIBLE, |
| NFA_START_INVISIBLE_FIRST, |
| NFA_START_INVISIBLE_NEG, |
| NFA_START_INVISIBLE_NEG_FIRST, |
| NFA_START_INVISIBLE_BEFORE, |
| NFA_START_INVISIBLE_BEFORE_FIRST, |
| NFA_START_INVISIBLE_BEFORE_NEG, |
| NFA_START_INVISIBLE_BEFORE_NEG_FIRST, |
| NFA_START_PATTERN, |
| NFA_END_INVISIBLE, |
| NFA_END_INVISIBLE_NEG, |
| NFA_END_PATTERN, |
| NFA_COMPOSING, // Next nodes in NFA are part of the |
| // composing multibyte char |
| NFA_END_COMPOSING, // End of a composing char in the NFA |
| NFA_ANY_COMPOSING, // \%C: Any composing characters. |
| NFA_OPT_CHARS, // \%[abc] |
| |
| // The following are used only in the postfix form, not in the NFA |
| NFA_PREV_ATOM_NO_WIDTH, // Used for \@= |
| NFA_PREV_ATOM_NO_WIDTH_NEG, // Used for \@! |
| NFA_PREV_ATOM_JUST_BEFORE, // Used for \@<= |
| NFA_PREV_ATOM_JUST_BEFORE_NEG, // Used for \@<! |
| NFA_PREV_ATOM_LIKE_PATTERN, // Used for \@> |
| |
| NFA_BACKREF1, // \1 |
| NFA_BACKREF2, // \2 |
| NFA_BACKREF3, // \3 |
| NFA_BACKREF4, // \4 |
| NFA_BACKREF5, // \5 |
| NFA_BACKREF6, // \6 |
| NFA_BACKREF7, // \7 |
| NFA_BACKREF8, // \8 |
| NFA_BACKREF9, // \9 |
| #ifdef FEAT_SYN_HL |
| NFA_ZREF1, // \z1 |
| NFA_ZREF2, // \z2 |
| NFA_ZREF3, // \z3 |
| NFA_ZREF4, // \z4 |
| NFA_ZREF5, // \z5 |
| NFA_ZREF6, // \z6 |
| NFA_ZREF7, // \z7 |
| NFA_ZREF8, // \z8 |
| NFA_ZREF9, // \z9 |
| #endif |
| NFA_SKIP, // Skip characters |
| |
| NFA_MOPEN, |
| NFA_MOPEN1, |
| NFA_MOPEN2, |
| NFA_MOPEN3, |
| NFA_MOPEN4, |
| NFA_MOPEN5, |
| NFA_MOPEN6, |
| NFA_MOPEN7, |
| NFA_MOPEN8, |
| NFA_MOPEN9, |
| |
| NFA_MCLOSE, |
| NFA_MCLOSE1, |
| NFA_MCLOSE2, |
| NFA_MCLOSE3, |
| NFA_MCLOSE4, |
| NFA_MCLOSE5, |
| NFA_MCLOSE6, |
| NFA_MCLOSE7, |
| NFA_MCLOSE8, |
| NFA_MCLOSE9, |
| |
| #ifdef FEAT_SYN_HL |
| NFA_ZOPEN, |
| NFA_ZOPEN1, |
| NFA_ZOPEN2, |
| NFA_ZOPEN3, |
| NFA_ZOPEN4, |
| NFA_ZOPEN5, |
| NFA_ZOPEN6, |
| NFA_ZOPEN7, |
| NFA_ZOPEN8, |
| NFA_ZOPEN9, |
| |
| NFA_ZCLOSE, |
| NFA_ZCLOSE1, |
| NFA_ZCLOSE2, |
| NFA_ZCLOSE3, |
| NFA_ZCLOSE4, |
| NFA_ZCLOSE5, |
| NFA_ZCLOSE6, |
| NFA_ZCLOSE7, |
| NFA_ZCLOSE8, |
| NFA_ZCLOSE9, |
| #endif |
| |
| // NFA_FIRST_NL |
| NFA_ANY, // Match any one character. |
| NFA_IDENT, // Match identifier char |
| NFA_SIDENT, // Match identifier char but no digit |
| NFA_KWORD, // Match keyword char |
| NFA_SKWORD, // Match word char but no digit |
| NFA_FNAME, // Match file name char |
| NFA_SFNAME, // Match file name char but no digit |
| NFA_PRINT, // Match printable char |
| NFA_SPRINT, // Match printable char but no digit |
| NFA_WHITE, // Match whitespace char |
| NFA_NWHITE, // Match non-whitespace char |
| NFA_DIGIT, // Match digit char |
| NFA_NDIGIT, // Match non-digit char |
| NFA_HEX, // Match hex char |
| NFA_NHEX, // Match non-hex char |
| NFA_OCTAL, // Match octal char |
| NFA_NOCTAL, // Match non-octal char |
| NFA_WORD, // Match word char |
| NFA_NWORD, // Match non-word char |
| NFA_HEAD, // Match head char |
| NFA_NHEAD, // Match non-head char |
| NFA_ALPHA, // Match alpha char |
| NFA_NALPHA, // Match non-alpha char |
| NFA_LOWER, // Match lowercase char |
| NFA_NLOWER, // Match non-lowercase char |
| NFA_UPPER, // Match uppercase char |
| NFA_NUPPER, // Match non-uppercase char |
| NFA_LOWER_IC, // Match [a-z] |
| NFA_NLOWER_IC, // Match [^a-z] |
| NFA_UPPER_IC, // Match [A-Z] |
| NFA_NUPPER_IC, // Match [^A-Z] |
| |
| NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL, |
| NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL, |
| |
| NFA_CURSOR, // Match cursor pos |
| NFA_LNUM, // Match line number |
| NFA_LNUM_GT, // Match > line number |
| NFA_LNUM_LT, // Match < line number |
| NFA_COL, // Match cursor column |
| NFA_COL_GT, // Match > cursor column |
| NFA_COL_LT, // Match < cursor column |
| NFA_VCOL, // Match cursor virtual column |
| NFA_VCOL_GT, // Match > cursor virtual column |
| NFA_VCOL_LT, // Match < cursor virtual column |
| NFA_MARK, // Match mark |
| NFA_MARK_GT, // Match > mark |
| NFA_MARK_LT, // Match < mark |
| NFA_VISUAL, // Match Visual area |
| |
| // Character classes [:alnum:] etc |
| NFA_CLASS_ALNUM, |
| NFA_CLASS_ALPHA, |
| NFA_CLASS_BLANK, |
| NFA_CLASS_CNTRL, |
| NFA_CLASS_DIGIT, |
| NFA_CLASS_GRAPH, |
| NFA_CLASS_LOWER, |
| NFA_CLASS_PRINT, |
| NFA_CLASS_PUNCT, |
| NFA_CLASS_SPACE, |
| NFA_CLASS_UPPER, |
| NFA_CLASS_XDIGIT, |
| NFA_CLASS_TAB, |
| NFA_CLASS_RETURN, |
| NFA_CLASS_BACKSPACE, |
| NFA_CLASS_ESCAPE, |
| NFA_CLASS_IDENT, |
| NFA_CLASS_KEYWORD, |
| NFA_CLASS_FNAME |
| }; |
| |
| // Keep in sync with classchars. |
| static int nfa_classcodes[] = { |
| NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD,NFA_SKWORD, |
| NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT, |
| NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT, |
| NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL, |
| NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD, |
| NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER, |
| NFA_UPPER, NFA_NUPPER |
| }; |
| |
| // Variables only used in nfa_regcomp() and descendants. |
| static int nfa_re_flags; // re_flags passed to nfa_regcomp() |
| static int *post_start; // holds the postfix form of r.e. |
| static int *post_end; |
| static int *post_ptr; |
| |
| // Set when the pattern should use the NFA engine. |
| // E.g. [[:upper:]] only allows 8bit characters for BT engine, |
| // while NFA engine handles multibyte characters correctly. |
| static int wants_nfa; |
| |
| static int nstate; // Number of states in the NFA. |
| static int istate; // Index in the state vector, used in alloc_state() |
| |
| // If not NULL match must end at this position |
| static save_se_T *nfa_endp = NULL; |
| |
| // 0 for first call to nfa_regmatch(), 1 for recursive call. |
| static int nfa_ll_index = 0; |
| |
| static int realloc_post_list(void); |
| static int nfa_reg(int paren); |
| #ifdef DEBUG |
| static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent); |
| #endif |
| static int match_follows(nfa_state_T *startstate, int depth); |
| static int failure_chance(nfa_state_T *state, int depth); |
| |
| // helper functions used when doing re2post() ... regatom() parsing |
| #define EMIT(c) do { \ |
| if (post_ptr >= post_end && realloc_post_list() == FAIL) \ |
| return FAIL; \ |
| *post_ptr++ = c; \ |
| } while (0) |
| |
| /* |
| * Initialize internal variables before NFA compilation. |
| * Return OK on success, FAIL otherwise. |
| */ |
| static int |
| nfa_regcomp_start( |
| char_u *expr, |
| int re_flags) // see vim_regcomp() |
| { |
| size_t postfix_size; |
| int nstate_max; |
| |
| nstate = 0; |
| istate = 0; |
| // A reasonable estimation for maximum size |
| nstate_max = (int)(STRLEN(expr) + 1) * 25; |
| |
| // Some items blow up in size, such as [A-z]. Add more space for that. |
| // When it is still not enough realloc_post_list() will be used. |
| nstate_max += 1000; |
| |
| // Size for postfix representation of expr. |
| postfix_size = sizeof(int) * nstate_max; |
| |
| post_start = alloc(postfix_size); |
| if (post_start == NULL) |
| return FAIL; |
| post_ptr = post_start; |
| post_end = post_start + nstate_max; |
| wants_nfa = FALSE; |
| rex.nfa_has_zend = FALSE; |
| rex.nfa_has_backref = FALSE; |
| |
| // shared with BT engine |
| regcomp_start(expr, re_flags); |
| |
| return OK; |
| } |
| |
| /* |
| * Figure out if the NFA state list starts with an anchor, must match at start |
| * of the line. |
| */ |
| static int |
| nfa_get_reganch(nfa_state_T *start, int depth) |
| { |
| nfa_state_T *p = start; |
| |
| if (depth > 4) |
| return 0; |
| |
| while (p != NULL) |
| { |
| switch (p->c) |
| { |
| case NFA_BOL: |
| case NFA_BOF: |
| return 1; // yes! |
| |
| case NFA_ZSTART: |
| case NFA_ZEND: |
| case NFA_CURSOR: |
| case NFA_VISUAL: |
| |
| case NFA_MOPEN: |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| case NFA_NOPEN: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| #endif |
| p = p->out; |
| break; |
| |
| case NFA_SPLIT: |
| return nfa_get_reganch(p->out, depth + 1) |
| && nfa_get_reganch(p->out1, depth + 1); |
| |
| default: |
| return 0; // noooo |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Figure out if the NFA state list starts with a character which must match |
| * at start of the match. |
| */ |
| static int |
| nfa_get_regstart(nfa_state_T *start, int depth) |
| { |
| nfa_state_T *p = start; |
| |
| if (depth > 4) |
| return 0; |
| |
| while (p != NULL) |
| { |
| switch (p->c) |
| { |
| // all kinds of zero-width matches |
| case NFA_BOL: |
| case NFA_BOF: |
| case NFA_BOW: |
| case NFA_EOW: |
| case NFA_ZSTART: |
| case NFA_ZEND: |
| case NFA_CURSOR: |
| case NFA_VISUAL: |
| case NFA_LNUM: |
| case NFA_LNUM_GT: |
| case NFA_LNUM_LT: |
| case NFA_COL: |
| case NFA_COL_GT: |
| case NFA_COL_LT: |
| case NFA_VCOL: |
| case NFA_VCOL_GT: |
| case NFA_VCOL_LT: |
| case NFA_MARK: |
| case NFA_MARK_GT: |
| case NFA_MARK_LT: |
| |
| case NFA_MOPEN: |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| case NFA_NOPEN: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| #endif |
| p = p->out; |
| break; |
| |
| case NFA_SPLIT: |
| { |
| int c1 = nfa_get_regstart(p->out, depth + 1); |
| int c2 = nfa_get_regstart(p->out1, depth + 1); |
| |
| if (c1 == c2) |
| return c1; // yes! |
| return 0; |
| } |
| |
| default: |
| if (p->c > 0) |
| return p->c; // yes! |
| return 0; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Figure out if the NFA state list contains just literal text and nothing |
| * else. If so return a string in allocated memory with what must match after |
| * regstart. Otherwise return NULL. |
| */ |
| static char_u * |
| nfa_get_match_text(nfa_state_T *start) |
| { |
| nfa_state_T *p = start; |
| int len = 0; |
| char_u *ret; |
| char_u *s; |
| |
| if (p->c != NFA_MOPEN) |
| return NULL; // just in case |
| p = p->out; |
| while (p->c > 0) |
| { |
| len += MB_CHAR2LEN(p->c); |
| p = p->out; |
| } |
| if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH) |
| return NULL; |
| |
| ret = alloc(len); |
| if (ret != NULL) |
| { |
| p = start->out->out; // skip first char, it goes into regstart |
| s = ret; |
| while (p->c > 0) |
| { |
| if (has_mbyte) |
| s += (*mb_char2bytes)(p->c, s); |
| else |
| *s++ = p->c; |
| p = p->out; |
| } |
| *s = NUL; |
| } |
| return ret; |
| } |
| |
| /* |
| * Allocate more space for post_start. Called when |
| * running above the estimated number of states. |
| */ |
| static int |
| realloc_post_list(void) |
| { |
| int nstate_max = (int)(post_end - post_start); |
| int new_max; |
| int *new_start; |
| int *old_start; |
| |
| // For weird patterns the number of states can be very high. Increasing by |
| // 50% seems a reasonable compromise between memory use and speed. |
| new_max = nstate_max * 3 / 2; |
| new_start = ALLOC_MULT(int, new_max); |
| if (new_start == NULL) |
| return FAIL; |
| mch_memmove(new_start, post_start, nstate_max * sizeof(int)); |
| old_start = post_start; |
| post_start = new_start; |
| post_ptr = new_start + (post_ptr - old_start); |
| post_end = post_start + new_max; |
| vim_free(old_start); |
| return OK; |
| } |
| |
| /* |
| * Search between "start" and "end" and try to recognize a |
| * character class in expanded form. For example [0-9]. |
| * On success, return the id the character class to be emitted. |
| * On failure, return 0 (=FAIL) |
| * Start points to the first char of the range, while end should point |
| * to the closing brace. |
| * Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may |
| * need to be interpreted as [a-zA-Z]. |
| */ |
| static int |
| nfa_recognize_char_class(char_u *start, char_u *end, int extra_newl) |
| { |
| # define CLASS_not 0x80 |
| # define CLASS_af 0x40 |
| # define CLASS_AF 0x20 |
| # define CLASS_az 0x10 |
| # define CLASS_AZ 0x08 |
| # define CLASS_o7 0x04 |
| # define CLASS_o9 0x02 |
| # define CLASS_underscore 0x01 |
| |
| int newl = FALSE; |
| char_u *p; |
| int config = 0; |
| |
| if (extra_newl == TRUE) |
| newl = TRUE; |
| |
| if (*end != ']') |
| return FAIL; |
| p = start; |
| if (*p == '^') |
| { |
| config |= CLASS_not; |
| p++; |
| } |
| |
| while (p < end) |
| { |
| if (p + 2 < end && *(p + 1) == '-') |
| { |
| switch (*p) |
| { |
| case '0': |
| if (*(p + 2) == '9') |
| { |
| config |= CLASS_o9; |
| break; |
| } |
| if (*(p + 2) == '7') |
| { |
| config |= CLASS_o7; |
| break; |
| } |
| return FAIL; |
| |
| case 'a': |
| if (*(p + 2) == 'z') |
| { |
| config |= CLASS_az; |
| break; |
| } |
| if (*(p + 2) == 'f') |
| { |
| config |= CLASS_af; |
| break; |
| } |
| return FAIL; |
| |
| case 'A': |
| if (*(p + 2) == 'Z') |
| { |
| config |= CLASS_AZ; |
| break; |
| } |
| if (*(p + 2) == 'F') |
| { |
| config |= CLASS_AF; |
| break; |
| } |
| return FAIL; |
| |
| default: |
| return FAIL; |
| } |
| p += 3; |
| } |
| else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') |
| { |
| newl = TRUE; |
| p += 2; |
| } |
| else if (*p == '_') |
| { |
| config |= CLASS_underscore; |
| p ++; |
| } |
| else if (*p == '\n') |
| { |
| newl = TRUE; |
| p ++; |
| } |
| else |
| return FAIL; |
| } // while (p < end) |
| |
| if (p != end) |
| return FAIL; |
| |
| if (newl == TRUE) |
| extra_newl = NFA_ADD_NL; |
| |
| switch (config) |
| { |
| case CLASS_o9: |
| return extra_newl + NFA_DIGIT; |
| case CLASS_not | CLASS_o9: |
| return extra_newl + NFA_NDIGIT; |
| case CLASS_af | CLASS_AF | CLASS_o9: |
| return extra_newl + NFA_HEX; |
| case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9: |
| return extra_newl + NFA_NHEX; |
| case CLASS_o7: |
| return extra_newl + NFA_OCTAL; |
| case CLASS_not | CLASS_o7: |
| return extra_newl + NFA_NOCTAL; |
| case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore: |
| return extra_newl + NFA_WORD; |
| case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore: |
| return extra_newl + NFA_NWORD; |
| case CLASS_az | CLASS_AZ | CLASS_underscore: |
| return extra_newl + NFA_HEAD; |
| case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore: |
| return extra_newl + NFA_NHEAD; |
| case CLASS_az | CLASS_AZ: |
| return extra_newl + NFA_ALPHA; |
| case CLASS_not | CLASS_az | CLASS_AZ: |
| return extra_newl + NFA_NALPHA; |
| case CLASS_az: |
| return extra_newl + NFA_LOWER_IC; |
| case CLASS_not | CLASS_az: |
| return extra_newl + NFA_NLOWER_IC; |
| case CLASS_AZ: |
| return extra_newl + NFA_UPPER_IC; |
| case CLASS_not | CLASS_AZ: |
| return extra_newl + NFA_NUPPER_IC; |
| } |
| return FAIL; |
| } |
| |
| /* |
| * Produce the bytes for equivalence class "c". |
| * Currently only handles latin1, latin9 and utf-8. |
| * Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is |
| * equivalent to 'a OR b OR c' |
| * |
| * NOTE! When changing this function, also update reg_equi_class() |
| */ |
| static int |
| nfa_emit_equi_class(int c) |
| { |
| #define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT); |
| |
| if (enc_utf8 || STRCMP(p_enc, "latin1") == 0 |
| || STRCMP(p_enc, "iso-8859-15") == 0) |
| { |
| #define A_grave 0xc0 |
| #define A_acute 0xc1 |
| #define A_circumflex 0xc2 |
| #define A_virguilla 0xc3 |
| #define A_diaeresis 0xc4 |
| #define A_ring 0xc5 |
| #define C_cedilla 0xc7 |
| #define E_grave 0xc8 |
| #define E_acute 0xc9 |
| #define E_circumflex 0xca |
| #define E_diaeresis 0xcb |
| #define I_grave 0xcc |
| #define I_acute 0xcd |
| #define I_circumflex 0xce |
| #define I_diaeresis 0xcf |
| #define N_virguilla 0xd1 |
| #define O_grave 0xd2 |
| #define O_acute 0xd3 |
| #define O_circumflex 0xd4 |
| #define O_virguilla 0xd5 |
| #define O_diaeresis 0xd6 |
| #define O_slash 0xd8 |
| #define U_grave 0xd9 |
| #define U_acute 0xda |
| #define U_circumflex 0xdb |
| #define U_diaeresis 0xdc |
| #define Y_acute 0xdd |
| #define a_grave 0xe0 |
| #define a_acute 0xe1 |
| #define a_circumflex 0xe2 |
| #define a_virguilla 0xe3 |
| #define a_diaeresis 0xe4 |
| #define a_ring 0xe5 |
| #define c_cedilla 0xe7 |
| #define e_grave 0xe8 |
| #define e_acute 0xe9 |
| #define e_circumflex 0xea |
| #define e_diaeresis 0xeb |
| #define i_grave 0xec |
| #define i_acute 0xed |
| #define i_circumflex 0xee |
| #define i_diaeresis 0xef |
| #define n_virguilla 0xf1 |
| #define o_grave 0xf2 |
| #define o_acute 0xf3 |
| #define o_circumflex 0xf4 |
| #define o_virguilla 0xf5 |
| #define o_diaeresis 0xf6 |
| #define o_slash 0xf8 |
| #define u_grave 0xf9 |
| #define u_acute 0xfa |
| #define u_circumflex 0xfb |
| #define u_diaeresis 0xfc |
| #define y_acute 0xfd |
| #define y_diaeresis 0xff |
| switch (c) |
| { |
| case 'A': case A_grave: case A_acute: case A_circumflex: |
| case A_virguilla: case A_diaeresis: case A_ring: |
| case 0x100: case 0x102: case 0x104: case 0x1cd: |
| case 0x1de: case 0x1e0: case 0x1fa: case 0x200: |
| case 0x202: case 0x226: case 0x23a: case 0x1e00: |
| case 0x1ea0: case 0x1ea2: case 0x1ea4: case 0x1ea6: |
| case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae: |
| case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6: |
| EMIT2('A') EMIT2(A_grave) EMIT2(A_acute) |
| EMIT2(A_circumflex) EMIT2(A_virguilla) |
| EMIT2(A_diaeresis) EMIT2(A_ring) |
| EMIT2(0x100) EMIT2(0x102) EMIT2(0x104) |
| EMIT2(0x1cd) EMIT2(0x1de) EMIT2(0x1e0) |
| EMIT2(0x1fa) EMIT2(0x200) EMIT2(0x202) |
| EMIT2(0x226) EMIT2(0x23a) EMIT2(0x1e00) |
| EMIT2(0x1ea0) EMIT2(0x1ea2) EMIT2(0x1ea4) |
| EMIT2(0x1ea6) EMIT2(0x1ea8) EMIT2(0x1eaa) |
| EMIT2(0x1eac) EMIT2(0x1eae) EMIT2(0x1eb0) |
| EMIT2(0x1eb2) EMIT2(0x1eb6) EMIT2(0x1eb4) |
| return OK; |
| |
| case 'B': case 0x181: case 0x243: case 0x1e02: |
| case 0x1e04: case 0x1e06: |
| EMIT2('B') |
| EMIT2(0x181) EMIT2(0x243) EMIT2(0x1e02) |
| EMIT2(0x1e04) EMIT2(0x1e06) |
| return OK; |
| |
| case 'C': case C_cedilla: case 0x106: case 0x108: |
| case 0x10a: case 0x10c: case 0x187: case 0x23b: |
| case 0x1e08: case 0xa792: |
| EMIT2('C') EMIT2(C_cedilla) |
| EMIT2(0x106) EMIT2(0x108) EMIT2(0x10a) |
| EMIT2(0x10c) EMIT2(0x187) EMIT2(0x23b) |
| EMIT2(0x1e08) EMIT2(0xa792) |
| return OK; |
| |
| case 'D': case 0x10e: case 0x110: case 0x18a: |
| case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10: |
| case 0x1e12: |
| EMIT2('D') EMIT2(0x10e) EMIT2(0x110) EMIT2(0x18a) |
| EMIT2(0x1e0a) EMIT2(0x1e0c) EMIT2(0x1e0e) |
| EMIT2(0x1e10) EMIT2(0x1e12) |
| return OK; |
| |
| case 'E': case E_grave: case E_acute: case E_circumflex: |
| case E_diaeresis: case 0x112: case 0x114: case 0x116: |
| case 0x118: case 0x11a: case 0x204: case 0x206: |
| case 0x228: case 0x246: case 0x1e14: case 0x1e16: |
| case 0x1e18: case 0x1e1a: case 0x1e1c: case 0x1eb8: |
| case 0x1eba: case 0x1ebc: case 0x1ebe: case 0x1ec0: |
| case 0x1ec2: case 0x1ec4: case 0x1ec6: |
| EMIT2('E') EMIT2(E_grave) EMIT2(E_acute) |
| EMIT2(E_circumflex) EMIT2(E_diaeresis) |
| EMIT2(0x112) EMIT2(0x114) EMIT2(0x116) |
| EMIT2(0x118) EMIT2(0x11a) EMIT2(0x204) |
| EMIT2(0x206) EMIT2(0x228) EMIT2(0x246) |
| EMIT2(0x1e14) EMIT2(0x1e16) EMIT2(0x1e18) |
| EMIT2(0x1e1a) EMIT2(0x1e1c) EMIT2(0x1eb8) |
| EMIT2(0x1eba) EMIT2(0x1ebc) EMIT2(0x1ebe) |
| EMIT2(0x1ec0) EMIT2(0x1ec2) EMIT2(0x1ec4) |
| EMIT2(0x1ec6) |
| return OK; |
| |
| case 'F': case 0x191: case 0x1e1e: case 0xa798: |
| EMIT2('F') EMIT2(0x191) EMIT2(0x1e1e) EMIT2(0xa798) |
| return OK; |
| |
| case 'G': case 0x11c: case 0x11e: case 0x120: |
| case 0x122: case 0x193: case 0x1e4: case 0x1e6: |
| case 0x1f4: case 0x1e20: case 0xa7a0: |
| EMIT2('G') EMIT2(0x11c) EMIT2(0x11e) EMIT2(0x120) |
| EMIT2(0x122) EMIT2(0x193) EMIT2(0x1e4) |
| EMIT2(0x1e6) EMIT2(0x1f4) EMIT2(0x1e20) |
| EMIT2(0xa7a0) |
| return OK; |
| |
| case 'H': case 0x124: case 0x126: case 0x21e: |
| case 0x1e22: case 0x1e24: case 0x1e26: case 0x1e28: |
| case 0x1e2a: case 0x2c67: |
| EMIT2('H') EMIT2(0x124) EMIT2(0x126) EMIT2(0x21e) |
| EMIT2(0x1e22) EMIT2(0x1e24) EMIT2(0x1e26) |
| EMIT2(0x1e28) EMIT2(0x1e2a) EMIT2(0x2c67) |
| return OK; |
| |
| case 'I': case I_grave: case I_acute: case I_circumflex: |
| case I_diaeresis: case 0x128: case 0x12a: case 0x12c: |
| case 0x12e: case 0x130: case 0x197: case 0x1cf: |
| case 0x208: case 0x20a: case 0x1e2c: case 0x1e2e: |
| case 0x1ec8: case 0x1eca: |
| EMIT2('I') EMIT2(I_grave) EMIT2(I_acute) |
| EMIT2(I_circumflex) EMIT2(I_diaeresis) |
| EMIT2(0x128) EMIT2(0x12a) EMIT2(0x12c) |
| EMIT2(0x12e) EMIT2(0x130) EMIT2(0x197) |
| EMIT2(0x1cf) EMIT2(0x208) EMIT2(0x20a) |
| EMIT2(0x1e2c) EMIT2(0x1e2e) EMIT2(0x1ec8) |
| EMIT2(0x1eca) |
| return OK; |
| |
| case 'J': case 0x134: case 0x248: |
| EMIT2('J') EMIT2(0x134) EMIT2(0x248) |
| return OK; |
| |
| case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30: |
| case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740: |
| EMIT2('K') EMIT2(0x136) EMIT2(0x198) EMIT2(0x1e8) |
| EMIT2(0x1e30) EMIT2(0x1e32) EMIT2(0x1e34) |
| EMIT2(0x2c69) EMIT2(0xa740) |
| return OK; |
| |
| case 'L': case 0x139: case 0x13b: case 0x13d: |
| case 0x13f: case 0x141: case 0x23d: case 0x1e36: |
| case 0x1e38: case 0x1e3a: case 0x1e3c: case 0x2c60: |
| EMIT2('L') EMIT2(0x139) EMIT2(0x13b) |
| EMIT2(0x13d) EMIT2(0x13f) EMIT2(0x141) |
| EMIT2(0x23d) EMIT2(0x1e36) EMIT2(0x1e38) |
| EMIT2(0x1e3a) EMIT2(0x1e3c) EMIT2(0x2c60) |
| return OK; |
| |
| case 'M': case 0x1e3e: case 0x1e40: case 0x1e42: |
| EMIT2('M') EMIT2(0x1e3e) EMIT2(0x1e40) |
| EMIT2(0x1e42) |
| return OK; |
| |
| case 'N': case N_virguilla: |
| case 0x143: case 0x145: case 0x147: case 0x1f8: |
| case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a: |
| case 0xa7a4: |
| EMIT2('N') EMIT2(N_virguilla) |
| EMIT2(0x143) EMIT2(0x145) EMIT2(0x147) |
| EMIT2(0x1f8) EMIT2(0x1e44) EMIT2(0x1e46) |
| EMIT2(0x1e48) EMIT2(0x1e4a) EMIT2(0xa7a4) |
| return OK; |
| |
| case 'O': case O_grave: case O_acute: case O_circumflex: |
| case O_virguilla: case O_diaeresis: case O_slash: |
| case 0x14c: case 0x14e: case 0x150: case 0x19f: |
| case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec: |
| case 0x1fe: case 0x20c: case 0x20e: case 0x22a: |
| case 0x22c: case 0x22e: case 0x230: case 0x1e4c: |
| case 0x1e4e: case 0x1e50: case 0x1e52: case 0x1ecc: |
| case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4: |
| case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc: |
| case 0x1ede: case 0x1ee0: case 0x1ee2: |
| EMIT2('O') EMIT2(O_grave) EMIT2(O_acute) |
| EMIT2(O_circumflex) EMIT2(O_virguilla) |
| EMIT2(O_diaeresis) EMIT2(O_slash) |
| EMIT2(0x14c) EMIT2(0x14e) EMIT2(0x150) |
| EMIT2(0x19f) EMIT2(0x1a0) EMIT2(0x1d1) |
| EMIT2(0x1ea) EMIT2(0x1ec) EMIT2(0x1fe) |
| EMIT2(0x20c) EMIT2(0x20e) EMIT2(0x22a) |
| EMIT2(0x22c) EMIT2(0x22e) EMIT2(0x230) |
| EMIT2(0x1e4c) EMIT2(0x1e4e) EMIT2(0x1e50) |
| EMIT2(0x1e52) EMIT2(0x1ecc) EMIT2(0x1ece) |
| EMIT2(0x1ed0) EMIT2(0x1ed2) EMIT2(0x1ed4) |
| EMIT2(0x1ed6) EMIT2(0x1ed8) EMIT2(0x1eda) |
| EMIT2(0x1edc) EMIT2(0x1ede) EMIT2(0x1ee0) |
| EMIT2(0x1ee2) |
| return OK; |
| |
| case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63: |
| EMIT2('P') EMIT2(0x1a4) EMIT2(0x1e54) EMIT2(0x1e56) |
| EMIT2(0x2c63) |
| return OK; |
| |
| case 'Q': case 0x24a: |
| EMIT2('Q') EMIT2(0x24a) |
| return OK; |
| |
| case 'R': case 0x154: case 0x156: case 0x158: case 0x210: |
| case 0x212: case 0x24c: case 0x1e58: case 0x1e5a: |
| case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6: |
| EMIT2('R') EMIT2(0x154) EMIT2(0x156) EMIT2(0x158) |
| EMIT2(0x210) EMIT2(0x212) EMIT2(0x24c) EMIT2(0x1e58) |
| EMIT2(0x1e5a) EMIT2(0x1e5c) EMIT2(0x1e5e) EMIT2(0x2c64) |
| EMIT2(0xa7a6) |
| return OK; |
| |
| case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160: |
| case 0x218: case 0x1e60: case 0x1e62: case 0x1e64: |
| case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8: |
| EMIT2('S') EMIT2(0x15a) EMIT2(0x15c) EMIT2(0x15e) |
| EMIT2(0x160) EMIT2(0x218) EMIT2(0x1e60) EMIT2(0x1e62) |
| EMIT2(0x1e64) EMIT2(0x1e66) EMIT2(0x1e68) EMIT2(0x2c7e) |
| EMIT2(0xa7a8) |
| return OK; |
| |
| case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac: |
| case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c: |
| case 0x1e6e: case 0x1e70: |
| EMIT2('T') EMIT2(0x162) EMIT2(0x164) EMIT2(0x166) |
| EMIT2(0x1ac) EMIT2(0x1ae) EMIT2(0x23e) EMIT2(0x21a) |
| EMIT2(0x1e6a) EMIT2(0x1e6c) EMIT2(0x1e6e) EMIT2(0x1e70) |
| return OK; |
| |
| case 'U': case U_grave: case U_acute: case U_diaeresis: |
| case U_circumflex: case 0x168: case 0x16a: case 0x16c: |
| case 0x16e: case 0x170: case 0x172: case 0x1af: |
| case 0x1d3: case 0x1d5: case 0x1d7: case 0x1d9: |
| case 0x1db: case 0x214: case 0x216: case 0x244: |
| case 0x1e72: case 0x1e74: case 0x1e76: case 0x1e78: |
| case 0x1e7a: case 0x1ee4: case 0x1ee6: case 0x1ee8: |
| case 0x1eea: case 0x1eec: case 0x1eee: case 0x1ef0: |
| EMIT2('U') EMIT2(U_grave) EMIT2(U_acute) |
| EMIT2(U_diaeresis) EMIT2(U_circumflex) |
| EMIT2(0x168) EMIT2(0x16a) |
| EMIT2(0x16c) EMIT2(0x16e) EMIT2(0x170) |
| EMIT2(0x172) EMIT2(0x1af) EMIT2(0x1d3) |
| EMIT2(0x1d5) EMIT2(0x1d7) EMIT2(0x1d9) |
| EMIT2(0x1db) EMIT2(0x214) EMIT2(0x216) |
| EMIT2(0x244) EMIT2(0x1e72) EMIT2(0x1e74) |
| EMIT2(0x1e76) EMIT2(0x1e78) EMIT2(0x1e7a) |
| EMIT2(0x1ee4) EMIT2(0x1ee6) EMIT2(0x1ee8) |
| EMIT2(0x1eea) EMIT2(0x1eec) EMIT2(0x1eee) |
| EMIT2(0x1ef0) |
| return OK; |
| |
| case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e: |
| EMIT2('V') EMIT2(0x1b2) EMIT2(0x1e7c) EMIT2(0x1e7e) |
| return OK; |
| |
| case 'W': case 0x174: case 0x1e80: case 0x1e82: case 0x1e84: |
| case 0x1e86: case 0x1e88: |
| EMIT2('W') EMIT2(0x174) EMIT2(0x1e80) EMIT2(0x1e82) |
| EMIT2(0x1e84) EMIT2(0x1e86) EMIT2(0x1e88) |
| return OK; |
| |
| case 'X': case 0x1e8a: case 0x1e8c: |
| EMIT2('X') EMIT2(0x1e8a) EMIT2(0x1e8c) |
| return OK; |
| |
| case 'Y': case Y_acute: case 0x176: case 0x178: |
| case 0x1b3: case 0x232: case 0x24e: case 0x1e8e: |
| case 0x1ef2: case 0x1ef4: case 0x1ef6: case 0x1ef8: |
| EMIT2('Y') EMIT2(Y_acute) |
| EMIT2(0x176) EMIT2(0x178) EMIT2(0x1b3) |
| EMIT2(0x232) EMIT2(0x24e) EMIT2(0x1e8e) |
| EMIT2(0x1ef2) EMIT2(0x1ef4) EMIT2(0x1ef6) |
| EMIT2(0x1ef8) |
| return OK; |
| |
| case 'Z': case 0x179: case 0x17b: case 0x17d: |
| case 0x1b5: case 0x1e90: case 0x1e92: case 0x1e94: |
| case 0x2c6b: |
| EMIT2('Z') EMIT2(0x179) EMIT2(0x17b) EMIT2(0x17d) |
| EMIT2(0x1b5) EMIT2(0x1e90) EMIT2(0x1e92) |
| EMIT2(0x1e94) EMIT2(0x2c6b) |
| return OK; |
| |
| case 'a': case a_grave: case a_acute: case a_circumflex: |
| case a_virguilla: case a_diaeresis: case a_ring: |
| case 0x101: case 0x103: case 0x105: case 0x1ce: |
| case 0x1df: case 0x1e1: case 0x1fb: case 0x201: |
| case 0x203: case 0x227: case 0x1d8f: case 0x1e01: |
| case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5: |
| case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead: |
| case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5: |
| case 0x1eb7: case 0x2c65: |
| EMIT2('a') EMIT2(a_grave) EMIT2(a_acute) |
| EMIT2(a_circumflex) EMIT2(a_virguilla) |
| EMIT2(a_diaeresis) EMIT2(a_ring) |
| EMIT2(0x101) EMIT2(0x103) EMIT2(0x105) |
| EMIT2(0x1ce) EMIT2(0x1df) EMIT2(0x1e1) |
| EMIT2(0x1fb) EMIT2(0x201) EMIT2(0x203) |
| EMIT2(0x227) EMIT2(0x1d8f) EMIT2(0x1e01) |
| EMIT2(0x1e9a) EMIT2(0x1ea1) EMIT2(0x1ea3) |
| EMIT2(0x1ea5) EMIT2(0x1ea7) EMIT2(0x1ea9) |
| EMIT2(0x1eab) EMIT2(0x1ead) EMIT2(0x1eaf) |
| EMIT2(0x1eb1) EMIT2(0x1eb3) EMIT2(0x1eb5) |
| EMIT2(0x1eb7) EMIT2(0x2c65) |
| return OK; |
| |
| case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80: |
| case 0x1e03: case 0x1e05: case 0x1e07: |
| EMIT2('b') EMIT2(0x180) EMIT2(0x253) EMIT2(0x1d6c) |
| EMIT2(0x1d80) EMIT2(0x1e03) EMIT2(0x1e05) EMIT2(0x1e07) |
| return OK; |
| |
| case 'c': case c_cedilla: case 0x107: case 0x109: case 0x10b: |
| case 0x10d: case 0x188: case 0x23c: case 0x1e09: case 0xa793: |
| case 0xa794: |
| EMIT2('c') EMIT2(c_cedilla) |
| EMIT2(0x107) EMIT2(0x109) EMIT2(0x10b) |
| EMIT2(0x10d) EMIT2(0x188) EMIT2(0x23c) |
| EMIT2(0x1e09) EMIT2(0xa793) EMIT2(0xa794) |
| return OK; |
| |
| case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d: |
| case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d: case 0x1e0f: |
| case 0x1e11: case 0x1e13: |
| EMIT2('d') EMIT2(0x10f) EMIT2(0x111) |
| EMIT2(0x257) EMIT2(0x1d6d) EMIT2(0x1d81) |
| EMIT2(0x1d91) EMIT2(0x1e0b) EMIT2(0x1e0d) |
| EMIT2(0x1e0f) EMIT2(0x1e11) EMIT2(0x1e13) |
| return OK; |
| |
| case 'e': case e_grave: case e_acute: case e_circumflex: |
| case e_diaeresis: case 0x113: case 0x115: case 0x117: |
| case 0x119: case 0x11b: case 0x205: case 0x207: |
| case 0x229: case 0x247: case 0x1d92: case 0x1e15: |
| case 0x1e17: case 0x1e19: case 0x1e1b: case 0x1e1d: |
| case 0x1eb9: case 0x1ebb: case 0x1ebd: case 0x1ebf: |
| case 0x1ec1: case 0x1ec3: case 0x1ec5: case 0x1ec7: |
| EMIT2('e') EMIT2(e_grave) EMIT2(e_acute) |
| EMIT2(e_circumflex) EMIT2(e_diaeresis) |
| EMIT2(0x113) EMIT2(0x115) |
| EMIT2(0x117) EMIT2(0x119) EMIT2(0x11b) |
| EMIT2(0x205) EMIT2(0x207) EMIT2(0x229) |
| EMIT2(0x247) EMIT2(0x1d92) EMIT2(0x1e15) |
| EMIT2(0x1e17) EMIT2(0x1e19) EMIT2(0x1e1b) |
| EMIT2(0x1e1d) EMIT2(0x1eb9) EMIT2(0x1ebb) |
| EMIT2(0x1ebd) EMIT2(0x1ebf) EMIT2(0x1ec1) |
| EMIT2(0x1ec3) EMIT2(0x1ec5) EMIT2(0x1ec7) |
| return OK; |
| |
| case 'f': case 0x192: case 0x1d6e: case 0x1d82: |
| case 0x1e1f: case 0xa799: |
| EMIT2('f') EMIT2(0x192) EMIT2(0x1d6e) EMIT2(0x1d82) |
| EMIT2(0x1e1f) EMIT2(0xa799) |
| return OK; |
| |
| case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123: |
| case 0x1e5: case 0x1e7: case 0x1f5: case 0x260: case 0x1d83: |
| case 0x1e21: case 0xa7a1: |
| EMIT2('g') EMIT2(0x11d) EMIT2(0x11f) EMIT2(0x121) |
| EMIT2(0x123) EMIT2(0x1e5) EMIT2(0x1e7) |
| EMIT2(0x1f5) EMIT2(0x260) EMIT2(0x1d83) |
| EMIT2(0x1e21) EMIT2(0xa7a1) |
| return OK; |
| |
| case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23: |
| case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b: |
| case 0x1e96: case 0x2c68: case 0xa795: |
| EMIT2('h') EMIT2(0x125) EMIT2(0x127) EMIT2(0x21f) |
| EMIT2(0x1e23) EMIT2(0x1e25) EMIT2(0x1e27) |
| EMIT2(0x1e29) EMIT2(0x1e2b) EMIT2(0x1e96) |
| EMIT2(0x2c68) EMIT2(0xa795) |
| return OK; |
| |
| case 'i': case i_grave: case i_acute: case i_circumflex: |
| case i_diaeresis: case 0x129: case 0x12b: case 0x12d: |
| case 0x12f: case 0x1d0: case 0x209: case 0x20b: |
| case 0x268: case 0x1d96: case 0x1e2d: case 0x1e2f: |
| case 0x1ec9: case 0x1ecb: |
| EMIT2('i') EMIT2(i_grave) EMIT2(i_acute) |
| EMIT2(i_circumflex) EMIT2(i_diaeresis) |
| EMIT2(0x129) EMIT2(0x12b) EMIT2(0x12d) |
| EMIT2(0x12f) EMIT2(0x1d0) EMIT2(0x209) |
| EMIT2(0x20b) EMIT2(0x268) EMIT2(0x1d96) |
| EMIT2(0x1e2d) EMIT2(0x1e2f) EMIT2(0x1ec9) |
| EMIT2(0x1ecb) EMIT2(0x1ecb) |
| return OK; |
| |
| case 'j': case 0x135: case 0x1f0: case 0x249: |
| EMIT2('j') EMIT2(0x135) EMIT2(0x1f0) EMIT2(0x249) |
| return OK; |
| |
| case 'k': case 0x137: case 0x199: case 0x1e9: case 0x1d84: |
| case 0x1e31: case 0x1e33: case 0x1e35: case 0x2c6a: case 0xa741: |
| EMIT2('k') EMIT2(0x137) EMIT2(0x199) EMIT2(0x1e9) |
| EMIT2(0x1d84) EMIT2(0x1e31) EMIT2(0x1e33) |
| EMIT2(0x1e35) EMIT2(0x2c6a) EMIT2(0xa741) |
| return OK; |
| |
| case 'l': case 0x13a: case 0x13c: case 0x13e: case 0x140: |
| case 0x142: case 0x19a: case 0x1e37: case 0x1e39: case 0x1e3b: |
| case 0x1e3d: case 0x2c61: |
| EMIT2('l') EMIT2(0x13a) EMIT2(0x13c) |
| EMIT2(0x13e) EMIT2(0x140) EMIT2(0x142) |
| EMIT2(0x19a) EMIT2(0x1e37) EMIT2(0x1e39) |
| EMIT2(0x1e3b) EMIT2(0x1e3d) EMIT2(0x2c61) |
| return OK; |
| |
| case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43: |
| EMIT2('m') EMIT2(0x1d6f) EMIT2(0x1e3f) |
| EMIT2(0x1e41) EMIT2(0x1e43) |
| return OK; |
| |
| case 'n': case n_virguilla: case 0x144: case 0x146: case 0x148: |
| case 0x149: case 0x1f9: case 0x1d70: case 0x1d87: case 0x1e45: |
| case 0x1e47: case 0x1e49: case 0x1e4b: case 0xa7a5: |
| EMIT2('n') EMIT2(n_virguilla) |
| EMIT2(0x144) EMIT2(0x146) EMIT2(0x148) |
| EMIT2(0x149) EMIT2(0x1f9) EMIT2(0x1d70) |
| EMIT2(0x1d87) EMIT2(0x1e45) EMIT2(0x1e47) |
| EMIT2(0x1e49) EMIT2(0x1e4b) EMIT2(0xa7a5) |
| return OK; |
| |
| case 'o': case o_grave: case o_acute: case o_circumflex: |
| case o_virguilla: case o_diaeresis: case o_slash: |
| case 0x14d: case 0x14f: case 0x151: case 0x1a1: |
| case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff: |
| case 0x20d: case 0x20f: case 0x22b: case 0x22d: |
| case 0x22f: case 0x231: case 0x275: case 0x1e4d: |
| case 0x1e4f: case 0x1e51: case 0x1e53: case 0x1ecd: |
| case 0x1ecf: case 0x1ed1: case 0x1ed3: case 0x1ed5: |
| case 0x1ed7: case 0x1ed9: case 0x1edb: case 0x1edd: |
| case 0x1edf: case 0x1ee1: case 0x1ee3: |
| EMIT2('o') EMIT2(o_grave) EMIT2(o_acute) |
| EMIT2(o_circumflex) EMIT2(o_virguilla) |
| EMIT2(o_diaeresis) EMIT2(o_slash) |
| EMIT2(0x14d) EMIT2(0x14f) EMIT2(0x151) |
| EMIT2(0x1a1) EMIT2(0x1d2) EMIT2(0x1eb) |
| EMIT2(0x1ed) EMIT2(0x1ff) EMIT2(0x20d) |
| EMIT2(0x20f) EMIT2(0x22b) EMIT2(0x22d) |
| EMIT2(0x22f) EMIT2(0x231) EMIT2(0x275) |
| EMIT2(0x1e4d) EMIT2(0x1e4f) EMIT2(0x1e51) |
| EMIT2(0x1e53) EMIT2(0x1ecd) EMIT2(0x1ecf) |
| EMIT2(0x1ed1) EMIT2(0x1ed3) EMIT2(0x1ed5) |
| EMIT2(0x1ed7) EMIT2(0x1ed9) EMIT2(0x1edb) |
| EMIT2(0x1edd) EMIT2(0x1edf) EMIT2(0x1ee1) |
| EMIT2(0x1ee3) |
| return OK; |
| |
| case 'p': case 0x1a5: case 0x1d71: case 0x1d7d: case 0x1d88: |
| case 0x1e55: case 0x1e57: |
| EMIT2('p') EMIT2(0x1a5) EMIT2(0x1d71) EMIT2(0x1d7d) |
| EMIT2(0x1d88) EMIT2(0x1e55) EMIT2(0x1e57) |
| return OK; |
| |
| case 'q': case 0x24b: case 0x2a0: |
| EMIT2('q') EMIT2(0x24b) EMIT2(0x2a0) |
| return OK; |
| |
| case 'r': case 0x155: case 0x157: case 0x159: case 0x211: |
| case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73: |
| case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f: |
| case 0xa7a7: |
| EMIT2('r') EMIT2(0x155) EMIT2(0x157) EMIT2(0x159) |
| EMIT2(0x211) EMIT2(0x213) EMIT2(0x24d) EMIT2(0x27d) |
| EMIT2(0x1d72) EMIT2(0x1d73) EMIT2(0x1d89) EMIT2(0x1e59) |
| EMIT2(0x1e5b) EMIT2(0x1e5d) EMIT2(0x1e5f) EMIT2(0xa7a7) |
| return OK; |
| |
| case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161: |
| case 0x219: case 0x23f: case 0x1d74: case 0x1d8a: case 0x1e61: |
| case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9: |
| EMIT2('s') EMIT2(0x15b) EMIT2(0x15d) EMIT2(0x15f) |
| EMIT2(0x161) EMIT2(0x219) EMIT2(0x23f) EMIT2(0x1d74) |
| EMIT2(0x1d8a) EMIT2(0x1e61) EMIT2(0x1e63) EMIT2(0x1e65) |
| EMIT2(0x1e67) EMIT2(0x1e69) EMIT2(0xa7a9) |
| return OK; |
| |
| case 't': case 0x163: case 0x165: case 0x167: case 0x1ab: |
| case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b: |
| case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66: |
| EMIT2('t') EMIT2(0x163) EMIT2(0x165) EMIT2(0x167) |
| EMIT2(0x1ab) EMIT2(0x1ad) EMIT2(0x21b) EMIT2(0x288) |
| EMIT2(0x1d75) EMIT2(0x1e6b) EMIT2(0x1e6d) EMIT2(0x1e6f) |
| EMIT2(0x1e71) EMIT2(0x1e97) EMIT2(0x2c66) |
| return OK; |
| |
| case 'u': case u_grave: case u_acute: case u_circumflex: |
| case u_diaeresis: case 0x169: case 0x16b: case 0x16d: |
| case 0x16f: case 0x171: case 0x173: case 0x1b0: case 0x1d4: |
| case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc: case 0x215: |
| case 0x217: case 0x289: case 0x1d7e: case 0x1d99: case 0x1e73: |
| case 0x1e75: case 0x1e77: case 0x1e79: case 0x1e7b: |
| case 0x1ee5: case 0x1ee7: case 0x1ee9: case 0x1eeb: |
| case 0x1eed: case 0x1eef: case 0x1ef1: |
| EMIT2('u') EMIT2(u_grave) EMIT2(u_acute) |
| EMIT2(u_circumflex) EMIT2(u_diaeresis) |
| EMIT2(0x169) EMIT2(0x16b) |
| EMIT2(0x16d) EMIT2(0x16f) EMIT2(0x171) |
| EMIT2(0x173) EMIT2(0x1d6) EMIT2(0x1d8) |
| EMIT2(0x215) EMIT2(0x217) EMIT2(0x1b0) |
| EMIT2(0x1d4) EMIT2(0x1da) EMIT2(0x1dc) |
| EMIT2(0x289) EMIT2(0x1e73) EMIT2(0x1d7e) |
| EMIT2(0x1d99) EMIT2(0x1e75) EMIT2(0x1e77) |
| EMIT2(0x1e79) EMIT2(0x1e7b) EMIT2(0x1ee5) |
| EMIT2(0x1ee7) EMIT2(0x1ee9) EMIT2(0x1eeb) |
| EMIT2(0x1eed) EMIT2(0x1eef) EMIT2(0x1ef1) |
| return OK; |
| |
| case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f: |
| EMIT2('v') EMIT2(0x28b) EMIT2(0x1d8c) EMIT2(0x1e7d) |
| EMIT2(0x1e7f) |
| return OK; |
| |
| case 'w': case 0x175: case 0x1e81: case 0x1e83: case 0x1e85: |
| case 0x1e87: case 0x1e89: case 0x1e98: |
| EMIT2('w') EMIT2(0x175) EMIT2(0x1e81) EMIT2(0x1e83) |
| EMIT2(0x1e85) EMIT2(0x1e87) EMIT2(0x1e89) EMIT2(0x1e98) |
| return OK; |
| |
| case 'x': case 0x1e8b: case 0x1e8d: |
| EMIT2('x') EMIT2(0x1e8b) EMIT2(0x1e8d) |
| return OK; |
| |
| case 'y': case y_acute: case y_diaeresis: case 0x177: |
| case 0x1b4: case 0x233: case 0x24f: case 0x1e8f: |
| case 0x1e99: case 0x1ef3: case 0x1ef5: case 0x1ef7: |
| case 0x1ef9: |
| EMIT2('y') EMIT2(y_acute) EMIT2(y_diaeresis) |
| EMIT2(0x177) EMIT2(0x1b4) EMIT2(0x233) EMIT2(0x24f) |
| EMIT2(0x1e8f) EMIT2(0x1e99) EMIT2(0x1ef3) |
| EMIT2(0x1ef5) EMIT2(0x1ef7) EMIT2(0x1ef9) |
| return OK; |
| |
| case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6: |
| case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93: |
| case 0x1e95: case 0x2c6c: |
| EMIT2('z') EMIT2(0x17a) EMIT2(0x17c) EMIT2(0x17e) |
| EMIT2(0x1b6) EMIT2(0x1d76) EMIT2(0x1d8e) EMIT2(0x1e91) |
| EMIT2(0x1e93) EMIT2(0x1e95) EMIT2(0x2c6c) |
| return OK; |
| |
| // default: character itself |
| } |
| } |
| |
| EMIT2(c); |
| return OK; |
| #undef EMIT2 |
| } |
| |
| /* |
| * Code to parse regular expression. |
| * |
| * We try to reuse parsing functions in regexp.c to |
| * minimize surprise and keep the syntax consistent. |
| */ |
| |
| /* |
| * Parse the lowest level. |
| * |
| * An atom can be one of a long list of items. Many atoms match one character |
| * in the text. It is often an ordinary character or a character class. |
| * Braces can be used to make a pattern into an atom. The "\z(\)" construct |
| * is only for syntax highlighting. |
| * |
| * atom ::= ordinary-atom |
| * or \( pattern \) |
| * or \%( pattern \) |
| * or \z( pattern \) |
| */ |
| static int |
| nfa_regatom(void) |
| { |
| int c; |
| int charclass; |
| int equiclass; |
| int collclass; |
| int got_coll_char; |
| char_u *p; |
| char_u *endp; |
| char_u *old_regparse = regparse; |
| int extra = 0; |
| int emit_range; |
| int negated; |
| int result; |
| int startc = -1; |
| int save_prev_at_start = prev_at_start; |
| |
| c = getchr(); |
| switch (c) |
| { |
| case NUL: |
| EMSG_RET_FAIL(_(e_nfa_regexp_end_encountered_prematurely)); |
| |
| case Magic('^'): |
| EMIT(NFA_BOL); |
| break; |
| |
| case Magic('$'): |
| EMIT(NFA_EOL); |
| #if defined(FEAT_SYN_HL) || defined(PROTO) |
| had_eol = TRUE; |
| #endif |
| break; |
| |
| case Magic('<'): |
| EMIT(NFA_BOW); |
| break; |
| |
| case Magic('>'): |
| EMIT(NFA_EOW); |
| break; |
| |
| case Magic('_'): |
| c = no_Magic(getchr()); |
| if (c == NUL) |
| EMSG_RET_FAIL(_(e_nfa_regexp_end_encountered_prematurely)); |
| |
| if (c == '^') // "\_^" is start-of-line |
| { |
| EMIT(NFA_BOL); |
| break; |
| } |
| if (c == '$') // "\_$" is end-of-line |
| { |
| EMIT(NFA_EOL); |
| #if defined(FEAT_SYN_HL) || defined(PROTO) |
| had_eol = TRUE; |
| #endif |
| break; |
| } |
| |
| extra = NFA_ADD_NL; |
| |
| // "\_[" is collection plus newline |
| if (c == '[') |
| goto collection; |
| |
| // "\_x" is character class plus newline |
| // FALLTHROUGH |
| |
| /* |
| * Character classes. |
| */ |
| case Magic('.'): |
| case Magic('i'): |
| case Magic('I'): |
| case Magic('k'): |
| case Magic('K'): |
| case Magic('f'): |
| case Magic('F'): |
| case Magic('p'): |
| case Magic('P'): |
| case Magic('s'): |
| case Magic('S'): |
| case Magic('d'): |
| case Magic('D'): |
| case Magic('x'): |
| case Magic('X'): |
| case Magic('o'): |
| case Magic('O'): |
| case Magic('w'): |
| case Magic('W'): |
| case Magic('h'): |
| case Magic('H'): |
| case Magic('a'): |
| case Magic('A'): |
| case Magic('l'): |
| case Magic('L'): |
| case Magic('u'): |
| case Magic('U'): |
| p = vim_strchr(classchars, no_Magic(c)); |
| if (p == NULL) |
| { |
| if (extra == NFA_ADD_NL) |
| { |
| semsg(_(e_nfa_regexp_invalid_character_class_nr), c); |
| rc_did_emsg = TRUE; |
| return FAIL; |
| } |
| siemsg("INTERNAL: Unknown character class char: %d", c); |
| return FAIL; |
| } |
| |
| // When '.' is followed by a composing char ignore the dot, so that |
| // the composing char is matched here. |
| if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr())) |
| { |
| old_regparse = regparse; |
| c = getchr(); |
| goto nfa_do_multibyte; |
| } |
| EMIT(nfa_classcodes[p - classchars]); |
| if (extra == NFA_ADD_NL) |
| { |
| EMIT(NFA_NEWL); |
| EMIT(NFA_OR); |
| regflags |= RF_HASNL; |
| } |
| break; |
| |
| case Magic('n'): |
| if (reg_string) |
| // In a string "\n" matches a newline character. |
| EMIT(NL); |
| else |
| { |
| // In buffer text "\n" matches the end of a line. |
| EMIT(NFA_NEWL); |
| regflags |= RF_HASNL; |
| } |
| break; |
| |
| case Magic('('): |
| if (nfa_reg(REG_PAREN) == FAIL) |
| return FAIL; // cascaded error |
| break; |
| |
| case Magic('|'): |
| case Magic('&'): |
| case Magic(')'): |
| semsg(_(e_nfa_regexp_misplaced_chr), no_Magic(c)); |
| return FAIL; |
| |
| case Magic('='): |
| case Magic('?'): |
| case Magic('+'): |
| case Magic('@'): |
| case Magic('*'): |
| case Magic('{'): |
| // these should follow an atom, not form an atom |
| semsg(_(e_nfa_regexp_misplaced_chr), no_Magic(c)); |
| return FAIL; |
| |
| case Magic('~'): |
| { |
| char_u *lp; |
| |
| // Previous substitute pattern. |
| // Generated as "\%(pattern\)". |
| if (reg_prev_sub == NULL) |
| { |
| emsg(_(e_no_previous_substitute_regular_expression)); |
| return FAIL; |
| } |
| for (lp = reg_prev_sub; *lp != NUL; MB_CPTR_ADV(lp)) |
| { |
| EMIT(PTR2CHAR(lp)); |
| if (lp != reg_prev_sub) |
| EMIT(NFA_CONCAT); |
| } |
| EMIT(NFA_NOPEN); |
| break; |
| } |
| |
| case Magic('1'): |
| case Magic('2'): |
| case Magic('3'): |
| case Magic('4'): |
| case Magic('5'): |
| case Magic('6'): |
| case Magic('7'): |
| case Magic('8'): |
| case Magic('9'): |
| { |
| int refnum = no_Magic(c) - '1'; |
| |
| if (!seen_endbrace(refnum + 1)) |
| return FAIL; |
| EMIT(NFA_BACKREF1 + refnum); |
| rex.nfa_has_backref = TRUE; |
| } |
| break; |
| |
| case Magic('z'): |
| c = no_Magic(getchr()); |
| switch (c) |
| { |
| case 's': |
| EMIT(NFA_ZSTART); |
| if (re_mult_next("\\zs") == FAIL) |
| return FAIL; |
| break; |
| case 'e': |
| EMIT(NFA_ZEND); |
| rex.nfa_has_zend = TRUE; |
| if (re_mult_next("\\ze") == FAIL) |
| return FAIL; |
| break; |
| #ifdef FEAT_SYN_HL |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': |
| // \z1...\z9 |
| if ((reg_do_extmatch & REX_USE) == 0) |
| EMSG_RET_FAIL(_(e_z1_z9_not_allowed_here)); |
| EMIT(NFA_ZREF1 + (no_Magic(c) - '1')); |
| // No need to set rex.nfa_has_backref, the sub-matches don't |
| // change when \z1 .. \z9 matches or not. |
| re_has_z = REX_USE; |
| break; |
| case '(': |
| // \z( |
| if ((reg_do_extmatch & REX_SET) == 0) |
| EMSG_RET_FAIL(_(e_z_not_allowed_here)); |
| if (nfa_reg(REG_ZPAREN) == FAIL) |
| return FAIL; // cascaded error |
| re_has_z = REX_SET; |
| break; |
| #endif |
| default: |
| semsg(_(e_nfa_regexp_unknown_operator_z_chr), no_Magic(c)); |
| return FAIL; |
| } |
| break; |
| |
| case Magic('%'): |
| c = no_Magic(getchr()); |
| switch (c) |
| { |
| // () without a back reference |
| case '(': |
| if (nfa_reg(REG_NPAREN) == FAIL) |
| return FAIL; |
| EMIT(NFA_NOPEN); |
| break; |
| |
| case 'd': // %d123 decimal |
| case 'o': // %o123 octal |
| case 'x': // %xab hex 2 |
| case 'u': // %uabcd hex 4 |
| case 'U': // %U1234abcd hex 8 |
| { |
| long nr; |
| |
| switch (c) |
| { |
| case 'd': nr = getdecchrs(); break; |
| case 'o': nr = getoctchrs(); break; |
| case 'x': nr = gethexchrs(2); break; |
| case 'u': nr = gethexchrs(4); break; |
| case 'U': nr = gethexchrs(8); break; |
| default: nr = -1; break; |
| } |
| |
| if (nr < 0 || nr > INT_MAX) |
| EMSG2_RET_FAIL(_(e_invalid_character_after_str_2), |
| reg_magic == MAGIC_ALL); |
| // A NUL is stored in the text as NL |
| // TODO: what if a composing character follows? |
| EMIT(nr == 0 ? 0x0a : nr); |
| } |
| break; |
| |
| // Catch \%^ and \%$ regardless of where they appear in the |
| // pattern -- regardless of whether or not it makes sense. |
| case '^': |
| EMIT(NFA_BOF); |
| break; |
| |
| case '$': |
| EMIT(NFA_EOF); |
| break; |
| |
| case '#': |
| if (regparse[0] == '=' && regparse[1] >= 48 |
| && regparse[1] <= 50) |
| { |
| // misplaced \%#=1 |
| semsg(_(e_atom_engine_must_be_at_start_of_pattern), |
| regparse[1]); |
| return FAIL; |
| } |
| EMIT(NFA_CURSOR); |
| break; |
| |
| case 'V': |
| EMIT(NFA_VISUAL); |
| break; |
| |
| case 'C': |
| EMIT(NFA_ANY_COMPOSING); |
| break; |
| |
| case '[': |
| { |
| int n; |
| |
| // \%[abc] |
| for (n = 0; (c = peekchr()) != ']'; ++n) |
| { |
| if (c == NUL) |
| EMSG2_RET_FAIL(_(e_missing_sb_after_str), |
| reg_magic == MAGIC_ALL); |
| // recursive call! |
| if (nfa_regatom() == FAIL) |
| return FAIL; |
| } |
| getchr(); // get the ] |
| if (n == 0) |
| EMSG2_RET_FAIL(_(e_empty_str_brackets), |
| reg_magic == MAGIC_ALL); |
| EMIT(NFA_OPT_CHARS); |
| EMIT(n); |
| |
| // Emit as "\%(\%[abc]\)" to be able to handle |
| // "\%[abc]*" which would cause the empty string to be |
| // matched an unlimited number of times. NFA_NOPEN is |
| // added only once at a position, while NFA_SPLIT is |
| // added multiple times. This is more efficient than |
| // not allowing NFA_SPLIT multiple times, it is used |
| // a lot. |
| EMIT(NFA_NOPEN); |
| break; |
| } |
| |
| default: |
| { |
| long_u n = 0; |
| int cmp = c; |
| int cur = FALSE; |
| int got_digit = FALSE; |
| |
| if (c == '<' || c == '>') |
| c = getchr(); |
| if (no_Magic(c) == '.') |
| { |
| cur = TRUE; |
| c = getchr(); |
| } |
| while (VIM_ISDIGIT(c)) |
| { |
| long_u tmp; |
| |
| if (cur) |
| { |
| semsg(_(e_regexp_number_after_dot_pos_search_chr), |
| no_Magic(c)); |
| return FAIL; |
| } |
| tmp = n * 10 + (c - '0'); |
| |
| if (tmp < n) |
| { |
| // overflow. |
| emsg(_(e_percent_value_too_large)); |
| return FAIL; |
| } |
| n = tmp; |
| c = getchr(); |
| got_digit = TRUE; |
| } |
| if (c == 'l' || c == 'c' || c == 'v') |
| { |
| long_u limit = INT_MAX; |
| |
| if (!cur && !got_digit) |
| { |
| semsg(_(e_nfa_regexp_missing_value_in_chr), |
| no_Magic(c)); |
| return FAIL; |
| } |
| if (c == 'l') |
| { |
| if (cur) |
| n = curwin->w_cursor.lnum; |
| // \%{n}l \%{n}<l \%{n}>l |
| EMIT(cmp == '<' ? NFA_LNUM_LT : |
| cmp == '>' ? NFA_LNUM_GT : NFA_LNUM); |
| if (save_prev_at_start) |
| at_start = TRUE; |
| } |
| else if (c == 'c') |
| { |
| if (cur) |
| { |
| n = curwin->w_cursor.col; |
| n++; |
| } |
| // \%{n}c \%{n}<c \%{n}>c |
| EMIT(cmp == '<' ? NFA_COL_LT : |
| cmp == '>' ? NFA_COL_GT : NFA_COL); |
| } |
| else |
| { |
| if (cur) |
| { |
| colnr_T vcol = 0; |
| |
| getvvcol(curwin, &curwin->w_cursor, |
| NULL, NULL, &vcol); |
| n = ++vcol; |
| } |
| // \%{n}v \%{n}<v \%{n}>v |
| EMIT(cmp == '<' ? NFA_VCOL_LT : |
| cmp == '>' ? NFA_VCOL_GT : NFA_VCOL); |
| limit = INT_MAX / MB_MAXBYTES; |
| } |
| if (n >= limit) |
| { |
| emsg(_(e_percent_value_too_large)); |
| return FAIL; |
| } |
| EMIT((int)n); |
| break; |
| } |
| else if (c == '\'' && n == 0) |
| { |
| // \%'m \%<'m \%>'m |
| EMIT(cmp == '<' ? NFA_MARK_LT : |
| cmp == '>' ? NFA_MARK_GT : NFA_MARK); |
| EMIT(getchr()); |
| break; |
| } |
| } |
| semsg(_(e_nfa_regexp_unknown_operator_percent_chr), |
| no_Magic(c)); |
| return FAIL; |
| } |
| break; |
| |
| case Magic('['): |
| collection: |
| /* |
| * [abc] uses NFA_START_COLL - NFA_END_COLL |
| * [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL |
| * Each character is produced as a regular state, using |
| * NFA_CONCAT to bind them together. |
| * Besides normal characters there can be: |
| * - character classes NFA_CLASS_* |
| * - ranges, two characters followed by NFA_RANGE. |
| */ |
| |
| p = regparse; |
| endp = skip_anyof(p); |
| if (*endp == ']') |
| { |
| /* |
| * Try to reverse engineer character classes. For example, |
| * recognize that [0-9] stands for \d and [A-Za-z_] for \h, |
| * and perform the necessary substitutions in the NFA. |
| */ |
| result = nfa_recognize_char_class(regparse, endp, |
| extra == NFA_ADD_NL); |
| if (result != FAIL) |
| { |
| if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) |
| { |
| EMIT(result - NFA_ADD_NL); |
| EMIT(NFA_NEWL); |
| EMIT(NFA_OR); |
| } |
| else |
| EMIT(result); |
| regparse = endp; |
| MB_PTR_ADV(regparse); |
| return OK; |
| } |
| /* |
| * Failed to recognize a character class. Use the simple |
| * version that turns [abc] into 'a' OR 'b' OR 'c' |
| */ |
| startc = -1; |
| negated = FALSE; |
| if (*regparse == '^') // negated range |
| { |
| negated = TRUE; |
| MB_PTR_ADV(regparse); |
| EMIT(NFA_START_NEG_COLL); |
| } |
| else |
| EMIT(NFA_START_COLL); |
| if (*regparse == '-') |
| { |
| startc = '-'; |
| EMIT(startc); |
| EMIT(NFA_CONCAT); |
| MB_PTR_ADV(regparse); |
| } |
| // Emit the OR branches for each character in the [] |
| emit_range = FALSE; |
| while (regparse < endp) |
| { |
| int oldstartc = startc; |
| |
| startc = -1; |
| got_coll_char = FALSE; |
| if (*regparse == '[') |
| { |
| // Check for [: :], [= =], [. .] |
| equiclass = collclass = 0; |
| charclass = get_char_class(®parse); |
| if (charclass == CLASS_NONE) |
| { |
| equiclass = get_equi_class(®parse); |
| if (equiclass == 0) |
| collclass = get_coll_element(®parse); |
| } |
| |
| // Character class like [:alpha:] |
| if (charclass != CLASS_NONE) |
| { |
| switch (charclass) |
| { |
| case CLASS_ALNUM: |
| EMIT(NFA_CLASS_ALNUM); |
| break; |
| case CLASS_ALPHA: |
| EMIT(NFA_CLASS_ALPHA); |
| break; |
| case CLASS_BLANK: |
| EMIT(NFA_CLASS_BLANK); |
| break; |
| case CLASS_CNTRL: |
| EMIT(NFA_CLASS_CNTRL); |
| break; |
| case CLASS_DIGIT: |
| EMIT(NFA_CLASS_DIGIT); |
| break; |
| case CLASS_GRAPH: |
| EMIT(NFA_CLASS_GRAPH); |
| break; |
| case CLASS_LOWER: |
| wants_nfa = TRUE; |
| EMIT(NFA_CLASS_LOWER); |
| break; |
| case CLASS_PRINT: |
| EMIT(NFA_CLASS_PRINT); |
| break; |
| case CLASS_PUNCT: |
| EMIT(NFA_CLASS_PUNCT); |
| break; |
| case CLASS_SPACE: |
| EMIT(NFA_CLASS_SPACE); |
| break; |
| case CLASS_UPPER: |
| wants_nfa = TRUE; |
| EMIT(NFA_CLASS_UPPER); |
| break; |
| case CLASS_XDIGIT: |
| EMIT(NFA_CLASS_XDIGIT); |
| break; |
| case CLASS_TAB: |
| EMIT(NFA_CLASS_TAB); |
| break; |
| case CLASS_RETURN: |
| EMIT(NFA_CLASS_RETURN); |
| break; |
| case CLASS_BACKSPACE: |
| EMIT(NFA_CLASS_BACKSPACE); |
| break; |
| case CLASS_ESCAPE: |
| EMIT(NFA_CLASS_ESCAPE); |
| break; |
| case CLASS_IDENT: |
| EMIT(NFA_CLASS_IDENT); |
| break; |
| case CLASS_KEYWORD: |
| EMIT(NFA_CLASS_KEYWORD); |
| break; |
| case CLASS_FNAME: |
| EMIT(NFA_CLASS_FNAME); |
| break; |
| } |
| EMIT(NFA_CONCAT); |
| continue; |
| } |
| // Try equivalence class [=a=] and the like |
| if (equiclass != 0) |
| { |
| result = nfa_emit_equi_class(equiclass); |
| if (result == FAIL) |
| { |
| // should never happen |
| EMSG_RET_FAIL(_(e_error_building_nfa_with_equivalence_class)); |
| } |
| continue; |
| } |
| // Try collating class like [. .] |
| if (collclass != 0) |
| { |
| startc = collclass; // allow [.a.]-x as a range |
| // Will emit the proper atom at the end of the |
| // while loop. |
| } |
| } |
| // Try a range like 'a-x' or '\t-z'. Also allows '-' as a |
| // start character. |
| if (*regparse == '-' && oldstartc != -1) |
| { |
| emit_range = TRUE; |
| startc = oldstartc; |
| MB_PTR_ADV(regparse); |
| continue; // reading the end of the range |
| } |
| |
| // Now handle simple and escaped characters. |
| // Only "\]", "\^", "\]" and "\\" are special in Vi. Vim |
| // accepts "\t", "\e", etc., but only when the 'l' flag in |
| // 'cpoptions' is not included. |
| // Posix doesn't recognize backslash at all. |
| if (*regparse == '\\' |
| && !reg_cpo_bsl |
| && regparse + 1 <= endp |
| && (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL |
| || (!reg_cpo_lit |
| && vim_strchr(REGEXP_ABBR, regparse[1]) |
| != NULL) |
| ) |
| ) |
| { |
| MB_PTR_ADV(regparse); |
| |
| if (*regparse == 'n') |
| startc = (reg_string || emit_range |
| || regparse[1] == '-') ? NL : NFA_NEWL; |
| else if (*regparse == 'd' |
| || *regparse == 'o' |
| || *regparse == 'x' |
| || *regparse == 'u' |
| || *regparse == 'U' |
| ) |
| { |
| // TODO(RE) This needs more testing |
| startc = coll_get_char(); |
| got_coll_char = TRUE; |
| MB_PTR_BACK(old_regparse, regparse); |
| } |
| else |
| { |
| // \r,\t,\e,\b |
| startc = backslash_trans(*regparse); |
| } |
| } |
| |
| // Normal printable char |
| if (startc == -1) |
| startc = PTR2CHAR(regparse); |
| |
| // Previous char was '-', so this char is end of range. |
| if (emit_range) |
| { |
| int endc = startc; |
| |
| startc = oldstartc; |
| if (startc > endc) |
| EMSG_RET_FAIL(_(e_reverse_range_in_character_class)); |
| |
| if (endc > startc + 2) |
| { |
| // Emit a range instead of the sequence of |
| // individual characters. |
| if (startc == 0) |
| // \x00 is translated to \x0a, start at \x01. |
| EMIT(1); |
| else |
| --post_ptr; // remove NFA_CONCAT |
| EMIT(endc); |
| EMIT(NFA_RANGE); |
| EMIT(NFA_CONCAT); |
| } |
| else if (has_mbyte && ((*mb_char2len)(startc) > 1 |
| || (*mb_char2len)(endc) > 1)) |
| { |
| // Emit the characters in the range. |
| // "startc" was already emitted, so skip it. |
| // |
| for (c = startc + 1; c <= endc; c++) |
| { |
| EMIT(c); |
| EMIT(NFA_CONCAT); |
| } |
| } |
| else |
| { |
| // Emit the range. "startc" was already emitted, so |
| // skip it. |
| for (c = startc + 1; c <= endc; c++) |
| { |
| EMIT(c); |
| EMIT(NFA_CONCAT); |
| } |
| } |
| emit_range = FALSE; |
| startc = -1; |
| } |
| else |
| { |
| // This char (startc) is not part of a range. Just |
| // emit it. |
| // Normally, simply emit startc. But if we get char |
| // code=0 from a collating char, then replace it with |
| // 0x0a. |
| // This is needed to completely mimic the behaviour of |
| // the backtracking engine. |
| if (startc == NFA_NEWL) |
| { |
| // Line break can't be matched as part of the |
| // collection, add an OR below. But not for negated |
| // range. |
| if (!negated) |
| extra = NFA_ADD_NL; |
| } |
| else |
| { |
| if (got_coll_char == TRUE && startc == 0) |
| EMIT(0x0a); |
| else |
| EMIT(startc); |
| EMIT(NFA_CONCAT); |
| } |
| } |
| |
| MB_PTR_ADV(regparse); |
| } // while (p < endp) |
| |
| MB_PTR_BACK(old_regparse, regparse); |
| if (*regparse == '-') // if last, '-' is just a char |
| { |
| EMIT('-'); |
| EMIT(NFA_CONCAT); |
| } |
| |
| // skip the trailing ] |
| regparse = endp; |
| MB_PTR_ADV(regparse); |
| |
| // Mark end of the collection. |
| if (negated == TRUE) |
| EMIT(NFA_END_NEG_COLL); |
| else |
| EMIT(NFA_END_COLL); |
| |
| // \_[] also matches \n but it's not negated |
| if (extra == NFA_ADD_NL) |
| { |
| EMIT(reg_string ? NL : NFA_NEWL); |
| EMIT(NFA_OR); |
| } |
| |
| return OK; |
| } // if exists closing ] |
| |
| if (reg_strict) |
| EMSG_RET_FAIL(_(e_missing_rsb_after_str_lsb)); |
| // FALLTHROUGH |
| |
| default: |
| { |
| int plen; |
| |
| nfa_do_multibyte: |
| // plen is length of current char with composing chars |
| if (enc_utf8 && ((*mb_char2len)(c) |
| != (plen = utfc_ptr2len(old_regparse)) |
| || utf_iscomposing(c))) |
| { |
| int i = 0; |
| |
| // A base character plus composing characters, or just one |
| // or more composing characters. |
| // This requires creating a separate atom as if enclosing |
| // the characters in (), where NFA_COMPOSING is the ( and |
| // NFA_END_COMPOSING is the ). Note that right now we are |
| // building the postfix form, not the NFA itself; |
| // a composing char could be: a, b, c, NFA_COMPOSING |
| // where 'b' and 'c' are chars with codes > 256. |
| for (;;) |
| { |
| EMIT(c); |
| if (i > 0) |
| EMIT(NFA_CONCAT); |
| if ((i += utf_char2len(c)) >= plen) |
| break; |
| c = utf_ptr2char(old_regparse + i); |
| } |
| EMIT(NFA_COMPOSING); |
| regparse = old_regparse + plen; |
| } |
| else |
| { |
| c = no_Magic(c); |
| EMIT(c); |
| } |
| return OK; |
| } |
| } |
| |
| return OK; |
| } |
| |
| /* |
| * Parse something followed by possible [*+=]. |
| * |
| * A piece is an atom, possibly followed by a multi, an indication of how many |
| * times the atom can be matched. Example: "a*" matches any sequence of "a" |
| * characters: "", "a", "aa", etc. |
| * |
| * piece ::= atom |
| * or atom multi |
| */ |
| static int |
| nfa_regpiece(void) |
| { |
| int i; |
| int op; |
| int ret; |
| long minval, maxval; |
| int greedy = TRUE; // Braces are prefixed with '-' ? |
| parse_state_T old_state; |
| parse_state_T new_state; |
| long c2; |
| int old_post_pos; |
| int my_post_start; |
| int quest; |
| |
| // Save the current parse state, so that we can use it if <atom>{m,n} is |
| // next. |
| save_parse_state(&old_state); |
| |
| // store current pos in the postfix form, for \{m,n} involving 0s |
| my_post_start = (int)(post_ptr - post_start); |
| |
| ret = nfa_regatom(); |
| if (ret == FAIL) |
| return FAIL; // cascaded error |
| |
| op = peekchr(); |
| if (re_multi_type(op) == NOT_MULTI) |
| return OK; |
| |
| skipchr(); |
| switch (op) |
| { |
| case Magic('*'): |
| EMIT(NFA_STAR); |
| break; |
| |
| case Magic('+'): |
| /* |
| * Trick: Normally, (a*)\+ would match the whole input "aaa". The |
| * first and only submatch would be "aaa". But the backtracking |
| * engine interprets the plus as "try matching one more time", and |
| * a* matches a second time at the end of the input, the empty |
| * string. |
| * The submatch will be the empty string. |
| * |
| * In order to be consistent with the old engine, we replace |
| * <atom>+ with <atom><atom>* |
| */ |
| restore_parse_state(&old_state); |
| curchr = -1; |
| if (nfa_regatom() == FAIL) |
| return FAIL; |
| EMIT(NFA_STAR); |
| EMIT(NFA_CONCAT); |
| skipchr(); // skip the \+ |
| break; |
| |
| case Magic('@'): |
| c2 = getdecchrs(); |
| op = no_Magic(getchr()); |
| i = 0; |
| switch(op) |
| { |
| case '=': |
| // \@= |
| i = NFA_PREV_ATOM_NO_WIDTH; |
| break; |
| case '!': |
| // \@! |
| i = NFA_PREV_ATOM_NO_WIDTH_NEG; |
| break; |
| case '<': |
| op = no_Magic(getchr()); |
| if (op == '=') |
| // \@<= |
| i = NFA_PREV_ATOM_JUST_BEFORE; |
| else if (op == '!') |
| // \@<! |
| i = NFA_PREV_ATOM_JUST_BEFORE_NEG; |
| break; |
| case '>': |
| // \@> |
| i = NFA_PREV_ATOM_LIKE_PATTERN; |
| break; |
| } |
| if (i == 0) |
| { |
| semsg(_(e_nfa_regexp_unknown_operator_at_chr), op); |
| return FAIL; |
| } |
| EMIT(i); |
| if (i == NFA_PREV_ATOM_JUST_BEFORE |
| || i == NFA_PREV_ATOM_JUST_BEFORE_NEG) |
| EMIT(c2); |
| break; |
| |
| case Magic('?'): |
| case Magic('='): |
| EMIT(NFA_QUEST); |
| break; |
| |
| case Magic('{'): |
| // a{2,5} will expand to 'aaa?a?a?' |
| // a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy |
| // version of '?' |
| // \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the |
| // parenthesis have the same id |
| |
| greedy = TRUE; |
| c2 = peekchr(); |
| if (c2 == '-' || c2 == Magic('-')) |
| { |
| skipchr(); |
| greedy = FALSE; |
| } |
| if (!read_limits(&minval, &maxval)) |
| EMSG_RET_FAIL(_(e_nfa_regexp_error_reading_repetition_limits)); |
| |
| // <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to |
| // <atom>* |
| if (minval == 0 && maxval == MAX_LIMIT) |
| { |
| if (greedy) // { { (match the braces) |
| // \{}, \{0,} |
| EMIT(NFA_STAR); |
| else // { { (match the braces) |
| // \{-}, \{-0,} |
| EMIT(NFA_STAR_NONGREEDY); |
| break; |
| } |
| |
| // Special case: x{0} or x{-0} |
| if (maxval == 0) |
| { |
| // Ignore result of previous call to nfa_regatom() |
| post_ptr = post_start + my_post_start; |
| // NFA_EMPTY is 0-length and works everywhere |
| EMIT(NFA_EMPTY); |
| return OK; |
| } |
| |
| // The engine is very inefficient (uses too many states) when the |
| // maximum is much larger than the minimum and when the maximum is |
| // large. However, when maxval is MAX_LIMIT, it is okay, as this |
| // will emit NFA_STAR. |
| // Bail out if we can use the other engine, but only, when the |
| // pattern does not need the NFA engine like (e.g. [[:upper:]]\{2,\} |
| // does not work with characters > 8 bit with the BT engine) |
| if ((nfa_re_flags & RE_AUTO) |
| && (maxval > 500 || maxval > minval + 200) |
| && (maxval != MAX_LIMIT && minval < 200) |
| && !wants_nfa) |
| return FAIL; |
| |
| // Ignore previous call to nfa_regatom() |
| post_ptr = post_start + my_post_start; |
| // Save parse state after the repeated atom and the \{} |
| save_parse_state(&new_state); |
| |
| quest = (greedy == TRUE? NFA_QUEST : NFA_QUEST_NONGREEDY); |
| for (i = 0; i < maxval; i++) |
| { |
| // Goto beginning of the repeated atom |
| restore_parse_state(&old_state); |
| old_post_pos = (int)(post_ptr - post_start); |
| if (nfa_regatom() == FAIL) |
| return FAIL; |
| // after "minval" times, atoms are optional |
| if (i + 1 > minval) |
| { |
| if (maxval == MAX_LIMIT) |
| { |
| if (greedy) |
| EMIT(NFA_STAR); |
| else |
| EMIT(NFA_STAR_NONGREEDY); |
| } |
| else |
| EMIT(quest); |
| } |
| if (old_post_pos != my_post_start) |
| EMIT(NFA_CONCAT); |
| if (i + 1 > minval && maxval == MAX_LIMIT) |
| break; |
| } |
| |
| // Go to just after the repeated atom and the \{} |
| restore_parse_state(&new_state); |
| curchr = -1; |
| |
| break; |
| |
| |
| default: |
| break; |
| } // end switch |
| |
| if (re_multi_type(peekchr()) != NOT_MULTI) |
| // Can't have a multi follow a multi. |
| EMSG_RET_FAIL(_(e_nfa_regexp_cant_have_multi_follow_multi)); |
| |
| return OK; |
| } |
| |
| /* |
| * Parse one or more pieces, concatenated. It matches a match for the |
| * first piece, followed by a match for the second piece, etc. Example: |
| * "f[0-9]b", first matches "f", then a digit and then "b". |
| * |
| * concat ::= piece |
| * or piece piece |
| * or piece piece piece |
| * etc. |
| */ |
| static int |
| nfa_regconcat(void) |
| { |
| int cont = TRUE; |
| int first = TRUE; |
| |
| while (cont) |
| { |
| switch (peekchr()) |
| { |
| case NUL: |
| case Magic('|'): |
| case Magic('&'): |
| case Magic(')'): |
| cont = FALSE; |
| break; |
| |
| case Magic('Z'): |
| regflags |= RF_ICOMBINE; |
| skipchr_keepstart(); |
| break; |
| case Magic('c'): |
| regflags |= RF_ICASE; |
| skipchr_keepstart(); |
| break; |
| case Magic('C'): |
| regflags |= RF_NOICASE; |
| skipchr_keepstart(); |
| break; |
| case Magic('v'): |
| reg_magic = MAGIC_ALL; |
| skipchr_keepstart(); |
| curchr = -1; |
| break; |
| case Magic('m'): |
| reg_magic = MAGIC_ON; |
| skipchr_keepstart(); |
| curchr = -1; |
| break; |
| case Magic('M'): |
| reg_magic = MAGIC_OFF; |
| skipchr_keepstart(); |
| curchr = -1; |
| break; |
| case Magic('V'): |
| reg_magic = MAGIC_NONE; |
| skipchr_keepstart(); |
| curchr = -1; |
| break; |
| |
| default: |
| if (nfa_regpiece() == FAIL) |
| return FAIL; |
| if (first == FALSE) |
| EMIT(NFA_CONCAT); |
| else |
| first = FALSE; |
| break; |
| } |
| } |
| |
| return OK; |
| } |
| |
| /* |
| * Parse a branch, one or more concats, separated by "\&". It matches the |
| * last concat, but only if all the preceding concats also match at the same |
| * position. Examples: |
| * "foobeep\&..." matches "foo" in "foobeep". |
| * ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob" |
| * |
| * branch ::= concat |
| * or concat \& concat |
| * or concat \& concat \& concat |
| * etc. |
| */ |
| static int |
| nfa_regbranch(void) |
| { |
| int old_post_pos; |
| |
| old_post_pos = (int)(post_ptr - post_start); |
| |
| // First branch, possibly the only one |
| if (nfa_regconcat() == FAIL) |
| return FAIL; |
| |
| // Try next concats |
| while (peekchr() == Magic('&')) |
| { |
| skipchr(); |
| // if concat is empty do emit a node |
| if (old_post_pos == (int)(post_ptr - post_start)) |
| EMIT(NFA_EMPTY); |
| EMIT(NFA_NOPEN); |
| EMIT(NFA_PREV_ATOM_NO_WIDTH); |
| old_post_pos = (int)(post_ptr - post_start); |
| if (nfa_regconcat() == FAIL) |
| return FAIL; |
| // if concat is empty do emit a node |
| if (old_post_pos == (int)(post_ptr - post_start)) |
| EMIT(NFA_EMPTY); |
| EMIT(NFA_CONCAT); |
| } |
| |
| // if a branch is empty, emit one node for it |
| if (old_post_pos == (int)(post_ptr - post_start)) |
| EMIT(NFA_EMPTY); |
| |
| return OK; |
| } |
| |
| /* |
| * Parse a pattern, one or more branches, separated by "\|". It matches |
| * anything that matches one of the branches. Example: "foo\|beep" matches |
| * "foo" and matches "beep". If more than one branch matches, the first one |
| * is used. |
| * |
| * pattern ::= branch |
| * or branch \| branch |
| * or branch \| branch \| branch |
| * etc. |
| */ |
| static int |
| nfa_reg( |
| int paren) // REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN |
| { |
| int parno = 0; |
| |
| if (paren == REG_PAREN) |
| { |
| if (regnpar >= NSUBEXP) // Too many `(' |
| EMSG_RET_FAIL(_(e_nfa_regexp_too_many_parens)); |
| parno = regnpar++; |
| } |
| #ifdef FEAT_SYN_HL |
| else if (paren == REG_ZPAREN) |
| { |
| // Make a ZOPEN node. |
| if (regnzpar >= NSUBEXP) |
| EMSG_RET_FAIL(_(e_nfa_regexp_too_many_z)); |
| parno = regnzpar++; |
| } |
| #endif |
| |
| if (nfa_regbranch() == FAIL) |
| return FAIL; // cascaded error |
| |
| while (peekchr() == Magic('|')) |
| { |
| skipchr(); |
| if (nfa_regbranch() == FAIL) |
| return FAIL; // cascaded error |
| EMIT(NFA_OR); |
| } |
| |
| // Check for proper termination. |
| if (paren != REG_NOPAREN && getchr() != Magic(')')) |
| { |
| if (paren == REG_NPAREN) |
| EMSG2_RET_FAIL(_(e_unmatched_str_percent_open), |
| reg_magic == MAGIC_ALL); |
| else |
| EMSG2_RET_FAIL(_(e_unmatched_str_open), reg_magic == MAGIC_ALL); |
| } |
| else if (paren == REG_NOPAREN && peekchr() != NUL) |
| { |
| if (peekchr() == Magic(')')) |
| EMSG2_RET_FAIL(_(e_unmatched_str_close), reg_magic == MAGIC_ALL); |
| else |
| EMSG_RET_FAIL(_(e_nfa_regexp_proper_termination_error)); |
| } |
| /* |
| * Here we set the flag allowing back references to this set of |
| * parentheses. |
| */ |
| if (paren == REG_PAREN) |
| { |
| had_endbrace[parno] = TRUE; // have seen the close paren |
| EMIT(NFA_MOPEN + parno); |
| } |
| #ifdef FEAT_SYN_HL |
| else if (paren == REG_ZPAREN) |
| EMIT(NFA_ZOPEN + parno); |
| #endif |
| |
| return OK; |
| } |
| |
| #ifdef DEBUG |
| static char_u code[50]; |
| |
| static void |
| nfa_set_code(int c) |
| { |
| int addnl = FALSE; |
| |
| if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) |
| { |
| addnl = TRUE; |
| c -= NFA_ADD_NL; |
| } |
| |
| STRCPY(code, ""); |
| switch (c) |
| { |
| case NFA_MATCH: STRCPY(code, "NFA_MATCH "); break; |
| case NFA_SPLIT: STRCPY(code, "NFA_SPLIT "); break; |
| case NFA_CONCAT: STRCPY(code, "NFA_CONCAT "); break; |
| case NFA_NEWL: STRCPY(code, "NFA_NEWL "); break; |
| case NFA_ZSTART: STRCPY(code, "NFA_ZSTART"); break; |
| case NFA_ZEND: STRCPY(code, "NFA_ZEND"); break; |
| |
| case NFA_BACKREF1: STRCPY(code, "NFA_BACKREF1"); break; |
| case NFA_BACKREF2: STRCPY(code, "NFA_BACKREF2"); break; |
| case NFA_BACKREF3: STRCPY(code, "NFA_BACKREF3"); break; |
| case NFA_BACKREF4: STRCPY(code, "NFA_BACKREF4"); break; |
| case NFA_BACKREF5: STRCPY(code, "NFA_BACKREF5"); break; |
| case NFA_BACKREF6: STRCPY(code, "NFA_BACKREF6"); break; |
| case NFA_BACKREF7: STRCPY(code, "NFA_BACKREF7"); break; |
| case NFA_BACKREF8: STRCPY(code, "NFA_BACKREF8"); break; |
| case NFA_BACKREF9: STRCPY(code, "NFA_BACKREF9"); break; |
| #ifdef FEAT_SYN_HL |
| case NFA_ZREF1: STRCPY(code, "NFA_ZREF1"); break; |
| case NFA_ZREF2: STRCPY(code, "NFA_ZREF2"); break; |
| case NFA_ZREF3: STRCPY(code, "NFA_ZREF3"); break; |
| case NFA_ZREF4: STRCPY(code, "NFA_ZREF4"); break; |
| case NFA_ZREF5: STRCPY(code, "NFA_ZREF5"); break; |
| case NFA_ZREF6: STRCPY(code, "NFA_ZREF6"); break; |
| case NFA_ZREF7: STRCPY(code, "NFA_ZREF7"); break; |
| case NFA_ZREF8: STRCPY(code, "NFA_ZREF8"); break; |
| case NFA_ZREF9: STRCPY(code, "NFA_ZREF9"); break; |
| #endif |
| case NFA_SKIP: STRCPY(code, "NFA_SKIP"); break; |
| |
| case NFA_PREV_ATOM_NO_WIDTH: |
| STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break; |
| case NFA_PREV_ATOM_NO_WIDTH_NEG: |
| STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break; |
| case NFA_PREV_ATOM_JUST_BEFORE: |
| STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break; |
| case NFA_PREV_ATOM_JUST_BEFORE_NEG: |
| STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break; |
| case NFA_PREV_ATOM_LIKE_PATTERN: |
| STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break; |
| |
| case NFA_NOPEN: STRCPY(code, "NFA_NOPEN"); break; |
| case NFA_NCLOSE: STRCPY(code, "NFA_NCLOSE"); break; |
| case NFA_START_INVISIBLE: STRCPY(code, "NFA_START_INVISIBLE"); break; |
| case NFA_START_INVISIBLE_FIRST: |
| STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break; |
| case NFA_START_INVISIBLE_NEG: |
| STRCPY(code, "NFA_START_INVISIBLE_NEG"); break; |
| case NFA_START_INVISIBLE_NEG_FIRST: |
| STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break; |
| case NFA_START_INVISIBLE_BEFORE: |
| STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break; |
| case NFA_START_INVISIBLE_BEFORE_FIRST: |
| STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break; |
| case NFA_START_INVISIBLE_BEFORE_NEG: |
| STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break; |
| case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: |
| STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break; |
| case NFA_START_PATTERN: STRCPY(code, "NFA_START_PATTERN"); break; |
| case NFA_END_INVISIBLE: STRCPY(code, "NFA_END_INVISIBLE"); break; |
| case NFA_END_INVISIBLE_NEG: STRCPY(code, "NFA_END_INVISIBLE_NEG"); break; |
| case NFA_END_PATTERN: STRCPY(code, "NFA_END_PATTERN"); break; |
| |
| case NFA_COMPOSING: STRCPY(code, "NFA_COMPOSING"); break; |
| case NFA_END_COMPOSING: STRCPY(code, "NFA_END_COMPOSING"); break; |
| case NFA_OPT_CHARS: STRCPY(code, "NFA_OPT_CHARS"); break; |
| |
| case NFA_MOPEN: |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| STRCPY(code, "NFA_MOPEN(x)"); |
| code[10] = c - NFA_MOPEN + '0'; |
| break; |
| case NFA_MCLOSE: |
| case NFA_MCLOSE1: |
| case NFA_MCLOSE2: |
| case NFA_MCLOSE3: |
| case NFA_MCLOSE4: |
| case NFA_MCLOSE5: |
| case NFA_MCLOSE6: |
| case NFA_MCLOSE7: |
| case NFA_MCLOSE8: |
| case NFA_MCLOSE9: |
| STRCPY(code, "NFA_MCLOSE(x)"); |
| code[11] = c - NFA_MCLOSE + '0'; |
| break; |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| STRCPY(code, "NFA_ZOPEN(x)"); |
| code[10] = c - NFA_ZOPEN + '0'; |
| break; |
| case NFA_ZCLOSE: |
| case NFA_ZCLOSE1: |
| case NFA_ZCLOSE2: |
| case NFA_ZCLOSE3: |
| case NFA_ZCLOSE4: |
| case NFA_ZCLOSE5: |
| case NFA_ZCLOSE6: |
| case NFA_ZCLOSE7: |
| case NFA_ZCLOSE8: |
| case NFA_ZCLOSE9: |
| STRCPY(code, "NFA_ZCLOSE(x)"); |
| code[11] = c - NFA_ZCLOSE + '0'; |
| break; |
| #endif |
| case NFA_EOL: STRCPY(code, "NFA_EOL "); break; |
| case NFA_BOL: STRCPY(code, "NFA_BOL "); break; |
| case NFA_EOW: STRCPY(code, "NFA_EOW "); break; |
| case NFA_BOW: STRCPY(code, "NFA_BOW "); break; |
| case NFA_EOF: STRCPY(code, "NFA_EOF "); break; |
| case NFA_BOF: STRCPY(code, "NFA_BOF "); break; |
| case NFA_LNUM: STRCPY(code, "NFA_LNUM "); break; |
| case NFA_LNUM_GT: STRCPY(code, "NFA_LNUM_GT "); break; |
| case NFA_LNUM_LT: STRCPY(code, "NFA_LNUM_LT "); break; |
| case NFA_COL: STRCPY(code, "NFA_COL "); break; |
| case NFA_COL_GT: STRCPY(code, "NFA_COL_GT "); break; |
| case NFA_COL_LT: STRCPY(code, "NFA_COL_LT "); break; |
| case NFA_VCOL: STRCPY(code, "NFA_VCOL "); break; |
| case NFA_VCOL_GT: STRCPY(code, "NFA_VCOL_GT "); break; |
| case NFA_VCOL_LT: STRCPY(code, "NFA_VCOL_LT "); break; |
| case NFA_MARK: STRCPY(code, "NFA_MARK "); break; |
| case NFA_MARK_GT: STRCPY(code, "NFA_MARK_GT "); break; |
| case NFA_MARK_LT: STRCPY(code, "NFA_MARK_LT "); break; |
| case NFA_CURSOR: STRCPY(code, "NFA_CURSOR "); break; |
| case NFA_VISUAL: STRCPY(code, "NFA_VISUAL "); break; |
| case NFA_ANY_COMPOSING: STRCPY(code, "NFA_ANY_COMPOSING "); break; |
| |
| case NFA_STAR: STRCPY(code, "NFA_STAR "); break; |
| case NFA_STAR_NONGREEDY: STRCPY(code, "NFA_STAR_NONGREEDY "); break; |
| case NFA_QUEST: STRCPY(code, "NFA_QUEST"); break; |
| case NFA_QUEST_NONGREEDY: STRCPY(code, "NFA_QUEST_NON_GREEDY"); break; |
| case NFA_EMPTY: STRCPY(code, "NFA_EMPTY"); break; |
| case NFA_OR: STRCPY(code, "NFA_OR"); break; |
| |
| case NFA_START_COLL: STRCPY(code, "NFA_START_COLL"); break; |
| case NFA_END_COLL: STRCPY(code, "NFA_END_COLL"); break; |
| case NFA_START_NEG_COLL: STRCPY(code, "NFA_START_NEG_COLL"); break; |
| case NFA_END_NEG_COLL: STRCPY(code, "NFA_END_NEG_COLL"); break; |
| case NFA_RANGE: STRCPY(code, "NFA_RANGE"); break; |
| case NFA_RANGE_MIN: STRCPY(code, "NFA_RANGE_MIN"); break; |
| case NFA_RANGE_MAX: STRCPY(code, "NFA_RANGE_MAX"); break; |
| |
| case NFA_CLASS_ALNUM: STRCPY(code, "NFA_CLASS_ALNUM"); break; |
| case NFA_CLASS_ALPHA: STRCPY(code, "NFA_CLASS_ALPHA"); break; |
| case NFA_CLASS_BLANK: STRCPY(code, "NFA_CLASS_BLANK"); break; |
| case NFA_CLASS_CNTRL: STRCPY(code, "NFA_CLASS_CNTRL"); break; |
| case NFA_CLASS_DIGIT: STRCPY(code, "NFA_CLASS_DIGIT"); break; |
| case NFA_CLASS_GRAPH: STRCPY(code, "NFA_CLASS_GRAPH"); break; |
| case NFA_CLASS_LOWER: STRCPY(code, "NFA_CLASS_LOWER"); break; |
| case NFA_CLASS_PRINT: STRCPY(code, "NFA_CLASS_PRINT"); break; |
| case NFA_CLASS_PUNCT: STRCPY(code, "NFA_CLASS_PUNCT"); break; |
| case NFA_CLASS_SPACE: STRCPY(code, "NFA_CLASS_SPACE"); break; |
| case NFA_CLASS_UPPER: STRCPY(code, "NFA_CLASS_UPPER"); break; |
| case NFA_CLASS_XDIGIT: STRCPY(code, "NFA_CLASS_XDIGIT"); break; |
| case NFA_CLASS_TAB: STRCPY(code, "NFA_CLASS_TAB"); break; |
| case NFA_CLASS_RETURN: STRCPY(code, "NFA_CLASS_RETURN"); break; |
| case NFA_CLASS_BACKSPACE: STRCPY(code, "NFA_CLASS_BACKSPACE"); break; |
| case NFA_CLASS_ESCAPE: STRCPY(code, "NFA_CLASS_ESCAPE"); break; |
| case NFA_CLASS_IDENT: STRCPY(code, "NFA_CLASS_IDENT"); break; |
| case NFA_CLASS_KEYWORD: STRCPY(code, "NFA_CLASS_KEYWORD"); break; |
| case NFA_CLASS_FNAME: STRCPY(code, "NFA_CLASS_FNAME"); break; |
| |
| case NFA_ANY: STRCPY(code, "NFA_ANY"); break; |
| case NFA_IDENT: STRCPY(code, "NFA_IDENT"); break; |
| case NFA_SIDENT:STRCPY(code, "NFA_SIDENT"); break; |
| case NFA_KWORD: STRCPY(code, "NFA_KWORD"); break; |
| case NFA_SKWORD:STRCPY(code, "NFA_SKWORD"); break; |
| case NFA_FNAME: STRCPY(code, "NFA_FNAME"); break; |
| case NFA_SFNAME:STRCPY(code, "NFA_SFNAME"); break; |
| case NFA_PRINT: STRCPY(code, "NFA_PRINT"); break; |
| case NFA_SPRINT:STRCPY(code, "NFA_SPRINT"); break; |
| case NFA_WHITE: STRCPY(code, "NFA_WHITE"); break; |
| case NFA_NWHITE:STRCPY(code, "NFA_NWHITE"); break; |
| case NFA_DIGIT: STRCPY(code, "NFA_DIGIT"); break; |
| case NFA_NDIGIT:STRCPY(code, "NFA_NDIGIT"); break; |
| case NFA_HEX: STRCPY(code, "NFA_HEX"); break; |
| case NFA_NHEX: STRCPY(code, "NFA_NHEX"); break; |
| case NFA_OCTAL: STRCPY(code, "NFA_OCTAL"); break; |
| case NFA_NOCTAL:STRCPY(code, "NFA_NOCTAL"); break; |
| case NFA_WORD: STRCPY(code, "NFA_WORD"); break; |
| case NFA_NWORD: STRCPY(code, "NFA_NWORD"); break; |
| case NFA_HEAD: STRCPY(code, "NFA_HEAD"); break; |
| case NFA_NHEAD: STRCPY(code, "NFA_NHEAD"); break; |
| case NFA_ALPHA: STRCPY(code, "NFA_ALPHA"); break; |
| case NFA_NALPHA:STRCPY(code, "NFA_NALPHA"); break; |
| case NFA_LOWER: STRCPY(code, "NFA_LOWER"); break; |
| case NFA_NLOWER:STRCPY(code, "NFA_NLOWER"); break; |
| case NFA_UPPER: STRCPY(code, "NFA_UPPER"); break; |
| case NFA_NUPPER:STRCPY(code, "NFA_NUPPER"); break; |
| case NFA_LOWER_IC: STRCPY(code, "NFA_LOWER_IC"); break; |
| case NFA_NLOWER_IC: STRCPY(code, "NFA_NLOWER_IC"); break; |
| case NFA_UPPER_IC: STRCPY(code, "NFA_UPPER_IC"); break; |
| case NFA_NUPPER_IC: STRCPY(code, "NFA_NUPPER_IC"); break; |
| |
| default: |
| STRCPY(code, "CHAR(x)"); |
| code[5] = c; |
| } |
| |
| if (addnl == TRUE) |
| STRCAT(code, " + NEWLINE "); |
| |
| } |
| |
| #ifdef ENABLE_LOG |
| static FILE *log_fd; |
| static char_u e_log_open_failed[] = N_("Could not open temporary log file for writing, displaying on stderr... "); |
| |
| /* |
| * Print the postfix notation of the current regexp. |
| */ |
| static void |
| nfa_postfix_dump(char_u *expr, int retval) |
| { |
| int *p; |
| FILE *f; |
| |
| f = fopen(NFA_REGEXP_DUMP_LOG, "a"); |
| if (f != NULL) |
| { |
| fprintf(f, "\n-------------------------\n"); |
| if (retval == FAIL) |
| fprintf(f, ">>> NFA engine failed... \n"); |
| else if (retval == OK) |
| fprintf(f, ">>> NFA engine succeeded !\n"); |
| fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr); |
| for (p = post_start; *p && p < post_ptr; p++) |
| { |
| nfa_set_code(*p); |
| fprintf(f, "%s, ", code); |
| } |
| fprintf(f, "\"\nPostfix notation (int): "); |
| for (p = post_start; *p && p < post_ptr; p++) |
| fprintf(f, "%d ", *p); |
| fprintf(f, "\n\n"); |
| fclose(f); |
| } |
| } |
| |
| /* |
| * Print the NFA starting with a root node "state". |
| */ |
| static void |
| nfa_print_state(FILE *debugf, nfa_state_T *state) |
| { |
| garray_T indent; |
| |
| ga_init2(&indent, 1, 64); |
| ga_append(&indent, '\0'); |
| nfa_print_state2(debugf, state, &indent); |
| ga_clear(&indent); |
| } |
| |
| static void |
| nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent) |
| { |
| char_u *p; |
| |
| if (state == NULL) |
| return; |
| |
| fprintf(debugf, "(%2d)", abs(state->id)); |
| |
| // Output indent |
| p = (char_u *)indent->ga_data; |
| if (indent->ga_len >= 3) |
| { |
| int last = indent->ga_len - 3; |
| char_u save[2]; |
| |
| STRNCPY(save, &p[last], 2); |
| memcpy(&p[last], "+-", 2); |
| fprintf(debugf, " %s", p); |
| STRNCPY(&p[last], save, 2); |
| } |
| else |
| fprintf(debugf, " %s", p); |
| |
| nfa_set_code(state->c); |
| fprintf(debugf, "%s (%d) (id=%d) val=%d\n", |
| code, |
| state->c, |
| abs(state->id), |
| state->val); |
| if (state->id < 0) |
| return; |
| |
| state->id = abs(state->id) * -1; |
| |
| // grow indent for state->out |
| indent->ga_len -= 1; |
| if (state->out1) |
| ga_concat(indent, (char_u *)"| "); |
| else |
| ga_concat(indent, (char_u *)" "); |
| ga_append(indent, NUL); |
| |
| nfa_print_state2(debugf, state->out, indent); |
| |
| // replace last part of indent for state->out1 |
| indent->ga_len -= 3; |
| ga_concat(indent, (char_u *)" "); |
| ga_append(indent, NUL); |
| |
| nfa_print_state2(debugf, state->out1, indent); |
| |
| // shrink indent |
| indent->ga_len -= 3; |
| ga_append(indent, NUL); |
| } |
| |
| /* |
| * Print the NFA state machine. |
| */ |
| static void |
| nfa_dump(nfa_regprog_T *prog) |
| { |
| FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a"); |
| |
| if (debugf != NULL) |
| { |
| nfa_print_state(debugf, prog->start); |
| |
| if (prog->reganch) |
| fprintf(debugf, "reganch: %d\n", prog->reganch); |
| if (prog->regstart != NUL) |
| fprintf(debugf, "regstart: %c (decimal: %d)\n", |
| prog->regstart, prog->regstart); |
| if (prog->match_text != NULL) |
| fprintf(debugf, "match_text: \"%s\"\n", prog->match_text); |
| |
| fclose(debugf); |
| } |
| } |
| #endif // ENABLE_LOG |
| #endif // DEBUG |
| |
| /* |
| * Parse r.e. @expr and convert it into postfix form. |
| * Return the postfix string on success, NULL otherwise. |
| */ |
| static int * |
| re2post(void) |
| { |
| if (nfa_reg(REG_NOPAREN) == FAIL) |
| return NULL; |
| EMIT(NFA_MOPEN); |
| return post_start; |
| } |
| |
| // NB. Some of the code below is inspired by Russ's. |
| |
| /* |
| * Represents an NFA state plus zero or one or two arrows exiting. |
| * if c == MATCH, no arrows out; matching state. |
| * If c == SPLIT, unlabeled arrows to out and out1 (if != NULL). |
| * If c < 256, labeled arrow with character c to out. |
| */ |
| |
| static nfa_state_T *state_ptr; // points to nfa_prog->state |
| |
| /* |
| * Allocate and initialize nfa_state_T. |
| */ |
| static nfa_state_T * |
| alloc_state(int c, nfa_state_T *out, nfa_state_T *out1) |
| { |
| nfa_state_T *s; |
| |
| if (istate >= nstate) |
| return NULL; |
| |
| s = &state_ptr[istate++]; |
| |
| s->c = c; |
| s->out = out; |
| s->out1 = out1; |
| s->val = 0; |
| |
| s->id = istate; |
| s->lastlist[0] = 0; |
| s->lastlist[1] = 0; |
| |
| return s; |
| } |
| |
| /* |
| * A partially built NFA without the matching state filled in. |
| * Frag_T.start points at the start state. |
| * Frag_T.out is a list of places that need to be set to the |
| * next state for this fragment. |
| */ |
| |
| // Since the out pointers in the list are always |
| // uninitialized, we use the pointers themselves |
| // as storage for the Ptrlists. |
| typedef union Ptrlist Ptrlist; |
| union Ptrlist |
| { |
| Ptrlist *next; |
| nfa_state_T *s; |
| }; |
| |
| struct Frag |
| { |
| nfa_state_T *start; |
| Ptrlist *out; |
| }; |
| typedef struct Frag Frag_T; |
| |
| /* |
| * Initialize a Frag_T struct and return it. |
| */ |
| static Frag_T |
| frag(nfa_state_T *start, Ptrlist *out) |
| { |
| Frag_T n; |
| |
| n.start = start; |
| n.out = out; |
| return n; |
| } |
| |
| /* |
| * Create singleton list containing just outp. |
| */ |
| static Ptrlist * |
| list1( |
| nfa_state_T **outp) |
| { |
| Ptrlist *l; |
| |
| l = (Ptrlist *)outp; |
| l->next = NULL; |
| return l; |
| } |
| |
| /* |
| * Patch the list of states at out to point to start. |
| */ |
| static void |
| patch(Ptrlist *l, nfa_state_T *s) |
| { |
| Ptrlist *next; |
| |
| for (; l; l = next) |
| { |
| next = l->next; |
| l->s = s; |
| } |
| } |
| |
| |
| /* |
| * Join the two lists l1 and l2, returning the combination. |
| */ |
| static Ptrlist * |
| append(Ptrlist *l1, Ptrlist *l2) |
| { |
| Ptrlist *oldl1; |
| |
| oldl1 = l1; |
| while (l1->next) |
| l1 = l1->next; |
| l1->next = l2; |
| return oldl1; |
| } |
| |
| /* |
| * Stack used for transforming postfix form into NFA. |
| */ |
| static Frag_T empty; |
| |
| static void |
| st_error(int *postfix UNUSED, int *end UNUSED, int *p UNUSED) |
| { |
| #ifdef NFA_REGEXP_ERROR_LOG |
| FILE *df; |
| int *p2; |
| |
| df = fopen(NFA_REGEXP_ERROR_LOG, "a"); |
| if (df) |
| { |
| fprintf(df, "Error popping the stack!\n"); |
| # ifdef DEBUG |
| fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr); |
| # endif |
| fprintf(df, "Postfix form is: "); |
| # ifdef DEBUG |
| for (p2 = postfix; p2 < end; p2++) |
| { |
| nfa_set_code(*p2); |
| fprintf(df, "%s, ", code); |
| } |
| nfa_set_code(*p); |
| fprintf(df, "\nCurrent position is: "); |
| for (p2 = postfix; p2 <= p; p2 ++) |
| { |
| nfa_set_code(*p2); |
| fprintf(df, "%s, ", code); |
| } |
| # else |
| for (p2 = postfix; p2 < end; p2++) |
| fprintf(df, "%d, ", *p2); |
| fprintf(df, "\nCurrent position is: "); |
| for (p2 = postfix; p2 <= p; p2 ++) |
| fprintf(df, "%d, ", *p2); |
| # endif |
| fprintf(df, "\n--------------------------\n"); |
| fclose(df); |
| } |
| #endif |
| emsg(_(e_nfa_regexp_could_not_pop_stack)); |
| } |
| |
| /* |
| * Push an item onto the stack. |
| */ |
| static void |
| st_push(Frag_T s, Frag_T **p, Frag_T *stack_end) |
| { |
| Frag_T *stackp = *p; |
| |
| if (stackp >= stack_end) |
| return; |
| *stackp = s; |
| *p = *p + 1; |
| } |
| |
| /* |
| * Pop an item from the stack. |
| */ |
| static Frag_T |
| st_pop(Frag_T **p, Frag_T *stack) |
| { |
| Frag_T *stackp; |
| |
| *p = *p - 1; |
| stackp = *p; |
| if (stackp < stack) |
| return empty; |
| return **p; |
| } |
| |
| /* |
| * Estimate the maximum byte length of anything matching "state". |
| * When unknown or unlimited return -1. |
| */ |
| static int |
| nfa_max_width(nfa_state_T *startstate, int depth) |
| { |
| int l, r; |
| nfa_state_T *state = startstate; |
| int len = 0; |
| |
| // detect looping in a NFA_SPLIT |
| if (depth > 4) |
| return -1; |
| |
| while (state != NULL) |
| { |
| switch (state->c) |
| { |
| case NFA_END_INVISIBLE: |
| case NFA_END_INVISIBLE_NEG: |
| // the end, return what we have |
| return len; |
| |
| case NFA_SPLIT: |
| // two alternatives, use the maximum |
| l = nfa_max_width(state->out, depth + 1); |
| r = nfa_max_width(state->out1, depth + 1); |
| if (l < 0 || r < 0) |
| return -1; |
| return len + (l > r ? l : r); |
| |
| case NFA_ANY: |
| case NFA_START_COLL: |
| case NFA_START_NEG_COLL: |
| // matches some character, including composing chars |
| if (enc_utf8) |
| len += MB_MAXBYTES; |
| else if (has_mbyte) |
| len += 2; |
| else |
| ++len; |
| if (state->c != NFA_ANY) |
| { |
| // skip over the characters |
| state = state->out1->out; |
| continue; |
| } |
| break; |
| |
| case NFA_DIGIT: |
| case NFA_WHITE: |
| case NFA_HEX: |
| case NFA_OCTAL: |
| // ascii |
| ++len; |
| break; |
| |
| case NFA_IDENT: |
| case NFA_SIDENT: |
| case NFA_KWORD: |
| case NFA_SKWORD: |
| case NFA_FNAME: |
| case NFA_SFNAME: |
| case NFA_PRINT: |
| case NFA_SPRINT: |
| case NFA_NWHITE: |
| case NFA_NDIGIT: |
| case NFA_NHEX: |
| case NFA_NOCTAL: |
| case NFA_WORD: |
| case NFA_NWORD: |
| case NFA_HEAD: |
| case NFA_NHEAD: |
| case NFA_ALPHA: |
| case NFA_NALPHA: |
| case NFA_LOWER: |
| case NFA_NLOWER: |
| case NFA_UPPER: |
| case NFA_NUPPER: |
| case NFA_LOWER_IC: |
| case NFA_NLOWER_IC: |
| case NFA_UPPER_IC: |
| case NFA_NUPPER_IC: |
| case NFA_ANY_COMPOSING: |
| // possibly non-ascii |
| if (has_mbyte) |
| len += 3; |
| else |
| ++len; |
| break; |
| |
| case NFA_START_INVISIBLE: |
| case NFA_START_INVISIBLE_NEG: |
| case NFA_START_INVISIBLE_BEFORE: |
| case NFA_START_INVISIBLE_BEFORE_NEG: |
| // zero-width, out1 points to the END state |
| state = state->out1->out; |
| continue; |
| |
| case NFA_BACKREF1: |
| case NFA_BACKREF2: |
| case NFA_BACKREF3: |
| case NFA_BACKREF4: |
| case NFA_BACKREF5: |
| case NFA_BACKREF6: |
| case NFA_BACKREF7: |
| case NFA_BACKREF8: |
| case NFA_BACKREF9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZREF1: |
| case NFA_ZREF2: |
| case NFA_ZREF3: |
| case NFA_ZREF4: |
| case NFA_ZREF5: |
| case NFA_ZREF6: |
| case NFA_ZREF7: |
| case NFA_ZREF8: |
| case NFA_ZREF9: |
| #endif |
| case NFA_NEWL: |
| case NFA_SKIP: |
| // unknown width |
| return -1; |
| |
| case NFA_BOL: |
| case NFA_EOL: |
| case NFA_BOF: |
| case NFA_EOF: |
| case NFA_BOW: |
| case NFA_EOW: |
| case NFA_MOPEN: |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| case NFA_ZCLOSE: |
| case NFA_ZCLOSE1: |
| case NFA_ZCLOSE2: |
| case NFA_ZCLOSE3: |
| case NFA_ZCLOSE4: |
| case NFA_ZCLOSE5: |
| case NFA_ZCLOSE6: |
| case NFA_ZCLOSE7: |
| case NFA_ZCLOSE8: |
| case NFA_ZCLOSE9: |
| #endif |
| case NFA_MCLOSE: |
| case NFA_MCLOSE1: |
| case NFA_MCLOSE2: |
| case NFA_MCLOSE3: |
| case NFA_MCLOSE4: |
| case NFA_MCLOSE5: |
| case NFA_MCLOSE6: |
| case NFA_MCLOSE7: |
| case NFA_MCLOSE8: |
| case NFA_MCLOSE9: |
| case NFA_NOPEN: |
| case NFA_NCLOSE: |
| |
| case NFA_LNUM_GT: |
| case NFA_LNUM_LT: |
| case NFA_COL_GT: |
| case NFA_COL_LT: |
| case NFA_VCOL_GT: |
| case NFA_VCOL_LT: |
| case NFA_MARK_GT: |
| case NFA_MARK_LT: |
| case NFA_VISUAL: |
| case NFA_LNUM: |
| case NFA_CURSOR: |
| case NFA_COL: |
| case NFA_VCOL: |
| case NFA_MARK: |
| |
| case NFA_ZSTART: |
| case NFA_ZEND: |
| case NFA_OPT_CHARS: |
| case NFA_EMPTY: |
| case NFA_START_PATTERN: |
| case NFA_END_PATTERN: |
| case NFA_COMPOSING: |
| case NFA_END_COMPOSING: |
| // zero-width |
| break; |
| |
| default: |
| if (state->c < 0) |
| // don't know what this is |
| return -1; |
| // normal character |
| len += MB_CHAR2LEN(state->c); |
| break; |
| } |
| |
| // normal way to continue |
| state = state->out; |
| } |
| |
| // unrecognized, "cannot happen" |
| return -1; |
| } |
| |
| /* |
| * Convert a postfix form into its equivalent NFA. |
| * Return the NFA start state on success, NULL otherwise. |
| */ |
| static nfa_state_T * |
| post2nfa(int *postfix, int *end, int nfa_calc_size) |
| { |
| int *p; |
| int mopen; |
| int mclose; |
| Frag_T *stack = NULL; |
| Frag_T *stackp = NULL; |
| Frag_T *stack_end = NULL; |
| Frag_T e1; |
| Frag_T e2; |
| Frag_T e; |
| nfa_state_T *s; |
| nfa_state_T *s1; |
| nfa_state_T *matchstate; |
| nfa_state_T *ret = NULL; |
| |
| if (postfix == NULL) |
| return NULL; |
| |
| #define PUSH(s) st_push((s), &stackp, stack_end) |
| #define POP() st_pop(&stackp, stack); \ |
| if (stackp < stack) \ |
| { \ |
| st_error(postfix, end, p); \ |
| vim_free(stack); \ |
| return NULL; \ |
| } |
| |
| if (nfa_calc_size == FALSE) |
| { |
| // Allocate space for the stack. Max states on the stack: "nstate". |
| stack = ALLOC_MULT(Frag_T, nstate + 1); |
| if (stack == NULL) |
| return NULL; |
| stackp = stack; |
| stack_end = stack + (nstate + 1); |
| } |
| |
| for (p = postfix; p < end; ++p) |
| { |
| switch (*p) |
| { |
| case NFA_CONCAT: |
| // Concatenation. |
| // Pay attention: this operator does not exist in the r.e. itself |
| // (it is implicit, really). It is added when r.e. is translated |
| // to postfix form in re2post(). |
| if (nfa_calc_size == TRUE) |
| { |
| // nstate += 0; |
| break; |
| } |
| e2 = POP(); |
| e1 = POP(); |
| patch(e1.out, e2.start); |
| PUSH(frag(e1.start, e2.out)); |
| break; |
| |
| case NFA_OR: |
| // Alternation |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| e2 = POP(); |
| e1 = POP(); |
| s = alloc_state(NFA_SPLIT, e1.start, e2.start); |
| if (s == NULL) |
| goto theend; |
| PUSH(frag(s, append(e1.out, e2.out))); |
| break; |
| |
| case NFA_STAR: |
| // Zero or more, prefer more |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| e = POP(); |
| s = alloc_state(NFA_SPLIT, e.start, NULL); |
| if (s == NULL) |
| goto theend; |
| patch(e.out, s); |
| PUSH(frag(s, list1(&s->out1))); |
| break; |
| |
| case NFA_STAR_NONGREEDY: |
| // Zero or more, prefer zero |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| e = POP(); |
| s = alloc_state(NFA_SPLIT, NULL, e.start); |
| if (s == NULL) |
| goto theend; |
| patch(e.out, s); |
| PUSH(frag(s, list1(&s->out))); |
| break; |
| |
| case NFA_QUEST: |
| // one or zero atoms=> greedy match |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| e = POP(); |
| s = alloc_state(NFA_SPLIT, e.start, NULL); |
| if (s == NULL) |
| goto theend; |
| PUSH(frag(s, append(e.out, list1(&s->out1)))); |
| break; |
| |
| case NFA_QUEST_NONGREEDY: |
| // zero or one atoms => non-greedy match |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| e = POP(); |
| s = alloc_state(NFA_SPLIT, NULL, e.start); |
| if (s == NULL) |
| goto theend; |
| PUSH(frag(s, append(e.out, list1(&s->out)))); |
| break; |
| |
| case NFA_END_COLL: |
| case NFA_END_NEG_COLL: |
| // On the stack is the sequence starting with NFA_START_COLL or |
| // NFA_START_NEG_COLL and all possible characters. Patch it to |
| // add the output to the start. |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| e = POP(); |
| s = alloc_state(NFA_END_COLL, NULL, NULL); |
| if (s == NULL) |
| goto theend; |
| patch(e.out, s); |
| e.start->out1 = s; |
| PUSH(frag(e.start, list1(&s->out))); |
| break; |
| |
| case NFA_RANGE: |
| // Before this are two characters, the low and high end of a |
| // range. Turn them into two states with MIN and MAX. |
| if (nfa_calc_size == TRUE) |
| { |
| // nstate += 0; |
| break; |
| } |
| e2 = POP(); |
| e1 = POP(); |
| e2.start->val = e2.start->c; |
| e2.start->c = NFA_RANGE_MAX; |
| e1.start->val = e1.start->c; |
| e1.start->c = NFA_RANGE_MIN; |
| patch(e1.out, e2.start); |
| PUSH(frag(e1.start, e2.out)); |
| break; |
| |
| case NFA_EMPTY: |
| // 0-length, used in a repetition with max/min count of 0 |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| s = alloc_state(NFA_EMPTY, NULL, NULL); |
| if (s == NULL) |
| goto theend; |
| PUSH(frag(s, list1(&s->out))); |
| break; |
| |
| case NFA_OPT_CHARS: |
| { |
| int n; |
| |
| // \%[abc] implemented as: |
| // NFA_SPLIT |
| // +-CHAR(a) |
| // | +-NFA_SPLIT |
| // | +-CHAR(b) |
| // | | +-NFA_SPLIT |
| // | | +-CHAR(c) |
| // | | | +-next |
| // | | +- next |
| // | +- next |
| // +- next |
| n = *++p; // get number of characters |
| if (nfa_calc_size == TRUE) |
| { |
| nstate += n; |
| break; |
| } |
| s = NULL; // avoid compiler warning |
| e1.out = NULL; // stores list with out1's |
| s1 = NULL; // previous NFA_SPLIT to connect to |
| while (n-- > 0) |
| { |
| e = POP(); // get character |
| s = alloc_state(NFA_SPLIT, e.start, NULL); |
| if (s == NULL) |
| goto theend; |
| if (e1.out == NULL) |
| e1 = e; |
| patch(e.out, s1); |
| append(e1.out, list1(&s->out1)); |
| s1 = s; |
| } |
| PUSH(frag(s, e1.out)); |
| break; |
| } |
| |
| case NFA_PREV_ATOM_NO_WIDTH: |
| case NFA_PREV_ATOM_NO_WIDTH_NEG: |
| case NFA_PREV_ATOM_JUST_BEFORE: |
| case NFA_PREV_ATOM_JUST_BEFORE_NEG: |
| case NFA_PREV_ATOM_LIKE_PATTERN: |
| { |
| int before = (*p == NFA_PREV_ATOM_JUST_BEFORE |
| || *p == NFA_PREV_ATOM_JUST_BEFORE_NEG); |
| int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN); |
| int start_state; |
| int end_state; |
| int n = 0; |
| nfa_state_T *zend; |
| nfa_state_T *skip; |
| |
| switch (*p) |
| { |
| case NFA_PREV_ATOM_NO_WIDTH: |
| start_state = NFA_START_INVISIBLE; |
| end_state = NFA_END_INVISIBLE; |
| break; |
| case NFA_PREV_ATOM_NO_WIDTH_NEG: |
| start_state = NFA_START_INVISIBLE_NEG; |
| end_state = NFA_END_INVISIBLE_NEG; |
| break; |
| case NFA_PREV_ATOM_JUST_BEFORE: |
| start_state = NFA_START_INVISIBLE_BEFORE; |
| end_state = NFA_END_INVISIBLE; |
| break; |
| case NFA_PREV_ATOM_JUST_BEFORE_NEG: |
| start_state = NFA_START_INVISIBLE_BEFORE_NEG; |
| end_state = NFA_END_INVISIBLE_NEG; |
| break; |
| default: // NFA_PREV_ATOM_LIKE_PATTERN: |
| start_state = NFA_START_PATTERN; |
| end_state = NFA_END_PATTERN; |
| break; |
| } |
| |
| if (before) |
| n = *++p; // get the count |
| |
| // The \@= operator: match the preceding atom with zero width. |
| // The \@! operator: no match for the preceding atom. |
| // The \@<= operator: match for the preceding atom. |
| // The \@<! operator: no match for the preceding atom. |
| // Surrounds the preceding atom with START_INVISIBLE and |
| // END_INVISIBLE, similarly to MOPEN. |
| |
| if (nfa_calc_size == TRUE) |
| { |
| nstate += pattern ? 4 : 2; |
| break; |
| } |
| e = POP(); |
| s1 = alloc_state(end_state, NULL, NULL); |
| if (s1 == NULL) |
| goto theend; |
| |
| s = alloc_state(start_state, e.start, s1); |
| if (s == NULL) |
| goto theend; |
| if (pattern) |
| { |
| // NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows. |
| skip = alloc_state(NFA_SKIP, NULL, NULL); |
| if (skip == NULL) |
| goto theend; |
| zend = alloc_state(NFA_ZEND, s1, NULL); |
| if (zend == NULL) |
| goto theend; |
| s1->out= skip; |
| patch(e.out, zend); |
| PUSH(frag(s, list1(&skip->out))); |
| } |
| else |
| { |
| patch(e.out, s1); |
| PUSH(frag(s, list1(&s1->out))); |
| if (before) |
| { |
| if (n <= 0) |
| // See if we can guess the maximum width, it avoids a |
| // lot of pointless tries. |
| n = nfa_max_width(e.start, 0); |
| s->val = n; // store the count |
| } |
| } |
| break; |
| } |
| |
| case NFA_COMPOSING: // char with composing char |
| #if 0 |
| // TODO |
| if (regflags & RF_ICOMBINE) |
| { |
| // use the base character only |
| } |
| #endif |
| // FALLTHROUGH |
| |
| case NFA_MOPEN: // \( \) Submatch |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: // \z( \) Submatch |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| #endif |
| case NFA_NOPEN: // \%( \) "Invisible Submatch" |
| if (nfa_calc_size == TRUE) |
| { |
| nstate += 2; |
| break; |
| } |
| |
| mopen = *p; |
| switch (*p) |
| { |
| case NFA_NOPEN: mclose = NFA_NCLOSE; break; |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: mclose = NFA_ZCLOSE; break; |
| case NFA_ZOPEN1: mclose = NFA_ZCLOSE1; break; |
| case NFA_ZOPEN2: mclose = NFA_ZCLOSE2; break; |
| case NFA_ZOPEN3: mclose = NFA_ZCLOSE3; break; |
| case NFA_ZOPEN4: mclose = NFA_ZCLOSE4; break; |
| case NFA_ZOPEN5: mclose = NFA_ZCLOSE5; break; |
| case NFA_ZOPEN6: mclose = NFA_ZCLOSE6; break; |
| case NFA_ZOPEN7: mclose = NFA_ZCLOSE7; break; |
| case NFA_ZOPEN8: mclose = NFA_ZCLOSE8; break; |
| case NFA_ZOPEN9: mclose = NFA_ZCLOSE9; break; |
| #endif |
| case NFA_COMPOSING: mclose = NFA_END_COMPOSING; break; |
| default: |
| // NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9 |
| mclose = *p + NSUBEXP; |
| break; |
| } |
| |
| // Allow "NFA_MOPEN" as a valid postfix representation for |
| // the empty regexp "". In this case, the NFA will be |
| // NFA_MOPEN -> NFA_MCLOSE. Note that this also allows |
| // empty groups of parenthesis, and empty mbyte chars |
| if (stackp == stack) |
| { |
| s = alloc_state(mopen, NULL, NULL); |
| if (s == NULL) |
| goto theend; |
| s1 = alloc_state(mclose, NULL, NULL); |
| if (s1 == NULL) |
| goto theend; |
| patch(list1(&s->out), s1); |
| PUSH(frag(s, list1(&s1->out))); |
| break; |
| } |
| |
| // At least one node was emitted before NFA_MOPEN, so |
| // at least one node will be between NFA_MOPEN and NFA_MCLOSE |
| e = POP(); |
| s = alloc_state(mopen, e.start, NULL); // `(' |
| if (s == NULL) |
| goto theend; |
| |
| s1 = alloc_state(mclose, NULL, NULL); // `)' |
| if (s1 == NULL) |
| goto theend; |
| patch(e.out, s1); |
| |
| if (mopen == NFA_COMPOSING) |
| // COMPOSING->out1 = END_COMPOSING |
| patch(list1(&s->out1), s1); |
| |
| PUSH(frag(s, list1(&s1->out))); |
| break; |
| |
| case NFA_BACKREF1: |
| case NFA_BACKREF2: |
| case NFA_BACKREF3: |
| case NFA_BACKREF4: |
| case NFA_BACKREF5: |
| case NFA_BACKREF6: |
| case NFA_BACKREF7: |
| case NFA_BACKREF8: |
| case NFA_BACKREF9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZREF1: |
| case NFA_ZREF2: |
| case NFA_ZREF3: |
| case NFA_ZREF4: |
| case NFA_ZREF5: |
| case NFA_ZREF6: |
| case NFA_ZREF7: |
| case NFA_ZREF8: |
| case NFA_ZREF9: |
| #endif |
| if (nfa_calc_size == TRUE) |
| { |
| nstate += 2; |
| break; |
| } |
| s = alloc_state(*p, NULL, NULL); |
| if (s == NULL) |
| goto theend; |
| s1 = alloc_state(NFA_SKIP, NULL, NULL); |
| if (s1 == NULL) |
| goto theend; |
| patch(list1(&s->out), s1); |
| PUSH(frag(s, list1(&s1->out))); |
| break; |
| |
| case NFA_LNUM: |
| case NFA_LNUM_GT: |
| case NFA_LNUM_LT: |
| case NFA_VCOL: |
| case NFA_VCOL_GT: |
| case NFA_VCOL_LT: |
| case NFA_COL: |
| case NFA_COL_GT: |
| case NFA_COL_LT: |
| case NFA_MARK: |
| case NFA_MARK_GT: |
| case NFA_MARK_LT: |
| { |
| int n = *++p; // lnum, col or mark name |
| |
| if (nfa_calc_size == TRUE) |
| { |
| nstate += 1; |
| break; |
| } |
| s = alloc_state(p[-1], NULL, NULL); |
| if (s == NULL) |
| goto theend; |
| s->val = n; |
| PUSH(frag(s, list1(&s->out))); |
| break; |
| } |
| |
| case NFA_ZSTART: |
| case NFA_ZEND: |
| default: |
| // Operands |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| break; |
| } |
| s = alloc_state(*p, NULL, NULL); |
| if (s == NULL) |
| goto theend; |
| PUSH(frag(s, list1(&s->out))); |
| break; |
| |
| } // switch(*p) |
| |
| } // for(p = postfix; *p; ++p) |
| |
| if (nfa_calc_size == TRUE) |
| { |
| nstate++; |
| goto theend; // Return value when counting size is ignored anyway |
| } |
| |
| e = POP(); |
| if (stackp != stack) |
| { |
| vim_free(stack); |
| EMSG_RET_NULL(_(e_nfa_regexp_while_converting_from_postfix_to_nfa_too_many_stats_left_on_stack)); |
| } |
| |
| if (istate >= nstate) |
| { |
| vim_free(stack); |
| EMSG_RET_NULL(_(e_nfa_regexp_not_enough_space_to_store_whole_nfa)); |
| } |
| |
| matchstate = &state_ptr[istate++]; // the match state |
| matchstate->c = NFA_MATCH; |
| matchstate->out = matchstate->out1 = NULL; |
| matchstate->id = 0; |
| |
| patch(e.out, matchstate); |
| ret = e.start; |
| |
| theend: |
| vim_free(stack); |
| return ret; |
| |
| #undef POP1 |
| #undef PUSH1 |
| #undef POP2 |
| #undef PUSH2 |
| #undef POP |
| #undef PUSH |
| } |
| |
| /* |
| * After building the NFA program, inspect it to add optimization hints. |
| */ |
| static void |
| nfa_postprocess(nfa_regprog_T *prog) |
| { |
| int i; |
| int c; |
| |
| for (i = 0; i < prog->nstate; ++i) |
| { |
| c = prog->state[i].c; |
| if (c == NFA_START_INVISIBLE |
| || c == NFA_START_INVISIBLE_NEG |
| || c == NFA_START_INVISIBLE_BEFORE |
| || c == NFA_START_INVISIBLE_BEFORE_NEG) |
| { |
| int directly; |
| |
| // Do it directly when what follows is possibly the end of the |
| // match. |
| if (match_follows(prog->state[i].out1->out, 0)) |
| directly = TRUE; |
| else |
| { |
| int ch_invisible = failure_chance(prog->state[i].out, 0); |
| int ch_follows = failure_chance(prog->state[i].out1->out, 0); |
| |
| // Postpone when the invisible match is expensive or has a |
| // lower chance of failing. |
| if (c == NFA_START_INVISIBLE_BEFORE |
| || c == NFA_START_INVISIBLE_BEFORE_NEG) |
| { |
| // "before" matches are very expensive when |
| // unbounded, always prefer what follows then, |
| // unless what follows will always match. |
| // Otherwise strongly prefer what follows. |
| if (prog->state[i].val <= 0 && ch_follows > 0) |
| directly = FALSE; |
| else |
| directly = ch_follows * 10 < ch_invisible; |
| } |
| else |
| { |
| // normal invisible, first do the one with the |
| // highest failure chance |
| directly = ch_follows < ch_invisible; |
| } |
| } |
| if (directly) |
| // switch to the _FIRST state |
| ++prog->state[i].c; |
| } |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////// |
| // NFA execution code. |
| ///////////////////////////////////////////////////////////////// |
| |
| typedef struct |
| { |
| int in_use; // number of subexpr with useful info |
| |
| // When REG_MULTI is TRUE list.multi is used, otherwise list.line. |
| union |
| { |
| struct multipos |
| { |
| linenr_T start_lnum; |
| linenr_T end_lnum; |
| colnr_T start_col; |
| colnr_T end_col; |
| } multi[NSUBEXP]; |
| struct linepos |
| { |
| char_u *start; |
| char_u *end; |
| } line[NSUBEXP]; |
| } list; |
| } regsub_T; |
| |
| typedef struct |
| { |
| regsub_T norm; // \( .. \) matches |
| #ifdef FEAT_SYN_HL |
| regsub_T synt; // \z( .. \) matches |
| #endif |
| } regsubs_T; |
| |
| // nfa_pim_T stores a Postponed Invisible Match. |
| typedef struct nfa_pim_S nfa_pim_T; |
| struct nfa_pim_S |
| { |
| int result; // NFA_PIM_*, see below |
| nfa_state_T *state; // the invisible match start state |
| regsubs_T subs; // submatch info, only party used |
| union |
| { |
| lpos_T pos; |
| char_u *ptr; |
| } end; // where the match must end |
| }; |
| |
| // Values for done in nfa_pim_T. |
| #define NFA_PIM_UNUSED 0 // pim not used |
| #define NFA_PIM_TODO 1 // pim not done yet |
| #define NFA_PIM_MATCH 2 // pim executed, matches |
| #define NFA_PIM_NOMATCH 3 // pim executed, no match |
| |
| |
| // nfa_thread_T contains execution information of a NFA state |
| typedef struct |
| { |
| nfa_state_T *state; |
| int count; |
| nfa_pim_T pim; // if pim.result != NFA_PIM_UNUSED: postponed |
| // invisible match |
| regsubs_T subs; // submatch info, only party used |
| } nfa_thread_T; |
| |
| // nfa_list_T contains the alternative NFA execution states. |
| typedef struct |
| { |
| nfa_thread_T *t; // allocated array of states |
| int n; // nr of states currently in "t" |
| int len; // max nr of states in "t" |
| int id; // ID of the list |
| int has_pim; // TRUE when any state has a PIM |
| } nfa_list_T; |
| |
| #ifdef ENABLE_LOG |
| static void log_subexpr(regsub_T *sub); |
| |
| static void |
| log_subsexpr(regsubs_T *subs) |
| { |
| log_subexpr(&subs->norm); |
| # ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| log_subexpr(&subs->synt); |
| # endif |
| } |
| |
| static void |
| log_subexpr(regsub_T *sub) |
| { |
| int j; |
| |
| for (j = 0; j < sub->in_use; j++) |
| if (REG_MULTI) |
| fprintf(log_fd, |
| "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n", |
| j, |
| sub->list.multi[j].start_col, |
| (int)sub->list.multi[j].start_lnum, |
| sub->list.multi[j].end_col, |
| (int)sub->list.multi[j].end_lnum); |
| else |
| { |
| char *s = (char *)sub->list.line[j].start; |
| char *e = (char *)sub->list.line[j].end; |
| |
| fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n", |
| j, |
| s == NULL ? "NULL" : s, |
| e == NULL ? "NULL" : e); |
| } |
| } |
| |
| static char * |
| pim_info(nfa_pim_T *pim) |
| { |
| static char buf[30]; |
| |
| if (pim == NULL || pim->result == NFA_PIM_UNUSED) |
| buf[0] = NUL; |
| else |
| { |
| sprintf(buf, " PIM col %d", REG_MULTI ? (int)pim->end.pos.col |
| : (int)(pim->end.ptr - rex.input)); |
| } |
| return buf; |
| } |
| |
| #endif |
| |
| // Used during execution: whether a match has been found. |
| static int nfa_match; |
| #ifdef FEAT_RELTIME |
| static int *nfa_timed_out; |
| #endif |
| |
| static void copy_sub(regsub_T *to, regsub_T *from); |
| static int pim_equal(nfa_pim_T *one, nfa_pim_T *two); |
| |
| /* |
| * Copy postponed invisible match info from "from" to "to". |
| */ |
| static void |
| copy_pim(nfa_pim_T *to, nfa_pim_T *from) |
| { |
| to->result = from->result; |
| to->state = from->state; |
| copy_sub(&to->subs.norm, &from->subs.norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub(&to->subs.synt, &from->subs.synt); |
| #endif |
| to->end = from->end; |
| } |
| |
| static void |
| clear_sub(regsub_T *sub) |
| { |
| if (REG_MULTI) |
| // Use 0xff to set lnum to -1 |
| vim_memset(sub->list.multi, 0xff, |
| sizeof(struct multipos) * rex.nfa_nsubexpr); |
| else |
| vim_memset(sub->list.line, 0, |
| sizeof(struct linepos) * rex.nfa_nsubexpr); |
| sub->in_use = 0; |
| } |
| |
| /* |
| * Copy the submatches from "from" to "to". |
| */ |
| static void |
| copy_sub(regsub_T *to, regsub_T *from) |
| { |
| to->in_use = from->in_use; |
| if (from->in_use > 0) |
| { |
| // Copy the match start and end positions. |
| if (REG_MULTI) |
| mch_memmove(&to->list.multi[0], |
| &from->list.multi[0], |
| sizeof(struct multipos) * from->in_use); |
| else |
| mch_memmove(&to->list.line[0], |
| &from->list.line[0], |
| sizeof(struct linepos) * from->in_use); |
| } |
| } |
| |
| /* |
| * Like copy_sub() but exclude the main match. |
| */ |
| static void |
| copy_sub_off(regsub_T *to, regsub_T *from) |
| { |
| if (to->in_use < from->in_use) |
| to->in_use = from->in_use; |
| if (from->in_use > 1) |
| { |
| // Copy the match start and end positions. |
| if (REG_MULTI) |
| mch_memmove(&to->list.multi[1], |
| &from->list.multi[1], |
| sizeof(struct multipos) * (from->in_use - 1)); |
| else |
| mch_memmove(&to->list.line[1], |
| &from->list.line[1], |
| sizeof(struct linepos) * (from->in_use - 1)); |
| } |
| } |
| |
| /* |
| * Like copy_sub() but only do the end of the main match if \ze is present. |
| */ |
| static void |
| copy_ze_off(regsub_T *to, regsub_T *from) |
| { |
| if (rex.nfa_has_zend) |
| { |
| if (REG_MULTI) |
| { |
| if (from->list.multi[0].end_lnum >= 0) |
| { |
| to->list.multi[0].end_lnum = from->list.multi[0].end_lnum; |
| to->list.multi[0].end_col = from->list.multi[0].end_col; |
| } |
| } |
| else |
| { |
| if (from->list.line[0].end != NULL) |
| to->list.line[0].end = from->list.line[0].end; |
| } |
| } |
| } |
| |
| /* |
| * Return TRUE if "sub1" and "sub2" have the same start positions. |
| * When using back-references also check the end position. |
| */ |
| static int |
| sub_equal(regsub_T *sub1, regsub_T *sub2) |
| { |
| int i; |
| int todo; |
| linenr_T s1; |
| linenr_T s2; |
| char_u *sp1; |
| char_u *sp2; |
| |
| todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use; |
| if (REG_MULTI) |
| { |
| for (i = 0; i < todo; ++i) |
| { |
| if (i < sub1->in_use) |
| s1 = sub1->list.multi[i].start_lnum; |
| else |
| s1 = -1; |
| if (i < sub2->in_use) |
| s2 = sub2->list.multi[i].start_lnum; |
| else |
| s2 = -1; |
| if (s1 != s2) |
| return FALSE; |
| if (s1 != -1 && sub1->list.multi[i].start_col |
| != sub2->list.multi[i].start_col) |
| return FALSE; |
| |
| if (rex.nfa_has_backref) |
| { |
| if (i < sub1->in_use) |
| s1 = sub1->list.multi[i].end_lnum; |
| else |
| s1 = -1; |
| if (i < sub2->in_use) |
| s2 = sub2->list.multi[i].end_lnum; |
| else |
| s2 = -1; |
| if (s1 != s2) |
| return FALSE; |
| if (s1 != -1 && sub1->list.multi[i].end_col |
| != sub2->list.multi[i].end_col) |
| return FALSE; |
| } |
| } |
| } |
| else |
| { |
| for (i = 0; i < todo; ++i) |
| { |
| if (i < sub1->in_use) |
| sp1 = sub1->list.line[i].start; |
| else |
| sp1 = NULL; |
| if (i < sub2->in_use) |
| sp2 = sub2->list.line[i].start; |
| else |
| sp2 = NULL; |
| if (sp1 != sp2) |
| return FALSE; |
| if (rex.nfa_has_backref) |
| { |
| if (i < sub1->in_use) |
| sp1 = sub1->list.line[i].end; |
| else |
| sp1 = NULL; |
| if (i < sub2->in_use) |
| sp2 = sub2->list.line[i].end; |
| else |
| sp2 = NULL; |
| if (sp1 != sp2) |
| return FALSE; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| #ifdef FEAT_RELTIME |
| /* |
| * Check if we are past the time limit, if there is one. |
| */ |
| static int |
| nfa_did_time_out(void) |
| { |
| if (*timeout_flag) |
| { |
| if (nfa_timed_out != NULL) |
| { |
| # ifdef FEAT_JOB_CHANNEL |
| if (!*nfa_timed_out) |
| ch_log(NULL, "NFA regexp timed out"); |
| # endif |
| *nfa_timed_out = TRUE; |
| } |
| return TRUE; |
| } |
| return FALSE; |
| } |
| #endif |
| |
| #ifdef ENABLE_LOG |
| static void |
| open_debug_log(int result) |
| { |
| log_fd = fopen(NFA_REGEXP_RUN_LOG, "a"); |
| if (log_fd == NULL) |
| { |
| emsg(_(e_log_open_failed)); |
| log_fd = stderr; |
| } |
| |
| fprintf(log_fd, "****************************\n"); |
| fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n"); |
| fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : result == MAYBE |
| ? "MAYBE" : "FALSE"); |
| fprintf(log_fd, "****************************\n"); |
| } |
| |
| static void |
| report_state(char *action, |
| regsub_T *sub, |
| nfa_state_T *state, |
| int lid, |
| nfa_pim_T *pim) |
| { |
| int col; |
| |
| if (sub->in_use <= 0) |
| col = -1; |
| else if (REG_MULTI) |
| col = sub->list.multi[0].start_col; |
| else |
| col = (int)(sub->list.line[0].start - rex.line); |
| nfa_set_code(state->c); |
| if (log_fd == NULL) |
| open_debug_log(MAYBE); |
| |
| fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n", |
| action, abs(state->id), lid, state->c, code, col, |
| pim_info(pim)); |
| } |
| #endif |
| |
| /* |
| * Return TRUE if the same state is already in list "l" with the same |
| * positions as "subs". |
| */ |
| static int |
| has_state_with_pos( |
| nfa_list_T *l, // runtime state list |
| nfa_state_T *state, // state to update |
| regsubs_T *subs, // pointers to subexpressions |
| nfa_pim_T *pim) // postponed match or NULL |
| { |
| nfa_thread_T *thread; |
| int i; |
| |
| for (i = 0; i < l->n; ++i) |
| { |
| thread = &l->t[i]; |
| if (thread->state->id == state->id |
| && sub_equal(&thread->subs.norm, &subs->norm) |
| #ifdef FEAT_SYN_HL |
| && (!rex.nfa_has_zsubexpr |
| || sub_equal(&thread->subs.synt, &subs->synt)) |
| #endif |
| && pim_equal(&thread->pim, pim)) |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| /* |
| * Return TRUE if "one" and "two" are equal. That includes when both are not |
| * set. |
| */ |
| static int |
| pim_equal(nfa_pim_T *one, nfa_pim_T *two) |
| { |
| int one_unused = (one == NULL || one->result == NFA_PIM_UNUSED); |
| int two_unused = (two == NULL || two->result == NFA_PIM_UNUSED); |
| |
| if (one_unused) |
| // one is unused: equal when two is also unused |
| return two_unused; |
| if (two_unused) |
| // one is used and two is not: not equal |
| return FALSE; |
| // compare the state id |
| if (one->state->id != two->state->id) |
| return FALSE; |
| // compare the position |
| if (REG_MULTI) |
| return one->end.pos.lnum == two->end.pos.lnum |
| && one->end.pos.col == two->end.pos.col; |
| return one->end.ptr == two->end.ptr; |
| } |
| |
| /* |
| * Return TRUE if "state" leads to a NFA_MATCH without advancing the input. |
| */ |
| static int |
| match_follows(nfa_state_T *startstate, int depth) |
| { |
| nfa_state_T *state = startstate; |
| |
| // avoid too much recursion |
| if (depth > 10) |
| return FALSE; |
| |
| while (state != NULL) |
| { |
| switch (state->c) |
| { |
| case NFA_MATCH: |
| case NFA_MCLOSE: |
| case NFA_END_INVISIBLE: |
| case NFA_END_INVISIBLE_NEG: |
| case NFA_END_PATTERN: |
| return TRUE; |
| |
| case NFA_SPLIT: |
| return match_follows(state->out, depth + 1) |
| || match_follows(state->out1, depth + 1); |
| |
| case NFA_START_INVISIBLE: |
| case NFA_START_INVISIBLE_FIRST: |
| case NFA_START_INVISIBLE_BEFORE: |
| case NFA_START_INVISIBLE_BEFORE_FIRST: |
| case NFA_START_INVISIBLE_NEG: |
| case NFA_START_INVISIBLE_NEG_FIRST: |
| case NFA_START_INVISIBLE_BEFORE_NEG: |
| case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: |
| case NFA_COMPOSING: |
| // skip ahead to next state |
| state = state->out1->out; |
| continue; |
| |
| case NFA_ANY: |
| case NFA_ANY_COMPOSING: |
| case NFA_IDENT: |
| case NFA_SIDENT: |
| case NFA_KWORD: |
| case NFA_SKWORD: |
| case NFA_FNAME: |
| case NFA_SFNAME: |
| case NFA_PRINT: |
| case NFA_SPRINT: |
| case NFA_WHITE: |
| case NFA_NWHITE: |
| case NFA_DIGIT: |
| case NFA_NDIGIT: |
| case NFA_HEX: |
| case NFA_NHEX: |
| case NFA_OCTAL: |
| case NFA_NOCTAL: |
| case NFA_WORD: |
| case NFA_NWORD: |
| case NFA_HEAD: |
| case NFA_NHEAD: |
| case NFA_ALPHA: |
| case NFA_NALPHA: |
| case NFA_LOWER: |
| case NFA_NLOWER: |
| case NFA_UPPER: |
| case NFA_NUPPER: |
| case NFA_LOWER_IC: |
| case NFA_NLOWER_IC: |
| case NFA_UPPER_IC: |
| case NFA_NUPPER_IC: |
| case NFA_START_COLL: |
| case NFA_START_NEG_COLL: |
| case NFA_NEWL: |
| // state will advance input |
| return FALSE; |
| |
| default: |
| if (state->c > 0) |
| // state will advance input |
| return FALSE; |
| |
| // Others: zero-width or possibly zero-width, might still find |
| // a match at the same position, keep looking. |
| break; |
| } |
| state = state->out; |
| } |
| return FALSE; |
| } |
| |
| |
| /* |
| * Return TRUE if "state" is already in list "l". |
| */ |
| static int |
| state_in_list( |
| nfa_list_T *l, // runtime state list |
| nfa_state_T *state, // state to update |
| regsubs_T *subs) // pointers to subexpressions |
| { |
| if (state->lastlist[nfa_ll_index] == l->id) |
| { |
| if (!rex.nfa_has_backref || has_state_with_pos(l, state, subs, NULL)) |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| // Offset used for "off" by addstate_here(). |
| #define ADDSTATE_HERE_OFFSET 10 |
| |
| /* |
| * Add "state" and possibly what follows to state list ".". |
| * Returns "subs_arg", possibly copied into temp_subs. |
| * Returns NULL when recursiveness is too deep or timed out. |
| */ |
| static regsubs_T * |
| addstate( |
| nfa_list_T *l, // runtime state list |
| nfa_state_T *state, // state to update |
| regsubs_T *subs_arg, // pointers to subexpressions |
| nfa_pim_T *pim, // postponed look-behind match |
| int off_arg) // byte offset, when -1 go to next line |
| { |
| int subidx; |
| int off = off_arg; |
| int add_here = FALSE; |
| int listindex = 0; |
| int k; |
| int found = FALSE; |
| nfa_thread_T *thread; |
| struct multipos save_multipos; |
| int save_in_use; |
| char_u *save_ptr; |
| int i; |
| regsub_T *sub; |
| regsubs_T *subs = subs_arg; |
| static regsubs_T temp_subs; |
| #ifdef ENABLE_LOG |
| int did_print = FALSE; |
| #endif |
| static int depth = 0; |
| |
| #ifdef FEAT_RELTIME |
| if (nfa_did_time_out()) |
| return NULL; |
| #endif |
| |
| // This function is called recursively. When the depth is too much we run |
| // out of stack and crash, limit recursiveness here. |
| if (++depth >= 5000 || subs == NULL) |
| { |
| --depth; |
| return NULL; |
| } |
| |
| if (off_arg <= -ADDSTATE_HERE_OFFSET) |
| { |
| add_here = TRUE; |
| off = 0; |
| listindex = -(off_arg + ADDSTATE_HERE_OFFSET); |
| } |
| |
| switch (state->c) |
| { |
| case NFA_NCLOSE: |
| case NFA_MCLOSE: |
| case NFA_MCLOSE1: |
| case NFA_MCLOSE2: |
| case NFA_MCLOSE3: |
| case NFA_MCLOSE4: |
| case NFA_MCLOSE5: |
| case NFA_MCLOSE6: |
| case NFA_MCLOSE7: |
| case NFA_MCLOSE8: |
| case NFA_MCLOSE9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZCLOSE: |
| case NFA_ZCLOSE1: |
| case NFA_ZCLOSE2: |
| case NFA_ZCLOSE3: |
| case NFA_ZCLOSE4: |
| case NFA_ZCLOSE5: |
| case NFA_ZCLOSE6: |
| case NFA_ZCLOSE7: |
| case NFA_ZCLOSE8: |
| case NFA_ZCLOSE9: |
| #endif |
| case NFA_MOPEN: |
| case NFA_ZEND: |
| case NFA_SPLIT: |
| case NFA_EMPTY: |
| // These nodes are not added themselves but their "out" and/or |
| // "out1" may be added below. |
| break; |
| |
| case NFA_BOL: |
| case NFA_BOF: |
| // "^" won't match past end-of-line, don't bother trying. |
| // Except when at the end of the line, or when we are going to the |
| // next line for a look-behind match. |
| if (rex.input > rex.line |
| && *rex.input != NUL |
| && (nfa_endp == NULL |
| || !REG_MULTI |
| || rex.lnum == nfa_endp->se_u.pos.lnum)) |
| goto skip_add; |
| // FALLTHROUGH |
| |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| #endif |
| case NFA_NOPEN: |
| case NFA_ZSTART: |
| // These nodes need to be added so that we can bail out when it |
| // was added to this list before at the same position to avoid an |
| // endless loop for "\(\)*" |
| |
| default: |
| if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) |
| { |
| // This state is already in the list, don't add it again, |
| // unless it is an MOPEN that is used for a backreference or |
| // when there is a PIM. For NFA_MATCH check the position, |
| // lower position is preferred. |
| if (!rex.nfa_has_backref && pim == NULL && !l->has_pim |
| && state->c != NFA_MATCH) |
| { |
| // When called from addstate_here() do insert before |
| // existing states. |
| if (add_here) |
| { |
| for (k = 0; k < l->n && k < listindex; ++k) |
| if (l->t[k].state->id == state->id) |
| { |
| found = TRUE; |
| break; |
| } |
| } |
| if (!add_here || found) |
| { |
| skip_add: |
| #ifdef ENABLE_LOG |
| nfa_set_code(state->c); |
| fprintf(log_fd, "> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n", |
| abs(state->id), l->id, state->c, code, |
| pim == NULL ? "NULL" : "yes", l->has_pim, found); |
| #endif |
| --depth; |
| return subs; |
| } |
| } |
| |
| // Do not add the state again when it exists with the same |
| // positions. |
| if (has_state_with_pos(l, state, subs, pim)) |
| goto skip_add; |
| } |
| |
| // When there are backreferences or PIMs the number of states may |
| // be (a lot) bigger than anticipated. |
| if (l->n == l->len) |
| { |
| int newlen = l->len * 3 / 2 + 50; |
| size_t newsize = newlen * sizeof(nfa_thread_T); |
| nfa_thread_T *newt; |
| |
| if ((long)(newsize >> 10) >= p_mmp) |
| { |
| emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); |
| --depth; |
| return NULL; |
| } |
| if (subs != &temp_subs) |
| { |
| // "subs" may point into the current array, need to make a |
| // copy before it becomes invalid. |
| copy_sub(&temp_subs.norm, &subs->norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub(&temp_subs.synt, &subs->synt); |
| #endif |
| subs = &temp_subs; |
| } |
| |
| newt = vim_realloc(l->t, newsize); |
| if (newt == NULL) |
| { |
| // out of memory |
| --depth; |
| return NULL; |
| } |
| l->t = newt; |
| l->len = newlen; |
| } |
| |
| // add the state to the list |
| state->lastlist[nfa_ll_index] = l->id; |
| thread = &l->t[l->n++]; |
| thread->state = state; |
| if (pim == NULL) |
| thread->pim.result = NFA_PIM_UNUSED; |
| else |
| { |
| copy_pim(&thread->pim, pim); |
| l->has_pim = TRUE; |
| } |
| copy_sub(&thread->subs.norm, &subs->norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub(&thread->subs.synt, &subs->synt); |
| #endif |
| #ifdef ENABLE_LOG |
| report_state("Adding", &thread->subs.norm, state, l->id, pim); |
| did_print = TRUE; |
| #endif |
| } |
| |
| #ifdef ENABLE_LOG |
| if (!did_print) |
| report_state("Processing", &subs->norm, state, l->id, pim); |
| #endif |
| switch (state->c) |
| { |
| case NFA_MATCH: |
| break; |
| |
| case NFA_SPLIT: |
| // order matters here |
| subs = addstate(l, state->out, subs, pim, off_arg); |
| subs = addstate(l, state->out1, subs, pim, off_arg); |
| break; |
| |
| case NFA_EMPTY: |
| case NFA_NOPEN: |
| case NFA_NCLOSE: |
| subs = addstate(l, state->out, subs, pim, off_arg); |
| break; |
| |
| case NFA_MOPEN: |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| #endif |
| case NFA_ZSTART: |
| if (state->c == NFA_ZSTART) |
| { |
| subidx = 0; |
| sub = &subs->norm; |
| } |
| #ifdef FEAT_SYN_HL |
| else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) |
| { |
| subidx = state->c - NFA_ZOPEN; |
| sub = &subs->synt; |
| } |
| #endif |
| else |
| { |
| subidx = state->c - NFA_MOPEN; |
| sub = &subs->norm; |
| } |
| |
| // avoid compiler warnings |
| save_ptr = NULL; |
| CLEAR_FIELD(save_multipos); |
| |
| // Set the position (with "off" added) in the subexpression. Save |
| // and restore it when it was in use. Otherwise fill any gap. |
| if (REG_MULTI) |
| { |
| if (subidx < sub->in_use) |
| { |
| save_multipos = sub->list.multi[subidx]; |
| save_in_use = -1; |
| } |
| else |
| { |
| save_in_use = sub->in_use; |
| for (i = sub->in_use; i < subidx; ++i) |
| { |
| sub->list.multi[i].start_lnum = -1; |
| sub->list.multi[i].end_lnum = -1; |
| } |
| sub->in_use = subidx + 1; |
| } |
| if (off == -1) |
| { |
| sub->list.multi[subidx].start_lnum = rex.lnum + 1; |
| sub->list.multi[subidx].start_col = 0; |
| } |
| else |
| { |
| sub->list.multi[subidx].start_lnum = rex.lnum; |
| sub->list.multi[subidx].start_col = |
| (colnr_T)(rex.input - rex.line + off); |
| } |
| sub->list.multi[subidx].end_lnum = -1; |
| } |
| else |
| { |
| if (subidx < sub->in_use) |
| { |
| save_ptr = sub->list.line[subidx].start; |
| save_in_use = -1; |
| } |
| else |
| { |
| save_in_use = sub->in_use; |
| for (i = sub->in_use; i < subidx; ++i) |
| { |
| sub->list.line[i].start = NULL; |
| sub->list.line[i].end = NULL; |
| } |
| sub->in_use = subidx + 1; |
| } |
| sub->list.line[subidx].start = rex.input + off; |
| } |
| |
| subs = addstate(l, state->out, subs, pim, off_arg); |
| if (subs == NULL) |
| break; |
| // "subs" may have changed, need to set "sub" again |
| #ifdef FEAT_SYN_HL |
| if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) |
| sub = &subs->synt; |
| else |
| #endif |
| sub = &subs->norm; |
| |
| if (save_in_use == -1) |
| { |
| if (REG_MULTI) |
| sub->list.multi[subidx] = save_multipos; |
| else |
| sub->list.line[subidx].start = save_ptr; |
| } |
| else |
| sub->in_use = save_in_use; |
| break; |
| |
| case NFA_MCLOSE: |
| if (rex.nfa_has_zend && (REG_MULTI |
| ? subs->norm.list.multi[0].end_lnum >= 0 |
| : subs->norm.list.line[0].end != NULL)) |
| { |
| // Do not overwrite the position set by \ze. |
| subs = addstate(l, state->out, subs, pim, off_arg); |
| break; |
| } |
| // FALLTHROUGH |
| case NFA_MCLOSE1: |
| case NFA_MCLOSE2: |
| case NFA_MCLOSE3: |
| case NFA_MCLOSE4: |
| case NFA_MCLOSE5: |
| case NFA_MCLOSE6: |
| case NFA_MCLOSE7: |
| case NFA_MCLOSE8: |
| case NFA_MCLOSE9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZCLOSE: |
| case NFA_ZCLOSE1: |
| case NFA_ZCLOSE2: |
| case NFA_ZCLOSE3: |
| case NFA_ZCLOSE4: |
| case NFA_ZCLOSE5: |
| case NFA_ZCLOSE6: |
| case NFA_ZCLOSE7: |
| case NFA_ZCLOSE8: |
| case NFA_ZCLOSE9: |
| #endif |
| case NFA_ZEND: |
| if (state->c == NFA_ZEND) |
| { |
| subidx = 0; |
| sub = &subs->norm; |
| } |
| #ifdef FEAT_SYN_HL |
| else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) |
| { |
| subidx = state->c - NFA_ZCLOSE; |
| sub = &subs->synt; |
| } |
| #endif |
| else |
| { |
| subidx = state->c - NFA_MCLOSE; |
| sub = &subs->norm; |
| } |
| |
| // We don't fill in gaps here, there must have been an MOPEN that |
| // has done that. |
| save_in_use = sub->in_use; |
| if (sub->in_use <= subidx) |
| sub->in_use = subidx + 1; |
| if (REG_MULTI) |
| { |
| save_multipos = sub->list.multi[subidx]; |
| if (off == -1) |
| { |
| sub->list.multi[subidx].end_lnum = rex.lnum + 1; |
| sub->list.multi[subidx].end_col = 0; |
| } |
| else |
| { |
| sub->list.multi[subidx].end_lnum = rex.lnum; |
| sub->list.multi[subidx].end_col = |
| (colnr_T)(rex.input - rex.line + off); |
| } |
| // avoid compiler warnings |
| save_ptr = NULL; |
| } |
| else |
| { |
| save_ptr = sub->list.line[subidx].end; |
| sub->list.line[subidx].end = rex.input + off; |
| // avoid compiler warnings |
| CLEAR_FIELD(save_multipos); |
| } |
| |
| subs = addstate(l, state->out, subs, pim, off_arg); |
| if (subs == NULL) |
| break; |
| // "subs" may have changed, need to set "sub" again |
| #ifdef FEAT_SYN_HL |
| if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) |
| sub = &subs->synt; |
| else |
| #endif |
| sub = &subs->norm; |
| |
| if (REG_MULTI) |
| sub->list.multi[subidx] = save_multipos; |
| else |
| sub->list.line[subidx].end = save_ptr; |
| sub->in_use = save_in_use; |
| break; |
| } |
| --depth; |
| return subs; |
| } |
| |
| /* |
| * Like addstate(), but the new state(s) are put at position "*ip". |
| * Used for zero-width matches, next state to use is the added one. |
| * This makes sure the order of states to be tried does not change, which |
| * matters for alternatives. |
| */ |
| static regsubs_T * |
| addstate_here( |
| nfa_list_T *l, // runtime state list |
| nfa_state_T *state, // state to update |
| regsubs_T *subs, // pointers to subexpressions |
| nfa_pim_T *pim, // postponed look-behind match |
| int *ip) |
| { |
| int tlen = l->n; |
| int count; |
| int listidx = *ip; |
| regsubs_T *r; |
| |
| // First add the state(s) at the end, so that we know how many there are. |
| // Pass the listidx as offset (avoids adding another argument to |
| // addstate()). |
| r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET); |
| if (r == NULL) |
| return NULL; |
| |
| // when "*ip" was at the end of the list, nothing to do |
| if (listidx + 1 == tlen) |
| return r; |
| |
| // re-order to put the new state at the current position |
| count = l->n - tlen; |
| if (count == 0) |
| return r; // no state got added |
| if (count == 1) |
| { |
| // overwrite the current state |
| l->t[listidx] = l->t[l->n - 1]; |
| } |
| else if (count > 1) |
| { |
| if (l->n + count - 1 >= l->len) |
| { |
| // not enough space to move the new states, reallocate the list |
| // and move the states to the right position |
| int newlen = l->len * 3 / 2 + 50; |
| size_t newsize = newlen * sizeof(nfa_thread_T); |
| nfa_thread_T *newl; |
| |
| if ((long)(newsize >> 10) >= p_mmp) |
| { |
| emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); |
| return NULL; |
| } |
| newl = alloc(newsize); |
| if (newl == NULL) |
| return NULL; |
| l->len = newlen; |
| mch_memmove(&(newl[0]), |
| &(l->t[0]), |
| sizeof(nfa_thread_T) * listidx); |
| mch_memmove(&(newl[listidx]), |
| &(l->t[l->n - count]), |
| sizeof(nfa_thread_T) * count); |
| mch_memmove(&(newl[listidx + count]), |
| &(l->t[listidx + 1]), |
| sizeof(nfa_thread_T) * (l->n - count - listidx - 1)); |
| vim_free(l->t); |
| l->t = newl; |
| } |
| else |
| { |
| // make space for new states, then move them from the |
| // end to the current position |
| mch_memmove(&(l->t[listidx + count]), |
| &(l->t[listidx + 1]), |
| sizeof(nfa_thread_T) * (l->n - listidx - 1)); |
| mch_memmove(&(l->t[listidx]), |
| &(l->t[l->n - 1]), |
| sizeof(nfa_thread_T) * count); |
| } |
| } |
| --l->n; |
| *ip = listidx - 1; |
| |
| return r; |
| } |
| |
| /* |
| * Check character class "class" against current character c. |
| */ |
| static int |
| check_char_class(int class, int c) |
| { |
| switch (class) |
| { |
| case NFA_CLASS_ALNUM: |
| if (c >= 1 && c < 128 && isalnum(c)) |
| return OK; |
| break; |
| case NFA_CLASS_ALPHA: |
| if (c >= 1 && c < 128 && isalpha(c)) |
| return OK; |
| break; |
| case NFA_CLASS_BLANK: |
| if (c == ' ' || c == '\t') |
| return OK; |
| break; |
| case NFA_CLASS_CNTRL: |
| if (c >= 1 && c <= 127 && iscntrl(c)) |
| return OK; |
| break; |
| case NFA_CLASS_DIGIT: |
| if (VIM_ISDIGIT(c)) |
| return OK; |
| break; |
| case NFA_CLASS_GRAPH: |
| if (c >= 1 && c <= 127 && isgraph(c)) |
| return OK; |
| break; |
| case NFA_CLASS_LOWER: |
| if (MB_ISLOWER(c) && c != 170 && c != 186) |
| return OK; |
| break; |
| case NFA_CLASS_PRINT: |
| if (vim_isprintc(c)) |
| return OK; |
| break; |
| case NFA_CLASS_PUNCT: |
| if (c >= 1 && c < 128 && ispunct(c)) |
| return OK; |
| break; |
| case NFA_CLASS_SPACE: |
| if ((c >= 9 && c <= 13) || (c == ' ')) |
| return OK; |
| break; |
| case NFA_CLASS_UPPER: |
| if (MB_ISUPPER(c)) |
| return OK; |
| break; |
| case NFA_CLASS_XDIGIT: |
| if (vim_isxdigit(c)) |
| return OK; |
| break; |
| case NFA_CLASS_TAB: |
| if (c == '\t') |
| return OK; |
| break; |
| case NFA_CLASS_RETURN: |
| if (c == '\r') |
| return OK; |
| break; |
| case NFA_CLASS_BACKSPACE: |
| if (c == '\b') |
| return OK; |
| break; |
| case NFA_CLASS_ESCAPE: |
| if (c == '\033') |
| return OK; |
| break; |
| case NFA_CLASS_IDENT: |
| if (vim_isIDc(c)) |
| return OK; |
| break; |
| case NFA_CLASS_KEYWORD: |
| if (reg_iswordc(c)) |
| return OK; |
| break; |
| case NFA_CLASS_FNAME: |
| if (vim_isfilec(c)) |
| return OK; |
| break; |
| |
| default: |
| // should not be here :P |
| siemsg(_(e_nfa_regexp_invalid_character_class_nr), class); |
| return FAIL; |
| } |
| return FAIL; |
| } |
| |
| /* |
| * Check for a match with subexpression "subidx". |
| * Return TRUE if it matches. |
| */ |
| static int |
| match_backref( |
| regsub_T *sub, // pointers to subexpressions |
| int subidx, |
| int *bytelen) // out: length of match in bytes |
| { |
| int len; |
| |
| if (sub->in_use <= subidx) |
| { |
| retempty: |
| // backref was not set, match an empty string |
| *bytelen = 0; |
| return TRUE; |
| } |
| |
| if (REG_MULTI) |
| { |
| if (sub->list.multi[subidx].start_lnum < 0 |
| || sub->list.multi[subidx].end_lnum < 0) |
| goto retempty; |
| if (sub->list.multi[subidx].start_lnum == rex.lnum |
| && sub->list.multi[subidx].end_lnum == rex.lnum) |
| { |
| len = sub->list.multi[subidx].end_col |
| - sub->list.multi[subidx].start_col; |
| if (cstrncmp(rex.line + sub->list.multi[subidx].start_col, |
| rex.input, &len) == 0) |
| { |
| *bytelen = len; |
| return TRUE; |
| } |
| } |
| else |
| { |
| if (match_with_backref( |
| sub->list.multi[subidx].start_lnum, |
| sub->list.multi[subidx].start_col, |
| sub->list.multi[subidx].end_lnum, |
| sub->list.multi[subidx].end_col, |
| bytelen) == RA_MATCH) |
| return TRUE; |
| } |
| } |
| else |
| { |
| if (sub->list.line[subidx].start == NULL |
| || sub->list.line[subidx].end == NULL) |
| goto retempty; |
| len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start); |
| if (cstrncmp(sub->list.line[subidx].start, rex.input, &len) == 0) |
| { |
| *bytelen = len; |
| return TRUE; |
| } |
| } |
| return FALSE; |
| } |
| |
| #ifdef FEAT_SYN_HL |
| |
| /* |
| * Check for a match with \z subexpression "subidx". |
| * Return TRUE if it matches. |
| */ |
| static int |
| match_zref( |
| int subidx, |
| int *bytelen) // out: length of match in bytes |
| { |
| int len; |
| |
| cleanup_zsubexpr(); |
| if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) |
| { |
| // backref was not set, match an empty string |
| *bytelen = 0; |
| return TRUE; |
| } |
| |
| len = (int)STRLEN(re_extmatch_in->matches[subidx]); |
| if (cstrncmp(re_extmatch_in->matches[subidx], rex.input, &len) == 0) |
| { |
| *bytelen = len; |
| return TRUE; |
| } |
| return FALSE; |
| } |
| #endif |
| |
| /* |
| * Save list IDs for all NFA states of "prog" into "list". |
| * Also reset the IDs to zero. |
| * Only used for the recursive value lastlist[1]. |
| */ |
| static void |
| nfa_save_listids(nfa_regprog_T *prog, int *list) |
| { |
| int i; |
| nfa_state_T *p; |
| |
| // Order in the list is reverse, it's a bit faster that way. |
| p = &prog->state[0]; |
| for (i = prog->nstate; --i >= 0; ) |
| { |
| list[i] = p->lastlist[1]; |
| p->lastlist[1] = 0; |
| ++p; |
| } |
| } |
| |
| /* |
| * Restore list IDs from "list" to all NFA states. |
| */ |
| static void |
| nfa_restore_listids(nfa_regprog_T *prog, int *list) |
| { |
| int i; |
| nfa_state_T *p; |
| |
| p = &prog->state[0]; |
| for (i = prog->nstate; --i >= 0; ) |
| { |
| p->lastlist[1] = list[i]; |
| ++p; |
| } |
| } |
| |
| static int |
| nfa_re_num_cmp(long_u val, int op, long_u pos) |
| { |
| if (op == 1) return pos > val; |
| if (op == 2) return pos < val; |
| return val == pos; |
| } |
| |
| static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m); |
| |
| /* |
| * Recursively call nfa_regmatch() |
| * "pim" is NULL or contains info about a Postponed Invisible Match (start |
| * position). |
| */ |
| static int |
| recursive_regmatch( |
| nfa_state_T *state, |
| nfa_pim_T *pim, |
| nfa_regprog_T *prog, |
| regsubs_T *submatch, |
| regsubs_T *m, |
| int **listids, |
| int *listids_len) |
| { |
| int save_reginput_col = (int)(rex.input - rex.line); |
| int save_reglnum = rex.lnum; |
| int save_nfa_match = nfa_match; |
| int save_nfa_listid = rex.nfa_listid; |
| save_se_T *save_nfa_endp = nfa_endp; |
| save_se_T endpos; |
| save_se_T *endposp = NULL; |
| int result; |
| int need_restore = FALSE; |
| |
| if (pim != NULL) |
| { |
| // start at the position where the postponed match was |
| if (REG_MULTI) |
| rex.input = rex.line + pim->end.pos.col; |
| else |
| rex.input = pim->end.ptr; |
| } |
| |
| if (state->c == NFA_START_INVISIBLE_BEFORE |
| || state->c == NFA_START_INVISIBLE_BEFORE_FIRST |
| || state->c == NFA_START_INVISIBLE_BEFORE_NEG |
| || state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) |
| { |
| // The recursive match must end at the current position. When "pim" is |
| // not NULL it specifies the current position. |
| endposp = &endpos; |
| if (REG_MULTI) |
| { |
| if (pim == NULL) |
| { |
| endpos.se_u.pos.col = (int)(rex.input - rex.line); |
| endpos.se_u.pos.lnum = rex.lnum; |
| } |
| else |
| endpos.se_u.pos = pim->end.pos; |
| } |
| else |
| { |
| if (pim == NULL) |
| endpos.se_u.ptr = rex.input; |
| else |
| endpos.se_u.ptr = pim->end.ptr; |
| } |
| |
| // Go back the specified number of bytes, or as far as the |
| // start of the previous line, to try matching "\@<=" or |
| // not matching "\@<!". This is very inefficient, limit the number of |
| // bytes if possible. |
| if (state->val <= 0) |
| { |
| if (REG_MULTI) |
| { |
| rex.line = reg_getline(--rex.lnum); |
| if (rex.line == NULL) |
| // can't go before the first line |
| rex.line = reg_getline(++rex.lnum); |
| } |
| rex.input = rex.line; |
| } |
| else |
| { |
| if (REG_MULTI && (int)(rex.input - rex.line) < state->val) |
| { |
| // Not enough bytes in this line, go to end of |
| // previous line. |
| rex.line = reg_getline(--rex.lnum); |
| if (rex.line == NULL) |
| { |
| // can't go before the first line |
| rex.line = reg_getline(++rex.lnum); |
| rex.input = rex.line; |
| } |
| else |
| rex.input = rex.line + STRLEN(rex.line); |
| } |
| if ((int)(rex.input - rex.line) >= state->val) |
| { |
| rex.input -= state->val; |
| if (has_mbyte) |
| rex.input -= mb_head_off(rex.line, rex.input); |
| } |
| else |
| rex.input = rex.line; |
| } |
| } |
| |
| #ifdef ENABLE_LOG |
| if (log_fd != stderr) |
| fclose(log_fd); |
| log_fd = NULL; |
| #endif |
| // Have to clear the lastlist field of the NFA nodes, so that |
| // nfa_regmatch() and addstate() can run properly after recursion. |
| if (nfa_ll_index == 1) |
| { |
| // Already calling nfa_regmatch() recursively. Save the lastlist[1] |
| // values and clear them. |
| if (*listids == NULL || *listids_len < prog->nstate) |
| { |
| vim_free(*listids); |
| *listids = ALLOC_MULT(int, prog->nstate); |
| if (*listids == NULL) |
| { |
| emsg(_(e_nfa_regexp_could_not_allocate_memory_for_branch_traversal)); |
| return 0; |
| } |
| *listids_len = prog->nstate; |
| } |
| nfa_save_listids(prog, *listids); |
| need_restore = TRUE; |
| // any value of rex.nfa_listid will do |
| } |
| else |
| { |
| // First recursive nfa_regmatch() call, switch to the second lastlist |
| // entry. Make sure rex.nfa_listid is different from a previous |
| // recursive call, because some states may still have this ID. |
| ++nfa_ll_index; |
| if (rex.nfa_listid <= rex.nfa_alt_listid) |
| rex.nfa_listid = rex.nfa_alt_listid; |
| } |
| |
| // Call nfa_regmatch() to check if the current concat matches at this |
| // position. The concat ends with the node NFA_END_INVISIBLE |
| nfa_endp = endposp; |
| result = nfa_regmatch(prog, state->out, submatch, m); |
| |
| if (need_restore) |
| nfa_restore_listids(prog, *listids); |
| else |
| { |
| --nfa_ll_index; |
| rex.nfa_alt_listid = rex.nfa_listid; |
| } |
| |
| // restore position in input text |
| rex.lnum = save_reglnum; |
| if (REG_MULTI) |
| rex.line = reg_getline(rex.lnum); |
| rex.input = rex.line + save_reginput_col; |
| if (result != NFA_TOO_EXPENSIVE) |
| { |
| nfa_match = save_nfa_match; |
| rex.nfa_listid = save_nfa_listid; |
| } |
| nfa_endp = save_nfa_endp; |
| |
| #ifdef ENABLE_LOG |
| open_debug_log(result); |
| #endif |
| |
| return result; |
| } |
| |
| /* |
| * Estimate the chance of a match with "state" failing. |
| * empty match: 0 |
| * NFA_ANY: 1 |
| * specific character: 99 |
| */ |
| static int |
| failure_chance(nfa_state_T *state, int depth) |
| { |
| int c = state->c; |
| int l, r; |
| |
| // detect looping |
| if (depth > 4) |
| return 1; |
| |
| switch (c) |
| { |
| case NFA_SPLIT: |
| if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT) |
| // avoid recursive stuff |
| return 1; |
| // two alternatives, use the lowest failure chance |
| l = failure_chance(state->out, depth + 1); |
| r = failure_chance(state->out1, depth + 1); |
| return l < r ? l : r; |
| |
| case NFA_ANY: |
| // matches anything, unlikely to fail |
| return 1; |
| |
| case NFA_MATCH: |
| case NFA_MCLOSE: |
| case NFA_ANY_COMPOSING: |
| // empty match works always |
| return 0; |
| |
| case NFA_START_INVISIBLE: |
| case NFA_START_INVISIBLE_FIRST: |
| case NFA_START_INVISIBLE_NEG: |
| case NFA_START_INVISIBLE_NEG_FIRST: |
| case NFA_START_INVISIBLE_BEFORE: |
| case NFA_START_INVISIBLE_BEFORE_FIRST: |
| case NFA_START_INVISIBLE_BEFORE_NEG: |
| case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: |
| case NFA_START_PATTERN: |
| // recursive regmatch is expensive, use low failure chance |
| return 5; |
| |
| case NFA_BOL: |
| case NFA_EOL: |
| case NFA_BOF: |
| case NFA_EOF: |
| case NFA_NEWL: |
| return 99; |
| |
| case NFA_BOW: |
| case NFA_EOW: |
| return 90; |
| |
| case NFA_MOPEN: |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| case NFA_ZCLOSE: |
| case NFA_ZCLOSE1: |
| case NFA_ZCLOSE2: |
| case NFA_ZCLOSE3: |
| case NFA_ZCLOSE4: |
| case NFA_ZCLOSE5: |
| case NFA_ZCLOSE6: |
| case NFA_ZCLOSE7: |
| case NFA_ZCLOSE8: |
| case NFA_ZCLOSE9: |
| #endif |
| case NFA_NOPEN: |
| case NFA_MCLOSE1: |
| case NFA_MCLOSE2: |
| case NFA_MCLOSE3: |
| case NFA_MCLOSE4: |
| case NFA_MCLOSE5: |
| case NFA_MCLOSE6: |
| case NFA_MCLOSE7: |
| case NFA_MCLOSE8: |
| case NFA_MCLOSE9: |
| case NFA_NCLOSE: |
| return failure_chance(state->out, depth + 1); |
| |
| case NFA_BACKREF1: |
| case NFA_BACKREF2: |
| case NFA_BACKREF3: |
| case NFA_BACKREF4: |
| case NFA_BACKREF5: |
| case NFA_BACKREF6: |
| case NFA_BACKREF7: |
| case NFA_BACKREF8: |
| case NFA_BACKREF9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZREF1: |
| case NFA_ZREF2: |
| case NFA_ZREF3: |
| case NFA_ZREF4: |
| case NFA_ZREF5: |
| case NFA_ZREF6: |
| case NFA_ZREF7: |
| case NFA_ZREF8: |
| case NFA_ZREF9: |
| #endif |
| // backreferences don't match in many places |
| return 94; |
| |
| case NFA_LNUM_GT: |
| case NFA_LNUM_LT: |
| case NFA_COL_GT: |
| case NFA_COL_LT: |
| case NFA_VCOL_GT: |
| case NFA_VCOL_LT: |
| case NFA_MARK_GT: |
| case NFA_MARK_LT: |
| case NFA_VISUAL: |
| // before/after positions don't match very often |
| return 85; |
| |
| case NFA_LNUM: |
| return 90; |
| |
| case NFA_CURSOR: |
| case NFA_COL: |
| case NFA_VCOL: |
| case NFA_MARK: |
| // specific positions rarely match |
| return 98; |
| |
| case NFA_COMPOSING: |
| return 95; |
| |
| default: |
| if (c > 0) |
| // character match fails often |
| return 95; |
| } |
| |
| // something else, includes character classes |
| return 50; |
| } |
| |
| /* |
| * Skip until the char "c" we know a match must start with. |
| */ |
| static int |
| skip_to_start(int c, colnr_T *colp) |
| { |
| char_u *s; |
| |
| // Used often, do some work to avoid call overhead. |
| if (!rex.reg_ic && !has_mbyte) |
| s = vim_strbyte(rex.line + *colp, c); |
| else |
| s = cstrchr(rex.line + *colp, c); |
| if (s == NULL) |
| return FAIL; |
| *colp = (int)(s - rex.line); |
| return OK; |
| } |
| |
| /* |
| * Check for a match with match_text. |
| * Called after skip_to_start() has found regstart. |
| * Returns zero for no match, 1 for a match. |
| */ |
| static long |
| find_match_text(colnr_T startcol, int regstart, char_u *match_text) |
| { |
| colnr_T col = startcol; |
| int c1, c2; |
| int len1, len2; |
| int match; |
| |
| for (;;) |
| { |
| match = TRUE; |
| len2 = MB_CHAR2LEN(regstart); // skip regstart |
| for (len1 = 0; match_text[len1] != NUL; len1 += MB_CHAR2LEN(c1)) |
| { |
| c1 = PTR2CHAR(match_text + len1); |
| c2 = PTR2CHAR(rex.line + col + len2); |
| if (c1 != c2 && (!rex.reg_ic || MB_CASEFOLD(c1) != MB_CASEFOLD(c2))) |
| { |
| match = FALSE; |
| break; |
| } |
| len2 += enc_utf8 ? utf_ptr2len(rex.line + col + len2) |
| : MB_CHAR2LEN(c2); |
| } |
| if (match |
| // check that no composing char follows |
| && !(enc_utf8 |
| && utf_iscomposing(PTR2CHAR(rex.line + col + len2)))) |
| { |
| cleanup_subexpr(); |
| if (REG_MULTI) |
| { |
| rex.reg_startpos[0].lnum = rex.lnum; |
| rex.reg_startpos[0].col = col; |
| rex.reg_endpos[0].lnum = rex.lnum; |
| rex.reg_endpos[0].col = col + len2; |
| } |
| else |
| { |
| rex.reg_startp[0] = rex.line + col; |
| rex.reg_endp[0] = rex.line + col + len2; |
| } |
| return 1L; |
| } |
| |
| // Try finding regstart after the current match. |
| col += MB_CHAR2LEN(regstart); // skip regstart |
| if (skip_to_start(regstart, &col) == FAIL) |
| break; |
| } |
| return 0L; |
| } |
| |
| /* |
| * Main matching routine. |
| * |
| * Run NFA to determine whether it matches rex.input. |
| * |
| * When "nfa_endp" is not NULL it is a required end-of-match position. |
| * |
| * Return TRUE if there is a match, FALSE if there is no match, |
| * NFA_TOO_EXPENSIVE if we end up with too many states. |
| * When there is a match "submatch" contains the positions. |
| * |
| * Note: Caller must ensure that: start != NULL. |
| */ |
| static int |
| nfa_regmatch( |
| nfa_regprog_T *prog, |
| nfa_state_T *start, |
| regsubs_T *submatch, |
| regsubs_T *m) |
| { |
| int result = FALSE; |
| size_t size = 0; |
| int flag = 0; |
| int go_to_nextline = FALSE; |
| nfa_thread_T *t; |
| nfa_list_T list[2]; |
| int listidx; |
| nfa_list_T *thislist; |
| nfa_list_T *nextlist; |
| int *listids = NULL; |
| int listids_len = 0; |
| nfa_state_T *add_state; |
| int add_here; |
| int add_count; |
| int add_off = 0; |
| int toplevel = start->c == NFA_MOPEN; |
| regsubs_T *r; |
| #ifdef NFA_REGEXP_DEBUG_LOG |
| FILE *debug; |
| #endif |
| |
| // Some patterns may take a long time to match, especially when using |
| // recursive_regmatch(). Allow interrupting them with CTRL-C. |
| fast_breakcheck(); |
| if (got_int) |
| return FALSE; |
| #ifdef FEAT_RELTIME |
| if (nfa_did_time_out()) |
| return FALSE; |
| #endif |
| |
| #ifdef NFA_REGEXP_DEBUG_LOG |
| debug = fopen(NFA_REGEXP_DEBUG_LOG, "a"); |
| if (debug == NULL) |
| { |
| semsg("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG); |
| return FALSE; |
| } |
| #endif |
| nfa_match = FALSE; |
| |
| // Allocate memory for the lists of nodes. |
| size = (prog->nstate + 1) * sizeof(nfa_thread_T); |
| |
| list[0].t = alloc(size); |
| list[0].len = prog->nstate + 1; |
| list[1].t = alloc(size); |
| list[1].len = prog->nstate + 1; |
| if (list[0].t == NULL || list[1].t == NULL) |
| goto theend; |
| |
| #ifdef ENABLE_LOG |
| log_fd = fopen(NFA_REGEXP_RUN_LOG, "a"); |
| if (log_fd == NULL) |
| { |
| emsg(_(e_log_open_failed)); |
| log_fd = stderr; |
| } |
| fprintf(log_fd, "**********************************\n"); |
| nfa_set_code(start->c); |
| fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n", |
| abs(start->id), code); |
| fprintf(log_fd, "**********************************\n"); |
| #endif |
| |
| thislist = &list[0]; |
| thislist->n = 0; |
| thislist->has_pim = FALSE; |
| nextlist = &list[1]; |
| nextlist->n = 0; |
| nextlist->has_pim = FALSE; |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "(---) STARTSTATE first\n"); |
| #endif |
| thislist->id = rex.nfa_listid + 1; |
| |
| // Inline optimized code for addstate(thislist, start, m, 0) if we know |
| // it's the first MOPEN. |
| if (toplevel) |
| { |
| if (REG_MULTI) |
| { |
| m->norm.list.multi[0].start_lnum = rex.lnum; |
| m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line); |
| } |
| else |
| m->norm.list.line[0].start = rex.input; |
| m->norm.in_use = 1; |
| r = addstate(thislist, start->out, m, NULL, 0); |
| } |
| else |
| r = addstate(thislist, start, m, NULL, 0); |
| if (r == NULL) |
| { |
| nfa_match = NFA_TOO_EXPENSIVE; |
| goto theend; |
| } |
| |
| #define ADD_STATE_IF_MATCH(state) \ |
| if (result) { \ |
| add_state = state->out; \ |
| add_off = clen; \ |
| } |
| |
| /* |
| * Run for each character. |
| */ |
| for (;;) |
| { |
| int curc; |
| int clen; |
| |
| if (has_mbyte) |
| { |
| curc = (*mb_ptr2char)(rex.input); |
| clen = (*mb_ptr2len)(rex.input); |
| } |
| else |
| { |
| curc = *rex.input; |
| clen = 1; |
| } |
| if (curc == NUL) |
| { |
| clen = 0; |
| go_to_nextline = FALSE; |
| } |
| |
| // swap lists |
| thislist = &list[flag]; |
| nextlist = &list[flag ^= 1]; |
| nextlist->n = 0; // clear nextlist |
| nextlist->has_pim = FALSE; |
| ++rex.nfa_listid; |
| if (prog->re_engine == AUTOMATIC_ENGINE |
| && (rex.nfa_listid >= NFA_MAX_STATES |
| # ifdef FEAT_EVAL |
| || nfa_fail_for_testing |
| # endif |
| )) |
| { |
| // too many states, retry with old engine |
| nfa_match = NFA_TOO_EXPENSIVE; |
| goto theend; |
| } |
| |
| thislist->id = rex.nfa_listid; |
| nextlist->id = rex.nfa_listid + 1; |
| |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "------------------------------------------\n"); |
| fprintf(log_fd, ">>> Reginput is \"%s\"\n", rex.input); |
| fprintf(log_fd, ">>> Advanced one character... Current char is %c (code %d) \n", curc, (int)curc); |
| fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n); |
| { |
| int i; |
| |
| for (i = 0; i < thislist->n; i++) |
| fprintf(log_fd, "%d ", abs(thislist->t[i].state->id)); |
| } |
| fprintf(log_fd, "\n"); |
| #endif |
| |
| #ifdef NFA_REGEXP_DEBUG_LOG |
| fprintf(debug, "\n-------------------\n"); |
| #endif |
| /* |
| * If the state lists are empty we can stop. |
| */ |
| if (thislist->n == 0) |
| break; |
| |
| // compute nextlist |
| for (listidx = 0; listidx < thislist->n; ++listidx) |
| { |
| // If the list gets very long there probably is something wrong. |
| // At least allow interrupting with CTRL-C. |
| fast_breakcheck(); |
| if (got_int) |
| break; |
| #ifdef FEAT_RELTIME |
| if (nfa_did_time_out()) |
| break; |
| #endif |
| t = &thislist->t[listidx]; |
| |
| #ifdef NFA_REGEXP_DEBUG_LOG |
| nfa_set_code(t->state->c); |
| fprintf(debug, "%s, ", code); |
| #endif |
| #ifdef ENABLE_LOG |
| { |
| int col; |
| |
| if (t->subs.norm.in_use <= 0) |
| col = -1; |
| else if (REG_MULTI) |
| col = t->subs.norm.list.multi[0].start_col; |
| else |
| col = (int)(t->subs.norm.list.line[0].start - rex.line); |
| nfa_set_code(t->state->c); |
| fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n", |
| abs(t->state->id), (int)t->state->c, code, col, |
| pim_info(&t->pim)); |
| } |
| #endif |
| |
| /* |
| * Handle the possible codes of the current state. |
| * The most important is NFA_MATCH. |
| */ |
| add_state = NULL; |
| add_here = FALSE; |
| add_count = 0; |
| switch (t->state->c) |
| { |
| case NFA_MATCH: |
| { |
| // If the match is not at the start of the line, ends before a |
| // composing characters and rex.reg_icombine is not set, that |
| // is not really a match. |
| if (enc_utf8 && !rex.reg_icombine |
| && rex.input != rex.line && utf_iscomposing(curc)) |
| break; |
| |
| nfa_match = TRUE; |
| copy_sub(&submatch->norm, &t->subs.norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub(&submatch->synt, &t->subs.synt); |
| #endif |
| #ifdef ENABLE_LOG |
| log_subsexpr(&t->subs); |
| #endif |
| // Found the left-most longest match, do not look at any other |
| // states at this position. When the list of states is going |
| // to be empty quit without advancing, so that "rex.input" is |
| // correct. |
| if (nextlist->n == 0) |
| clen = 0; |
| goto nextchar; |
| } |
| |
| case NFA_END_INVISIBLE: |
| case NFA_END_INVISIBLE_NEG: |
| case NFA_END_PATTERN: |
| /* |
| * This is only encountered after a NFA_START_INVISIBLE or |
| * NFA_START_INVISIBLE_BEFORE node. |
| * They surround a zero-width group, used with "\@=", "\&", |
| * "\@!", "\@<=" and "\@<!". |
| * If we got here, it means that the current "invisible" group |
| * finished successfully, so return control to the parent |
| * nfa_regmatch(). For a look-behind match only when it ends |
| * in the position in "nfa_endp". |
| * Submatches are stored in *m, and used in the parent call. |
| */ |
| #ifdef ENABLE_LOG |
| if (nfa_endp != NULL) |
| { |
| if (REG_MULTI) |
| fprintf(log_fd, "Current lnum: %d, endp lnum: %d; current col: %d, endp col: %d\n", |
| (int)rex.lnum, |
| (int)nfa_endp->se_u.pos.lnum, |
| (int)(rex.input - rex.line), |
| nfa_endp->se_u.pos.col); |
| else |
| fprintf(log_fd, "Current col: %d, endp col: %d\n", |
| (int)(rex.input - rex.line), |
| (int)(nfa_endp->se_u.ptr - rex.input)); |
| } |
| #endif |
| // If "nfa_endp" is set it's only a match if it ends at |
| // "nfa_endp" |
| if (nfa_endp != NULL && (REG_MULTI |
| ? (rex.lnum != nfa_endp->se_u.pos.lnum |
| || (int)(rex.input - rex.line) |
| != nfa_endp->se_u.pos.col) |
| : rex.input != nfa_endp->se_u.ptr)) |
| break; |
| |
| // do not set submatches for \@! |
| if (t->state->c != NFA_END_INVISIBLE_NEG) |
| { |
| copy_sub(&m->norm, &t->subs.norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub(&m->synt, &t->subs.synt); |
| #endif |
| } |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "Match found:\n"); |
| log_subsexpr(m); |
| #endif |
| nfa_match = TRUE; |
| // See comment above at "goto nextchar". |
| if (nextlist->n == 0) |
| clen = 0; |
| goto nextchar; |
| |
| case NFA_START_INVISIBLE: |
| case NFA_START_INVISIBLE_FIRST: |
| case NFA_START_INVISIBLE_NEG: |
| case NFA_START_INVISIBLE_NEG_FIRST: |
| case NFA_START_INVISIBLE_BEFORE: |
| case NFA_START_INVISIBLE_BEFORE_FIRST: |
| case NFA_START_INVISIBLE_BEFORE_NEG: |
| case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: |
| { |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n", |
| failure_chance(t->state->out, 0), |
| failure_chance(t->state->out1->out, 0)); |
| #endif |
| // Do it directly if there already is a PIM or when |
| // nfa_postprocess() detected it will work better. |
| if (t->pim.result != NFA_PIM_UNUSED |
| || t->state->c == NFA_START_INVISIBLE_FIRST |
| || t->state->c == NFA_START_INVISIBLE_NEG_FIRST |
| || t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST |
| || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) |
| { |
| int in_use = m->norm.in_use; |
| |
| // Copy submatch info for the recursive call, opposite |
| // of what happens on success below. |
| copy_sub_off(&m->norm, &t->subs.norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub_off(&m->synt, &t->subs.synt); |
| #endif |
| |
| /* |
| * First try matching the invisible match, then what |
| * follows. |
| */ |
| result = recursive_regmatch(t->state, NULL, prog, |
| submatch, m, &listids, &listids_len); |
| if (result == NFA_TOO_EXPENSIVE) |
| { |
| nfa_match = result; |
| goto theend; |
| } |
| |
| // for \@! and \@<! it is a match when the result is |
| // FALSE |
| if (result != (t->state->c == NFA_START_INVISIBLE_NEG |
| || t->state->c == NFA_START_INVISIBLE_NEG_FIRST |
| || t->state->c |
| == NFA_START_INVISIBLE_BEFORE_NEG |
| || t->state->c |
| == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) |
| { |
| // Copy submatch info from the recursive call |
| copy_sub_off(&t->subs.norm, &m->norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub_off(&t->subs.synt, &m->synt); |
| #endif |
| // If the pattern has \ze and it matched in the |
| // sub pattern, use it. |
| copy_ze_off(&t->subs.norm, &m->norm); |
| |
| // t->state->out1 is the corresponding |
| // END_INVISIBLE node; Add its out to the current |
| // list (zero-width match). |
| add_here = TRUE; |
| add_state = t->state->out1->out; |
| } |
| m->norm.in_use = in_use; |
| } |
| else |
| { |
| nfa_pim_T pim; |
| |
| /* |
| * First try matching what follows. Only if a match |
| * is found verify the invisible match matches. Add a |
| * nfa_pim_T to the following states, it contains info |
| * about the invisible match. |
| */ |
| pim.state = t->state; |
| pim.result = NFA_PIM_TODO; |
| pim.subs.norm.in_use = 0; |
| #ifdef FEAT_SYN_HL |
| pim.subs.synt.in_use = 0; |
| #endif |
| if (REG_MULTI) |
| { |
| pim.end.pos.col = (int)(rex.input - rex.line); |
| pim.end.pos.lnum = rex.lnum; |
| } |
| else |
| pim.end.ptr = rex.input; |
| |
| // t->state->out1 is the corresponding END_INVISIBLE |
| // node; Add its out to the current list (zero-width |
| // match). |
| if (addstate_here(thislist, t->state->out1->out, |
| &t->subs, &pim, &listidx) == NULL) |
| { |
| nfa_match = NFA_TOO_EXPENSIVE; |
| goto theend; |
| } |
| } |
| } |
| break; |
| |
| case NFA_START_PATTERN: |
| { |
| nfa_state_T *skip = NULL; |
| #ifdef ENABLE_LOG |
| int skip_lid = 0; |
| #endif |
| |
| // There is no point in trying to match the pattern if the |
| // output state is not going to be added to the list. |
| if (state_in_list(nextlist, t->state->out1->out, &t->subs)) |
| { |
| skip = t->state->out1->out; |
| #ifdef ENABLE_LOG |
| skip_lid = nextlist->id; |
| #endif |
| } |
| else if (state_in_list(nextlist, |
| t->state->out1->out->out, &t->subs)) |
| { |
| skip = t->state->out1->out->out; |
| #ifdef ENABLE_LOG |
| skip_lid = nextlist->id; |
| #endif |
| } |
| else if (state_in_list(thislist, |
| t->state->out1->out->out, &t->subs)) |
| { |
| skip = t->state->out1->out->out; |
| #ifdef ENABLE_LOG |
| skip_lid = thislist->id; |
| #endif |
| } |
| if (skip != NULL) |
| { |
| #ifdef ENABLE_LOG |
| nfa_set_code(skip->c); |
| fprintf(log_fd, "> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n", |
| abs(skip->id), skip_lid, skip->c, code); |
| #endif |
| break; |
| } |
| // Copy submatch info to the recursive call, opposite of what |
| // happens afterwards. |
| copy_sub_off(&m->norm, &t->subs.norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub_off(&m->synt, &t->subs.synt); |
| #endif |
| |
| // First try matching the pattern. |
| result = recursive_regmatch(t->state, NULL, prog, |
| submatch, m, &listids, &listids_len); |
| if (result == NFA_TOO_EXPENSIVE) |
| { |
| nfa_match = result; |
| goto theend; |
| } |
| if (result) |
| { |
| int bytelen; |
| |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "NFA_START_PATTERN matches:\n"); |
| log_subsexpr(m); |
| #endif |
| // Copy submatch info from the recursive call |
| copy_sub_off(&t->subs.norm, &m->norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub_off(&t->subs.synt, &m->synt); |
| #endif |
| // Now we need to skip over the matched text and then |
| // continue with what follows. |
| if (REG_MULTI) |
| // TODO: multi-line match |
| bytelen = m->norm.list.multi[0].end_col |
| - (int)(rex.input - rex.line); |
| else |
| bytelen = (int)(m->norm.list.line[0].end - rex.input); |
| |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen); |
| #endif |
| if (bytelen == 0) |
| { |
| // empty match, output of corresponding |
| // NFA_END_PATTERN/NFA_SKIP to be used at current |
| // position |
| add_here = TRUE; |
| add_state = t->state->out1->out->out; |
| } |
| else if (bytelen <= clen) |
| { |
| // match current character, output of corresponding |
| // NFA_END_PATTERN to be used at next position. |
| add_state = t->state->out1->out->out; |
| add_off = clen; |
| } |
| else |
| { |
| // skip over the matched characters, set character |
| // count in NFA_SKIP |
| add_state = t->state->out1->out; |
| add_off = bytelen; |
| add_count = bytelen - clen; |
| } |
| } |
| break; |
| } |
| |
| case NFA_BOL: |
| if (rex.input == rex.line) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_EOL: |
| if (curc == NUL) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_BOW: |
| result = TRUE; |
| |
| if (curc == NUL) |
| result = FALSE; |
| else if (has_mbyte) |
| { |
| int this_class; |
| |
| // Get class of current and previous char (if it exists). |
| this_class = mb_get_class_buf(rex.input, rex.reg_buf); |
| if (this_class <= 1) |
| result = FALSE; |
| else if (reg_prev_class() == this_class) |
| result = FALSE; |
| } |
| else if (!vim_iswordc_buf(curc, rex.reg_buf) |
| || (rex.input > rex.line |
| && vim_iswordc_buf(rex.input[-1], rex.reg_buf))) |
| result = FALSE; |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_EOW: |
| result = TRUE; |
| if (rex.input == rex.line) |
| result = FALSE; |
| else if (has_mbyte) |
| { |
| int this_class, prev_class; |
| |
| // Get class of current and previous char (if it exists). |
| this_class = mb_get_class_buf(rex.input, rex.reg_buf); |
| prev_class = reg_prev_class(); |
| if (this_class == prev_class |
| || prev_class == 0 || prev_class == 1) |
| result = FALSE; |
| } |
| else if (!vim_iswordc_buf(rex.input[-1], rex.reg_buf) |
| || (rex.input[0] != NUL |
| && vim_iswordc_buf(curc, rex.reg_buf))) |
| result = FALSE; |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_BOF: |
| if (rex.lnum == 0 && rex.input == rex.line |
| && (!REG_MULTI || rex.reg_firstlnum == 1)) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_EOF: |
| if (rex.lnum == rex.reg_maxline && curc == NUL) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_COMPOSING: |
| { |
| int mc = curc; |
| int len = 0; |
| nfa_state_T *end; |
| nfa_state_T *sta; |
| int cchars[MAX_MCO]; |
| int ccount = 0; |
| int j; |
| |
| sta = t->state->out; |
| len = 0; |
| if (utf_iscomposing(sta->c)) |
| { |
| // Only match composing character(s), ignore base |
| // character. Used for ".{composing}" and "{composing}" |
| // (no preceding character). |
| len += mb_char2len(mc); |
| } |
| if (rex.reg_icombine && len == 0) |
| { |
| // If \Z was present, then ignore composing characters. |
| // When ignoring the base character this always matches. |
| if (sta->c != curc) |
| result = FAIL; |
| else |
| result = OK; |
| while (sta->c != NFA_END_COMPOSING) |
| sta = sta->out; |
| } |
| |
| // Check base character matches first, unless ignored. |
| else if (len > 0 || mc == sta->c) |
| { |
| if (len == 0) |
| { |
| len += mb_char2len(mc); |
| sta = sta->out; |
| } |
| |
| // We don't care about the order of composing characters. |
| // Get them into cchars[] first. |
| while (len < clen) |
| { |
| mc = mb_ptr2char(rex.input + len); |
| cchars[ccount++] = mc; |
| len += mb_char2len(mc); |
| if (ccount == MAX_MCO) |
| break; |
| } |
| |
| // Check that each composing char in the pattern matches a |
| // composing char in the text. We do not check if all |
| // composing chars are matched. |
| result = OK; |
| while (sta->c != NFA_END_COMPOSING) |
| { |
| for (j = 0; j < ccount; ++j) |
| if (cchars[j] == sta->c) |
| break; |
| if (j == ccount) |
| { |
| result = FAIL; |
| break; |
| } |
| sta = sta->out; |
| } |
| } |
| else |
| result = FAIL; |
| |
| end = t->state->out1; // NFA_END_COMPOSING |
| ADD_STATE_IF_MATCH(end); |
| break; |
| } |
| |
| case NFA_NEWL: |
| if (curc == NUL && !rex.reg_line_lbr && REG_MULTI |
| && rex.lnum <= rex.reg_maxline) |
| { |
| go_to_nextline = TRUE; |
| // Pass -1 for the offset, which means taking the position |
| // at the start of the next line. |
| add_state = t->state->out; |
| add_off = -1; |
| } |
| else if (curc == '\n' && rex.reg_line_lbr) |
| { |
| // match \n as if it is an ordinary character |
| add_state = t->state->out; |
| add_off = 1; |
| } |
| break; |
| |
| case NFA_START_COLL: |
| case NFA_START_NEG_COLL: |
| { |
| // What follows is a list of characters, until NFA_END_COLL. |
| // One of them must match or none of them must match. |
| nfa_state_T *state; |
| int result_if_matched; |
| int c1, c2; |
| |
| // Never match EOL. If it's part of the collection it is added |
| // as a separate state with an OR. |
| if (curc == NUL) |
| break; |
| |
| state = t->state->out; |
| result_if_matched = (t->state->c == NFA_START_COLL); |
| for (;;) |
| { |
| if (state->c == NFA_END_COLL) |
| { |
| result = !result_if_matched; |
| break; |
| } |
| if (state->c == NFA_RANGE_MIN) |
| { |
| c1 = state->val; |
| state = state->out; // advance to NFA_RANGE_MAX |
| c2 = state->val; |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n", |
| curc, c1, c2); |
| #endif |
| if (curc >= c1 && curc <= c2) |
| { |
| result = result_if_matched; |
| break; |
| } |
| if (rex.reg_ic) |
| { |
| int curc_low = MB_CASEFOLD(curc); |
| int done = FALSE; |
| |
| for ( ; c1 <= c2; ++c1) |
| if (MB_CASEFOLD(c1) == curc_low) |
| { |
| result = result_if_matched; |
| done = TRUE; |
| break; |
| } |
| if (done) |
| break; |
| } |
| } |
| else if (state->c < 0 ? check_char_class(state->c, curc) |
| : (curc == state->c |
| || (rex.reg_ic && MB_CASEFOLD(curc) |
| == MB_CASEFOLD(state->c)))) |
| { |
| result = result_if_matched; |
| break; |
| } |
| state = state->out; |
| } |
| if (result) |
| { |
| // next state is in out of the NFA_END_COLL, out1 of |
| // START points to the END state |
| add_state = t->state->out1->out; |
| add_off = clen; |
| } |
| break; |
| } |
| |
| case NFA_ANY: |
| // Any char except '\0', (end of input) does not match. |
| if (curc > 0) |
| { |
| add_state = t->state->out; |
| add_off = clen; |
| } |
| break; |
| |
| case NFA_ANY_COMPOSING: |
| // On a composing character skip over it. Otherwise do |
| // nothing. Always matches. |
| if (enc_utf8 && utf_iscomposing(curc)) |
| { |
| add_off = clen; |
| } |
| else |
| { |
| add_here = TRUE; |
| add_off = 0; |
| } |
| add_state = t->state->out; |
| break; |
| |
| /* |
| * Character classes like \a for alpha, \d for digit etc. |
| */ |
| case NFA_IDENT: // \i |
| result = vim_isIDc(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_SIDENT: // \I |
| result = !VIM_ISDIGIT(curc) && vim_isIDc(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_KWORD: // \k |
| result = vim_iswordp_buf(rex.input, rex.reg_buf); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_SKWORD: // \K |
| result = !VIM_ISDIGIT(curc) |
| && vim_iswordp_buf(rex.input, rex.reg_buf); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_FNAME: // \f |
| result = vim_isfilec(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_SFNAME: // \F |
| result = !VIM_ISDIGIT(curc) && vim_isfilec(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_PRINT: // \p |
| result = vim_isprintc(PTR2CHAR(rex.input)); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_SPRINT: // \P |
| result = !VIM_ISDIGIT(curc) && vim_isprintc(PTR2CHAR(rex.input)); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_WHITE: // \s |
| result = VIM_ISWHITE(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NWHITE: // \S |
| result = curc != NUL && !VIM_ISWHITE(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_DIGIT: // \d |
| result = ri_digit(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NDIGIT: // \D |
| result = curc != NUL && !ri_digit(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_HEX: // \x |
| result = ri_hex(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NHEX: // \X |
| result = curc != NUL && !ri_hex(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_OCTAL: // \o |
| result = ri_octal(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NOCTAL: // \O |
| result = curc != NUL && !ri_octal(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_WORD: // \w |
| result = ri_word(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NWORD: // \W |
| result = curc != NUL && !ri_word(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_HEAD: // \h |
| result = ri_head(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NHEAD: // \H |
| result = curc != NUL && !ri_head(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_ALPHA: // \a |
| result = ri_alpha(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NALPHA: // \A |
| result = curc != NUL && !ri_alpha(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_LOWER: // \l |
| result = ri_lower(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NLOWER: // \L |
| result = curc != NUL && !ri_lower(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_UPPER: // \u |
| result = ri_upper(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NUPPER: // \U |
| result = curc != NUL && !ri_upper(curc); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_LOWER_IC: // [a-z] |
| result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc)); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NLOWER_IC: // [^a-z] |
| result = curc != NUL |
| && !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc))); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_UPPER_IC: // [A-Z] |
| result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc)); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_NUPPER_IC: // ^[A-Z] |
| result = curc != NUL |
| && !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc))); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| |
| case NFA_BACKREF1: |
| case NFA_BACKREF2: |
| case NFA_BACKREF3: |
| case NFA_BACKREF4: |
| case NFA_BACKREF5: |
| case NFA_BACKREF6: |
| case NFA_BACKREF7: |
| case NFA_BACKREF8: |
| case NFA_BACKREF9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZREF1: |
| case NFA_ZREF2: |
| case NFA_ZREF3: |
| case NFA_ZREF4: |
| case NFA_ZREF5: |
| case NFA_ZREF6: |
| case NFA_ZREF7: |
| case NFA_ZREF8: |
| case NFA_ZREF9: |
| #endif |
| // \1 .. \9 \z1 .. \z9 |
| { |
| int subidx; |
| int bytelen; |
| |
| if (t->state->c <= NFA_BACKREF9) |
| { |
| subidx = t->state->c - NFA_BACKREF1 + 1; |
| result = match_backref(&t->subs.norm, subidx, &bytelen); |
| } |
| #ifdef FEAT_SYN_HL |
| else |
| { |
| subidx = t->state->c - NFA_ZREF1 + 1; |
| result = match_zref(subidx, &bytelen); |
| } |
| #endif |
| |
| if (result) |
| { |
| if (bytelen == 0) |
| { |
| // empty match always works, output of NFA_SKIP to be |
| // used next |
| add_here = TRUE; |
| add_state = t->state->out->out; |
| } |
| else if (bytelen <= clen) |
| { |
| // match current character, jump ahead to out of |
| // NFA_SKIP |
| add_state = t->state->out->out; |
| add_off = clen; |
| } |
| else |
| { |
| // skip over the matched characters, set character |
| // count in NFA_SKIP |
| add_state = t->state->out; |
| add_off = bytelen; |
| add_count = bytelen - clen; |
| } |
| } |
| break; |
| } |
| case NFA_SKIP: |
| // character of previous matching \1 .. \9 or \@> |
| if (t->count - clen <= 0) |
| { |
| // end of match, go to what follows |
| add_state = t->state->out; |
| add_off = clen; |
| } |
| else |
| { |
| // add state again with decremented count |
| add_state = t->state; |
| add_off = 0; |
| add_count = t->count - clen; |
| } |
| break; |
| |
| case NFA_LNUM: |
| case NFA_LNUM_GT: |
| case NFA_LNUM_LT: |
| result = (REG_MULTI && |
| nfa_re_num_cmp(t->state->val, t->state->c - NFA_LNUM, |
| (long_u)(rex.lnum + rex.reg_firstlnum))); |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_COL: |
| case NFA_COL_GT: |
| case NFA_COL_LT: |
| result = nfa_re_num_cmp(t->state->val, t->state->c - NFA_COL, |
| (long_u)(rex.input - rex.line) + 1); |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_VCOL: |
| case NFA_VCOL_GT: |
| case NFA_VCOL_LT: |
| { |
| int op = t->state->c - NFA_VCOL; |
| colnr_T col = (colnr_T)(rex.input - rex.line); |
| win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; |
| |
| // Bail out quickly when there can't be a match, avoid the |
| // overhead of win_linetabsize() on long lines. |
| if (op != 1 && col > t->state->val |
| * (has_mbyte ? MB_MAXBYTES : 1)) |
| break; |
| result = FALSE; |
| if (op == 1 && col - 1 > t->state->val && col > 100) |
| { |
| int ts = wp->w_buffer->b_p_ts; |
| |
| // Guess that a character won't use more columns than |
| // 'tabstop', with a minimum of 4. |
| if (ts < 4) |
| ts = 4; |
| result = col > t->state->val * ts; |
| } |
| if (!result) |
| { |
| linenr_T lnum = REG_MULTI |
| ? rex.reg_firstlnum + rex.lnum : 1; |
| long_u vcol; |
| |
| if (REG_MULTI && (lnum <= 0 |
| || lnum > wp->w_buffer->b_ml.ml_line_count)) |
| lnum = 1; |
| vcol = (long_u)win_linetabsize(wp, lnum, rex.line, col); |
| result = nfa_re_num_cmp(t->state->val, op, vcol + 1); |
| } |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| } |
| break; |
| |
| case NFA_MARK: |
| case NFA_MARK_GT: |
| case NFA_MARK_LT: |
| { |
| pos_T *pos; |
| size_t col = REG_MULTI ? rex.input - rex.line : 0; |
| |
| pos = getmark_buf(rex.reg_buf, t->state->val, FALSE); |
| |
| // Line may have been freed, get it again. |
| if (REG_MULTI) |
| { |
| rex.line = reg_getline(rex.lnum); |
| rex.input = rex.line + col; |
| } |
| |
| // Compare the mark position to the match position, if the mark |
| // exists and mark is set in reg_buf. |
| if (pos != NULL && pos->lnum > 0) |
| { |
| colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum |
| && pos->col == MAXCOL |
| ? (colnr_T)STRLEN(reg_getline( |
| pos->lnum - rex.reg_firstlnum)) |
| : pos->col; |
| |
| result = (pos->lnum == rex.lnum + rex.reg_firstlnum |
| ? (pos_col == (colnr_T)(rex.input - rex.line) |
| ? t->state->c == NFA_MARK |
| : (pos_col < (colnr_T)(rex.input - rex.line) |
| ? t->state->c == NFA_MARK_GT |
| : t->state->c == NFA_MARK_LT)) |
| : (pos->lnum < rex.lnum + rex.reg_firstlnum |
| ? t->state->c == NFA_MARK_GT |
| : t->state->c == NFA_MARK_LT)); |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| } |
| break; |
| } |
| |
| case NFA_CURSOR: |
| result = (rex.reg_win != NULL |
| && (rex.lnum + rex.reg_firstlnum |
| == rex.reg_win->w_cursor.lnum) |
| && ((colnr_T)(rex.input - rex.line) |
| == rex.reg_win->w_cursor.col)); |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_VISUAL: |
| result = reg_match_visual(); |
| if (result) |
| { |
| add_here = TRUE; |
| add_state = t->state->out; |
| } |
| break; |
| |
| case NFA_MOPEN1: |
| case NFA_MOPEN2: |
| case NFA_MOPEN3: |
| case NFA_MOPEN4: |
| case NFA_MOPEN5: |
| case NFA_MOPEN6: |
| case NFA_MOPEN7: |
| case NFA_MOPEN8: |
| case NFA_MOPEN9: |
| #ifdef FEAT_SYN_HL |
| case NFA_ZOPEN: |
| case NFA_ZOPEN1: |
| case NFA_ZOPEN2: |
| case NFA_ZOPEN3: |
| case NFA_ZOPEN4: |
| case NFA_ZOPEN5: |
| case NFA_ZOPEN6: |
| case NFA_ZOPEN7: |
| case NFA_ZOPEN8: |
| case NFA_ZOPEN9: |
| #endif |
| case NFA_NOPEN: |
| case NFA_ZSTART: |
| // These states are only added to be able to bail out when |
| // they are added again, nothing is to be done. |
| break; |
| |
| default: // regular character |
| { |
| int c = t->state->c; |
| |
| #ifdef DEBUG |
| if (c < 0) |
| siemsg("INTERNAL: Negative state char: %ld", (long)c); |
| #endif |
| result = (c == curc); |
| |
| if (!result && rex.reg_ic) |
| result = MB_CASEFOLD(c) == MB_CASEFOLD(curc); |
| // If rex.reg_icombine is not set only skip over the character |
| // itself. When it is set skip over composing characters. |
| if (result && enc_utf8 && !rex.reg_icombine) |
| clen = utf_ptr2len(rex.input); |
| ADD_STATE_IF_MATCH(t->state); |
| break; |
| } |
| |
| } // switch (t->state->c) |
| |
| if (add_state != NULL) |
| { |
| nfa_pim_T *pim; |
| nfa_pim_T pim_copy; |
| |
| if (t->pim.result == NFA_PIM_UNUSED) |
| pim = NULL; |
| else |
| pim = &t->pim; |
| |
| // Handle the postponed invisible match if the match might end |
| // without advancing and before the end of the line. |
| if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) |
| { |
| if (pim->result == NFA_PIM_TODO) |
| { |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "\n"); |
| fprintf(log_fd, "==================================\n"); |
| fprintf(log_fd, "Postponed recursive nfa_regmatch()\n"); |
| fprintf(log_fd, "\n"); |
| #endif |
| result = recursive_regmatch(pim->state, pim, |
| prog, submatch, m, &listids, &listids_len); |
| pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH; |
| // for \@! and \@<! it is a match when the result is |
| // FALSE |
| if (result != (pim->state->c == NFA_START_INVISIBLE_NEG |
| || pim->state->c == NFA_START_INVISIBLE_NEG_FIRST |
| || pim->state->c |
| == NFA_START_INVISIBLE_BEFORE_NEG |
| || pim->state->c |
| == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) |
| { |
| // Copy submatch info from the recursive call |
| copy_sub_off(&pim->subs.norm, &m->norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub_off(&pim->subs.synt, &m->synt); |
| #endif |
| } |
| } |
| else |
| { |
| result = (pim->result == NFA_PIM_MATCH); |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "\n"); |
| fprintf(log_fd, "Using previous recursive nfa_regmatch() result, result == %d\n", pim->result); |
| fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : "FALSE"); |
| fprintf(log_fd, "\n"); |
| #endif |
| } |
| |
| // for \@! and \@<! it is a match when result is FALSE |
| if (result != (pim->state->c == NFA_START_INVISIBLE_NEG |
| || pim->state->c == NFA_START_INVISIBLE_NEG_FIRST |
| || pim->state->c |
| == NFA_START_INVISIBLE_BEFORE_NEG |
| || pim->state->c |
| == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) |
| { |
| // Copy submatch info from the recursive call |
| copy_sub_off(&t->subs.norm, &pim->subs.norm); |
| #ifdef FEAT_SYN_HL |
| if (rex.nfa_has_zsubexpr) |
| copy_sub_off(&t->subs.synt, &pim->subs.synt); |
| #endif |
| } |
| else |
| // look-behind match failed, don't add the state |
| continue; |
| |
| // Postponed invisible match was handled, don't add it to |
| // following states. |
| pim = NULL; |
| } |
| |
| // If "pim" points into l->t it will become invalid when |
| // adding the state causes the list to be reallocated. Make a |
| // local copy to avoid that. |
| if (pim == &t->pim) |
| { |
| copy_pim(&pim_copy, pim); |
| pim = &pim_copy; |
| } |
| |
| if (add_here) |
| r = addstate_here(thislist, add_state, &t->subs, |
| pim, &listidx); |
| else |
| { |
| r = addstate(nextlist, add_state, &t->subs, pim, add_off); |
| if (add_count > 0) |
| nextlist->t[nextlist->n - 1].count = add_count; |
| } |
| if (r == NULL) |
| { |
| nfa_match = NFA_TOO_EXPENSIVE; |
| goto theend; |
| } |
| } |
| |
| } // for (thislist = thislist; thislist->state; thislist++) |
| |
| // Look for the start of a match in the current position by adding the |
| // start state to the list of states. |
| // The first found match is the leftmost one, thus the order of states |
| // matters! |
| // Do not add the start state in recursive calls of nfa_regmatch(), |
| // because recursive calls should only start in the first position. |
| // Unless "nfa_endp" is not NULL, then we match the end position. |
| // Also don't start a match past the first line. |
| if (nfa_match == FALSE |
| && ((toplevel |
| && rex.lnum == 0 |
| && clen != 0 |
| && (rex.reg_maxcol == 0 |
| || (colnr_T)(rex.input - rex.line) < rex.reg_maxcol)) |
| || (nfa_endp != NULL |
| && (REG_MULTI |
| ? (rex.lnum < nfa_endp->se_u.pos.lnum |
| || (rex.lnum == nfa_endp->se_u.pos.lnum |
| && (int)(rex.input - rex.line) |
| < nfa_endp->se_u.pos.col)) |
| : rex.input < nfa_endp->se_u.ptr)))) |
| { |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, "(---) STARTSTATE\n"); |
| #endif |
| // Inline optimized code for addstate() if we know the state is |
| // the first MOPEN. |
| if (toplevel) |
| { |
| int add = TRUE; |
| int c; |
| |
| if (prog->regstart != NUL && clen != 0) |
| { |
| if (nextlist->n == 0) |
| { |
| colnr_T col = (colnr_T)(rex.input - rex.line) + clen; |
| |
| // Nextlist is empty, we can skip ahead to the |
| // character that must appear at the start. |
| if (skip_to_start(prog->regstart, &col) == FAIL) |
| break; |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, " Skipping ahead %d bytes to regstart\n", |
| col - ((colnr_T)(rex.input - rex.line) + clen)); |
| #endif |
| rex.input = rex.line + col - clen; |
| } |
| else |
| { |
| // Checking if the required start character matches is |
| // cheaper than adding a state that won't match. |
| c = PTR2CHAR(rex.input + clen); |
| if (c != prog->regstart && (!rex.reg_ic |
| || MB_CASEFOLD(c) != MB_CASEFOLD(prog->regstart))) |
| { |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, " Skipping start state, regstart does not match\n"); |
| #endif |
| add = FALSE; |
| } |
| } |
| } |
| |
| if (add) |
| { |
| if (REG_MULTI) |
| m->norm.list.multi[0].start_col = |
| (colnr_T)(rex.input - rex.line) + clen; |
| else |
| m->norm.list.line[0].start = rex.input + clen; |
| if (addstate(nextlist, start->out, m, NULL, clen) == NULL) |
| { |
| nfa_match = NFA_TOO_EXPENSIVE; |
| goto theend; |
| } |
| } |
| } |
| else |
| { |
| if (addstate(nextlist, start, m, NULL, clen) == NULL) |
| { |
| nfa_match = NFA_TOO_EXPENSIVE; |
| goto theend; |
| } |
| } |
| } |
| |
| #ifdef ENABLE_LOG |
| fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n); |
| { |
| int i; |
| |
| for (i = 0; i < thislist->n; i++) |
| fprintf(log_fd, "%d ", abs(thislist->t[i].state->id)); |
| } |
| fprintf(log_fd, "\n"); |
| #endif |
| |
| nextchar: |
| // Advance to the next character, or advance to the next line, or |
| // finish. |
| if (clen != 0) |
| rex.input += clen; |
| else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI |
| && rex.lnum < nfa_endp->se_u.pos.lnum)) |
| reg_nextline(); |
| else |
| break; |
| |
| // Allow interrupting with CTRL-C. |
| line_breakcheck(); |
| if (got_int) |
| break; |
| #ifdef FEAT_RELTIME |
| if (nfa_did_time_out()) |
| break; |
| #endif |
| } |
| |
| #ifdef ENABLE_LOG |
| if (log_fd != stderr) |
| fclose(log_fd); |
| log_fd = NULL; |
| #endif |
| |
| theend: |
| // Free memory |
| vim_free(list[0].t); |
| vim_free(list[1].t); |
| vim_free(listids); |
| #undef ADD_STATE_IF_MATCH |
| #ifdef NFA_REGEXP_DEBUG_LOG |
| fclose(debug); |
| #endif |
| |
| return nfa_match; |
| } |
| |
| /* |
| * Try match of "prog" with at rex.line["col"]. |
| * Returns <= 0 for failure, number of lines contained in the match otherwise. |
| */ |
| static long |
| nfa_regtry( |
| nfa_regprog_T *prog, |
| colnr_T col, |
| int *timed_out UNUSED) // flag set on timeout or NULL |
| { |
| int i; |
| regsubs_T subs, m; |
| nfa_state_T *start = prog->start; |
| int result; |
| #ifdef ENABLE_LOG |
| FILE *f; |
| #endif |
| |
| rex.input = rex.line + col; |
| #ifdef FEAT_RELTIME |
| nfa_timed_out = timed_out; |
| #endif |
| |
| #ifdef ENABLE_LOG |
| f = fopen(NFA_REGEXP_RUN_LOG, "a"); |
| if (f != NULL) |
| { |
| fprintf(f, "\n\n\t=======================================================\n"); |
| #ifdef DEBUG |
| fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr); |
| #endif |
| fprintf(f, "\tInput text is \"%s\" \n", rex.input); |
| fprintf(f, "\t=======================================================\n\n"); |
| nfa_print_state(f, start); |
| fprintf(f, "\n\n"); |
| fclose(f); |
| } |
| else |
| emsg("Could not open temporary log file for writing"); |
| #endif |
| |
| clear_sub(&subs.norm); |
| clear_sub(&m.norm); |
| #ifdef FEAT_SYN_HL |
| clear_sub(&subs.synt); |
| clear_sub(&m.synt); |
| #endif |
| |
| result = nfa_regmatch(prog, start, &subs, &m); |
| if (result == FALSE) |
| return 0; |
| else if (result == NFA_TOO_EXPENSIVE) |
| return result; |
| |
| cleanup_subexpr(); |
| if (REG_MULTI) |
| { |
| for (i = 0; i < subs.norm.in_use; i++) |
| { |
| rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum; |
| rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col; |
| |
| rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum; |
| rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col; |
| } |
| |
| if (rex.reg_startpos[0].lnum < 0) |
| { |
| rex.reg_startpos[0].lnum = 0; |
| rex.reg_startpos[0].col = col; |
| } |
| if (rex.reg_endpos[0].lnum < 0) |
| { |
| // pattern has a \ze but it didn't match, use current end |
| rex.reg_endpos[0].lnum = rex.lnum; |
| rex.reg_endpos[0].col = (int)(rex.input - rex.line); |
| } |
| else |
| // Use line number of "\ze". |
| rex.lnum = rex.reg_endpos[0].lnum; |
| } |
| else |
| { |
| for (i = 0; i < subs.norm.in_use; i++) |
| { |
| rex.reg_startp[i] = subs.norm.list.line[i].start; |
| rex.reg_endp[i] = subs.norm.list.line[i].end; |
| } |
| |
| if (rex.reg_startp[0] == NULL) |
| rex.reg_startp[0] = rex.line + col; |
| if (rex.reg_endp[0] == NULL) |
| rex.reg_endp[0] = rex.input; |
| } |
| |
| #ifdef FEAT_SYN_HL |
| // Package any found \z(...\) matches for export. Default is none. |
| unref_extmatch(re_extmatch_out); |
| re_extmatch_out = NULL; |
| |
| if (prog->reghasz == REX_SET) |
| { |
| cleanup_zsubexpr(); |
| re_extmatch_out = make_extmatch(); |
| if (re_extmatch_out == NULL) |
| return 0; |
| // Loop over \z1, \z2, etc. There is no \z0. |
| for (i = 1; i < subs.synt.in_use; i++) |
| { |
| if (REG_MULTI) |
| { |
| struct multipos *mpos = &subs.synt.list.multi[i]; |
| |
| // Only accept single line matches that are valid. |
| if (mpos->start_lnum >= 0 |
| && mpos->start_lnum == mpos->end_lnum |
| && mpos->end_col >= mpos->start_col) |
| re_extmatch_out->matches[i] = |
| vim_strnsave(reg_getline(mpos->start_lnum) |
| + mpos->start_col, |
| mpos->end_col - mpos->start_col); |
| } |
| else |
| { |
| struct linepos *lpos = &subs.synt.list.line[i]; |
| |
| if (lpos->start != NULL && lpos->end != NULL) |
| re_extmatch_out->matches[i] = |
| vim_strnsave(lpos->start, lpos->end - lpos->start); |
| } |
| } |
| } |
| #endif |
| |
| return 1 + rex.lnum; |
| } |
| |
| /* |
| * Match a regexp against a string ("line" points to the string) or multiple |
| * lines (if "line" is NULL, use reg_getline()). |
| * |
| * Returns <= 0 for failure, number of lines contained in the match otherwise. |
| */ |
| static long |
| nfa_regexec_both( |
| char_u *line, |
| colnr_T startcol, // column to start looking for match |
| int *timed_out) // flag set on timeout or NULL |
| { |
| nfa_regprog_T *prog; |
| long retval = 0L; |
| int i; |
| colnr_T col = startcol; |
| |
| if (REG_MULTI) |
| { |
| prog = (nfa_regprog_T *)rex.reg_mmatch->regprog; |
| line = reg_getline((linenr_T)0); // relative to the cursor |
| rex.reg_startpos = rex.reg_mmatch->startpos; |
| rex.reg_endpos = rex.reg_mmatch->endpos; |
| } |
| else |
| { |
| prog = (nfa_regprog_T *)rex.reg_match->regprog; |
| rex.reg_startp = rex.reg_match->startp; |
| rex.reg_endp = rex.reg_match->endp; |
| } |
| |
| // Be paranoid... |
| if (prog == NULL || line == NULL) |
| { |
| iemsg(_(e_null_argument)); |
| goto theend; |
| } |
| |
| // If pattern contains "\c" or "\C": overrule value of rex.reg_ic |
| if (prog->regflags & RF_ICASE) |
| rex.reg_ic = TRUE; |
| else if (prog->regflags & RF_NOICASE) |
| rex.reg_ic = FALSE; |
| |
| // If pattern contains "\Z" overrule value of rex.reg_icombine |
| if (prog->regflags & RF_ICOMBINE) |
| rex.reg_icombine = TRUE; |
| |
| rex.line = line; |
| rex.lnum = 0; // relative to line |
| |
| rex.nfa_has_zend = prog->has_zend; |
| rex.nfa_has_backref = prog->has_backref; |
| rex.nfa_nsubexpr = prog->nsubexp; |
| rex.nfa_listid = 1; |
| rex.nfa_alt_listid = 2; |
| #ifdef DEBUG |
| nfa_regengine.expr = prog->pattern; |
| #endif |
| |
| if (prog->reganch && col > 0) |
| return 0L; |
| |
| rex.need_clear_subexpr = TRUE; |
| #ifdef FEAT_SYN_HL |
| // Clear the external match subpointers if necessary. |
| if (prog->reghasz == REX_SET) |
| { |
| rex.nfa_has_zsubexpr = TRUE; |
| rex.need_clear_zsubexpr = TRUE; |
| } |
| else |
| { |
| rex.nfa_has_zsubexpr = FALSE; |
| rex.need_clear_zsubexpr = FALSE; |
| } |
| #endif |
| |
| if (prog->regstart != NUL) |
| { |
| // Skip ahead until a character we know the match must start with. |
| // When there is none there is no match. |
| if (skip_to_start(prog->regstart, &col) == FAIL) |
| return 0L; |
| |
| // If match_text is set it contains the full text that must match. |
| // Nothing else to try. Doesn't handle combining chars well. |
| if (prog->match_text != NULL && !rex.reg_icombine) |
| { |
| retval = find_match_text(col, prog->regstart, prog->match_text); |
| if (REG_MULTI) |
| rex.reg_mmatch->rmm_matchcol = col; |
| else |
| rex.reg_match->rm_matchcol = col; |
| return retval; |
| } |
| } |
| |
| // If the start column is past the maximum column: no need to try. |
| if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) |
| goto theend; |
| |
| // Set the "nstate" used by nfa_regcomp() to zero to trigger an error when |
| // it's accidentally used during execution. |
| nstate = 0; |
| for (i = 0; i < prog->nstate; ++i) |
| { |
| prog->state[i].id = i; |
| prog->state[i].lastlist[0] = 0; |
| prog->state[i].lastlist[1] = 0; |
| } |
| |
| retval = nfa_regtry(prog, col, timed_out); |
| |
| #ifdef DEBUG |
| nfa_regengine.expr = NULL; |
| #endif |
| |
| theend: |
| if (retval > 0) |
| { |
| // Make sure the end is never before the start. Can happen when \zs and |
| // \ze are used. |
| if (REG_MULTI) |
| { |
| lpos_T *start = &rex.reg_mmatch->startpos[0]; |
| lpos_T *end = &rex.reg_mmatch->endpos[0]; |
| |
| if (end->lnum < start->lnum |
| || (end->lnum == start->lnum && end->col < start->col)) |
| rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0]; |
| |
| // startpos[0] may be set by "\zs", also return the column where |
| // the whole pattern matched. |
| rex.reg_mmatch->rmm_matchcol = col; |
| } |
| else |
| { |
| if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) |
| rex.reg_match->endp[0] = rex.reg_match->startp[0]; |
| |
| // startpos[0] may be set by "\zs", also return the column where |
| // the whole pattern matched. |
| rex.reg_match->rm_matchcol = col; |
| } |
| } |
| |
| return retval; |
| } |
| |
| /* |
| * Compile a regular expression into internal code for the NFA matcher. |
| * Returns the program in allocated space. Returns NULL for an error. |
| */ |
| static regprog_T * |
| nfa_regcomp(char_u *expr, int re_flags) |
| { |
| nfa_regprog_T *prog = NULL; |
| size_t prog_size; |
| int *postfix; |
| |
| if (expr == NULL) |
| return NULL; |
| |
| #ifdef DEBUG |
| nfa_regengine.expr = expr; |
| #endif |
| nfa_re_flags = re_flags; |
| |
| init_class_tab(); |
| |
| if (nfa_regcomp_start(expr, re_flags) == FAIL) |
| return NULL; |
| |
| // Build postfix form of the regexp. Needed to build the NFA |
| // (and count its size). |
| postfix = re2post(); |
| if (postfix == NULL) |
| goto fail; // Cascaded (syntax?) error |
| |
| /* |
| * In order to build the NFA, we parse the input regexp twice: |
| * 1. first pass to count size (so we can allocate space) |
| * 2. second to emit code |
| */ |
| #ifdef ENABLE_LOG |
| { |
| FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a"); |
| |
| if (f != NULL) |
| { |
| fprintf(f, "\n*****************************\n\n\n\n\tCompiling regexp \"%s\"... hold on !\n", expr); |
| fclose(f); |
| } |
| } |
| #endif |
| |
| /* |
| * PASS 1 |
| * Count number of NFA states in "nstate". Do not build the NFA. |
| */ |
| post2nfa(postfix, post_ptr, TRUE); |
| |
| // allocate the regprog with space for the compiled regexp |
| prog_size = sizeof(nfa_regprog_T) + sizeof(nfa_state_T) * (nstate - 1); |
| prog = alloc(prog_size); |
| if (prog == NULL) |
| goto fail; |
| state_ptr = prog->state; |
| prog->re_in_use = FALSE; |
| |
| /* |
| * PASS 2 |
| * Build the NFA |
| */ |
| prog->start = post2nfa(postfix, post_ptr, FALSE); |
| if (prog->start == NULL) |
| goto fail; |
| |
| prog->regflags = regflags; |
| prog->engine = &nfa_regengine; |
| prog->nstate = nstate; |
| prog->has_zend = rex.nfa_has_zend; |
| prog->has_backref = rex.nfa_has_backref; |
| prog->nsubexp = regnpar; |
| |
| nfa_postprocess(prog); |
| |
| prog->reganch = nfa_get_reganch(prog->start, 0); |
| prog->regstart = nfa_get_regstart(prog->start, 0); |
| prog->match_text = nfa_get_match_text(prog->start); |
| |
| #ifdef ENABLE_LOG |
| nfa_postfix_dump(expr, OK); |
| nfa_dump(prog); |
| #endif |
| #ifdef FEAT_SYN_HL |
| // Remember whether this pattern has any \z specials in it. |
| prog->reghasz = re_has_z; |
| #endif |
| prog->pattern = vim_strsave(expr); |
| #ifdef DEBUG |
| nfa_regengine.expr = NULL; |
| #endif |
| |
| out: |
| VIM_CLEAR(post_start); |
| post_ptr = post_end = NULL; |
| state_ptr = NULL; |
| return (regprog_T *)prog; |
| |
| fail: |
| VIM_CLEAR(prog); |
| #ifdef ENABLE_LOG |
| nfa_postfix_dump(expr, FAIL); |
| #endif |
| #ifdef DEBUG |
| nfa_regengine.expr = NULL; |
| #endif |
| goto out; |
| } |
| |
| /* |
| * Free a compiled regexp program, returned by nfa_regcomp(). |
| */ |
| static void |
| nfa_regfree(regprog_T *prog) |
| { |
| if (prog != NULL) |
| { |
| vim_free(((nfa_regprog_T *)prog)->match_text); |
| vim_free(((nfa_regprog_T *)prog)->pattern); |
| vim_free(prog); |
| } |
| } |
| |
| /* |
| * Match a regexp against a string. |
| * "rmp->regprog" is a compiled regexp as returned by nfa_regcomp(). |
| * Uses curbuf for line count and 'iskeyword'. |
| * If "line_lbr" is TRUE consider a "\n" in "line" to be a line break. |
| * |
| * Returns <= 0 for failure, number of lines contained in the match otherwise. |
| */ |
| static int |
| nfa_regexec_nl( |
| regmatch_T *rmp, |
| char_u *line, // string to match against |
| colnr_T col, // column to start looking for match |
| int line_lbr) |
| { |
| rex.reg_match = rmp; |
| rex.reg_mmatch = NULL; |
| rex.reg_maxline = 0; |
| rex.reg_line_lbr = line_lbr; |
| rex.reg_buf = curbuf; |
| rex.reg_win = NULL; |
| rex.reg_ic = rmp->rm_ic; |
| rex.reg_icombine = FALSE; |
| rex.reg_maxcol = 0; |
| return nfa_regexec_both(line, col, NULL); |
| } |
| |
| |
| /* |
| * Match a regexp against multiple lines. |
| * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). |
| * Uses curbuf for line count and 'iskeyword'. |
| * |
| * Return <= 0 if there is no match. Return number of lines contained in the |
| * match otherwise. |
| * |
| * Note: the body is the same as bt_regexec() except for nfa_regexec_both() |
| * |
| * ! Also NOTE : match may actually be in another line. e.g.: |
| * when r.e. is \nc, cursor is at 'a' and the text buffer looks like |
| * |
| * +-------------------------+ |
| * |a | |
| * |b | |
| * |c | |
| * | | |
| * +-------------------------+ |
| * |
| * then nfa_regexec_multi() returns 3. while the original |
| * vim_regexec_multi() returns 0 and a second call at line 2 will return 2. |
| * |
| * FIXME if this behavior is not compatible. |
| */ |
| static long |
| nfa_regexec_multi( |
| regmmatch_T *rmp, |
| win_T *win, // window in which to search or NULL |
| buf_T *buf, // buffer in which to search |
| linenr_T lnum, // nr of line to start looking for match |
| colnr_T col, // column to start looking for match |
| int *timed_out) // flag set on timeout or NULL |
| { |
| init_regexec_multi(rmp, win, buf, lnum); |
| return nfa_regexec_both(NULL, col, timed_out); |
| } |
| |
| #ifdef DEBUG |
| # undef ENABLE_LOG |
| #endif |