Pierre Ossman | c039726 | 2014-03-14 15:59:46 +0100 | [diff] [blame^] | 1 | /* Copyright (C) 2000-2003 Constantin Kaplinsky. All Rights Reserved. |
| 2 | * Copyright (C) 2011 D. R. Commander. All Rights Reserved. |
| 3 | * Copyright 2014 Pierre Ossman for Cendio AB |
| 4 | * |
| 5 | * This is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This software is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this software; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
| 18 | * USA. |
| 19 | */ |
| 20 | #include <rfb/EncodeManager.h> |
| 21 | #include <rfb/Encoder.h> |
| 22 | #include <rfb/Palette.h> |
| 23 | #include <rfb/SConnection.h> |
| 24 | #include <rfb/SMsgWriter.h> |
| 25 | #include <rfb/UpdateTracker.h> |
| 26 | |
| 27 | #include <rfb/RawEncoder.h> |
| 28 | #include <rfb/RREEncoder.h> |
| 29 | #include <rfb/HextileEncoder.h> |
| 30 | #include <rfb/ZRLEEncoder.h> |
| 31 | #include <rfb/TightEncoder.h> |
| 32 | #include <rfb/TightJPEGEncoder.h> |
| 33 | |
| 34 | using namespace rfb; |
| 35 | |
| 36 | // Split each rectangle into smaller ones no larger than this area, |
| 37 | // and no wider than this width. |
| 38 | static const int SubRectMaxArea = 65536; |
| 39 | static const int SubRectMaxWidth = 2048; |
| 40 | |
| 41 | // The size in pixels of either side of each block tested when looking |
| 42 | // for solid blocks. |
| 43 | static const int SolidSearchBlock = 16; |
| 44 | // Don't bother with blocks smaller than this |
| 45 | static const int SolidBlockMinArea = 2048; |
| 46 | |
| 47 | namespace rfb { |
| 48 | |
| 49 | enum EncoderClass { |
| 50 | encoderRaw, |
| 51 | encoderRRE, |
| 52 | encoderHextile, |
| 53 | encoderTight, |
| 54 | encoderTightJPEG, |
| 55 | encoderZRLE, |
| 56 | encoderClassMax, |
| 57 | }; |
| 58 | |
| 59 | enum EncoderType { |
| 60 | encoderSolid, |
| 61 | encoderBitmap, |
| 62 | encoderBitmapRLE, |
| 63 | encoderIndexed, |
| 64 | encoderIndexedRLE, |
| 65 | encoderFullColour, |
| 66 | encoderTypeMax, |
| 67 | }; |
| 68 | |
| 69 | struct RectInfo { |
| 70 | int rleRuns; |
| 71 | Palette palette; |
| 72 | }; |
| 73 | |
| 74 | }; |
| 75 | |
| 76 | EncodeManager::EncodeManager(SConnection* conn_) : conn(conn_) |
| 77 | { |
| 78 | encoders.resize(encoderClassMax, NULL); |
| 79 | activeEncoders.resize(encoderTypeMax, encoderRaw); |
| 80 | |
| 81 | encoders[encoderRaw] = new RawEncoder(conn); |
| 82 | encoders[encoderRRE] = new RREEncoder(conn); |
| 83 | encoders[encoderHextile] = new HextileEncoder(conn); |
| 84 | encoders[encoderTight] = new TightEncoder(conn); |
| 85 | encoders[encoderTightJPEG] = new TightJPEGEncoder(conn); |
| 86 | encoders[encoderZRLE] = new ZRLEEncoder(conn); |
| 87 | } |
| 88 | |
| 89 | EncodeManager::~EncodeManager() |
| 90 | { |
| 91 | std::vector<Encoder*>::iterator iter; |
| 92 | |
| 93 | for (iter = encoders.begin();iter != encoders.end();iter++) |
| 94 | delete *iter; |
| 95 | } |
| 96 | |
| 97 | bool EncodeManager::supported(int encoding) |
| 98 | { |
| 99 | switch (encoding) { |
| 100 | case encodingRaw: |
| 101 | case encodingRRE: |
| 102 | case encodingHextile: |
| 103 | case encodingZRLE: |
| 104 | case encodingTight: |
| 105 | return true; |
| 106 | default: |
| 107 | return false; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | void EncodeManager::writeUpdate(const UpdateInfo& ui, const PixelBuffer* pb, |
| 112 | const RenderedCursor* renderedCursor) |
| 113 | { |
| 114 | int nRects; |
| 115 | Region changed; |
| 116 | |
| 117 | prepareEncoders(); |
| 118 | |
| 119 | if (conn->cp.supportsLastRect) |
| 120 | nRects = 0xFFFF; |
| 121 | else { |
| 122 | nRects = ui.copied.numRects(); |
| 123 | nRects += computeNumRects(ui.changed); |
| 124 | |
| 125 | if (renderedCursor != NULL) |
| 126 | nRects += 1; |
| 127 | } |
| 128 | |
| 129 | conn->writer()->writeFramebufferUpdateStart(nRects); |
| 130 | |
| 131 | writeCopyRects(ui); |
| 132 | |
| 133 | /* |
| 134 | * We start by searching for solid rects, which are then removed |
| 135 | * from the changed region. |
| 136 | */ |
| 137 | changed.copyFrom(ui.changed); |
| 138 | |
| 139 | if (conn->cp.supportsLastRect) |
| 140 | writeSolidRects(&changed, pb); |
| 141 | |
| 142 | writeRects(changed, pb); |
| 143 | |
| 144 | if (renderedCursor != NULL) { |
| 145 | Rect renderedCursorRect; |
| 146 | |
| 147 | renderedCursorRect = renderedCursor->getEffectiveRect(); |
| 148 | writeSubRect(renderedCursorRect, renderedCursor); |
| 149 | } |
| 150 | |
| 151 | conn->writer()->writeFramebufferUpdateEnd(); |
| 152 | } |
| 153 | |
| 154 | void EncodeManager::prepareEncoders() |
| 155 | { |
| 156 | enum EncoderClass solid, bitmap, bitmapRLE; |
| 157 | enum EncoderClass indexed, indexedRLE, fullColour; |
| 158 | |
| 159 | rdr::S32 preferred; |
| 160 | |
| 161 | std::vector<int>::iterator iter; |
| 162 | |
| 163 | solid = bitmap = bitmapRLE = encoderRaw; |
| 164 | indexed = indexedRLE = fullColour = encoderRaw; |
| 165 | |
| 166 | // Try to respect the client's wishes |
| 167 | preferred = conn->cp.preferredEncoding(); |
| 168 | switch (preferred) { |
| 169 | case encodingRRE: |
| 170 | // Horrible for anything high frequency and/or lots of colours |
| 171 | bitmapRLE = indexedRLE = encoderRRE; |
| 172 | break; |
| 173 | case encodingHextile: |
| 174 | // Slightly less horrible |
| 175 | bitmapRLE = indexedRLE = fullColour = encoderHextile; |
| 176 | break; |
| 177 | case encodingTight: |
| 178 | if (encoders[encoderTightJPEG]->isSupported() && |
| 179 | (conn->cp.pf().bpp >= 16)) |
| 180 | fullColour = encoderTightJPEG; |
| 181 | else |
| 182 | fullColour = encoderTight; |
| 183 | indexed = indexedRLE = encoderTight; |
| 184 | bitmap = bitmapRLE = encoderTight; |
| 185 | break; |
| 186 | case encodingZRLE: |
| 187 | fullColour = encoderZRLE; |
| 188 | bitmapRLE = indexedRLE = encoderZRLE; |
| 189 | bitmap = indexed = encoderZRLE; |
| 190 | break; |
| 191 | } |
| 192 | |
| 193 | // Any encoders still unassigned? |
| 194 | |
| 195 | if (fullColour == encoderRaw) { |
| 196 | if (encoders[encoderTightJPEG]->isSupported() && |
| 197 | (conn->cp.pf().bpp >= 16)) |
| 198 | fullColour = encoderTightJPEG; |
| 199 | else if (encoders[encoderZRLE]->isSupported()) |
| 200 | fullColour = encoderZRLE; |
| 201 | else if (encoders[encoderTight]->isSupported()) |
| 202 | fullColour = encoderTight; |
| 203 | else if (encoders[encoderHextile]->isSupported()) |
| 204 | fullColour = encoderHextile; |
| 205 | } |
| 206 | |
| 207 | if (indexed == encoderRaw) { |
| 208 | if (encoders[encoderZRLE]->isSupported()) |
| 209 | indexed = encoderZRLE; |
| 210 | else if (encoders[encoderTight]->isSupported()) |
| 211 | indexed = encoderTight; |
| 212 | else if (encoders[encoderHextile]->isSupported()) |
| 213 | indexed = encoderHextile; |
| 214 | } |
| 215 | |
| 216 | if (indexedRLE == encoderRaw) |
| 217 | indexedRLE = indexed; |
| 218 | |
| 219 | if (bitmap == encoderRaw) |
| 220 | bitmap = indexed; |
| 221 | if (bitmapRLE == encoderRaw) |
| 222 | bitmapRLE = bitmap; |
| 223 | |
| 224 | if (solid == encoderRaw) { |
| 225 | if (encoders[encoderTight]->isSupported()) |
| 226 | solid = encoderTight; |
| 227 | else if (encoders[encoderRRE]->isSupported()) |
| 228 | solid = encoderRRE; |
| 229 | else if (encoders[encoderZRLE]->isSupported()) |
| 230 | solid = encoderZRLE; |
| 231 | else if (encoders[encoderHextile]->isSupported()) |
| 232 | solid = encoderHextile; |
| 233 | } |
| 234 | |
| 235 | // JPEG is the only encoder that can reduce things to grayscale |
| 236 | if ((conn->cp.subsampling == subsampleGray) && |
| 237 | encoders[encoderTightJPEG]->isSupported()) { |
| 238 | solid = bitmap = bitmapRLE = encoderTightJPEG; |
| 239 | indexed = indexedRLE = fullColour = encoderTightJPEG; |
| 240 | } |
| 241 | |
| 242 | activeEncoders[encoderSolid] = solid; |
| 243 | activeEncoders[encoderBitmap] = bitmap; |
| 244 | activeEncoders[encoderBitmapRLE] = bitmapRLE; |
| 245 | activeEncoders[encoderIndexed] = indexed; |
| 246 | activeEncoders[encoderIndexedRLE] = indexedRLE; |
| 247 | activeEncoders[encoderFullColour] = fullColour; |
| 248 | |
| 249 | for (iter = activeEncoders.begin(); iter != activeEncoders.end(); ++iter) { |
| 250 | Encoder *encoder; |
| 251 | |
| 252 | encoder = encoders[*iter]; |
| 253 | |
| 254 | encoder->setCompressLevel(conn->cp.compressLevel); |
| 255 | encoder->setQualityLevel(conn->cp.qualityLevel); |
| 256 | encoder->setFineQualityLevel(conn->cp.fineQualityLevel, |
| 257 | conn->cp.subsampling); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | int EncodeManager::computeNumRects(const Region& changed) |
| 262 | { |
| 263 | int numRects; |
| 264 | std::vector<Rect> rects; |
| 265 | std::vector<Rect>::const_iterator rect; |
| 266 | |
| 267 | numRects = 0; |
| 268 | changed.get_rects(&rects); |
| 269 | for (rect = rects.begin(); rect != rects.end(); ++rect) { |
| 270 | int w, h, sw, sh; |
| 271 | |
| 272 | w = rect->width(); |
| 273 | h = rect->height(); |
| 274 | |
| 275 | // No split necessary? |
| 276 | if (((w*h) < SubRectMaxArea) && (w < SubRectMaxWidth)) { |
| 277 | numRects += 1; |
| 278 | continue; |
| 279 | } |
| 280 | |
| 281 | if (w <= SubRectMaxWidth) |
| 282 | sw = w; |
| 283 | else |
| 284 | sw = SubRectMaxWidth; |
| 285 | |
| 286 | sh = SubRectMaxArea / sw; |
| 287 | |
| 288 | // ceil(w/sw) * ceil(h/sh) |
| 289 | numRects += (((w - 1)/sw) + 1) * (((h - 1)/sh) + 1); |
| 290 | } |
| 291 | |
| 292 | return numRects; |
| 293 | } |
| 294 | |
| 295 | void EncodeManager::writeCopyRects(const UpdateInfo& ui) |
| 296 | { |
| 297 | std::vector<Rect> rects; |
| 298 | std::vector<Rect>::const_iterator rect; |
| 299 | |
| 300 | ui.copied.get_rects(&rects, ui.copy_delta.x <= 0, ui.copy_delta.y <= 0); |
| 301 | for (rect = rects.begin(); rect != rects.end(); ++rect) { |
| 302 | conn->writer()->writeCopyRect(*rect, rect->tl.x - ui.copy_delta.x, |
| 303 | rect->tl.y - ui.copy_delta.y); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | void EncodeManager::writeSolidRects(Region *changed, const PixelBuffer* pb) |
| 308 | { |
| 309 | std::vector<Rect> rects; |
| 310 | std::vector<Rect>::const_iterator rect; |
| 311 | |
| 312 | // FIXME: This gives up after the first rect it finds. A large update |
| 313 | // (like a whole screen refresh) might have lots of large solid |
| 314 | // areas. |
| 315 | |
| 316 | changed->get_rects(&rects); |
| 317 | for (rect = rects.begin(); rect != rects.end(); ++rect) { |
| 318 | Rect sr; |
| 319 | int dx, dy, dw, dh; |
| 320 | |
| 321 | // We start by finding a solid 16x16 block |
| 322 | for (dy = rect->tl.y; dy < rect->br.y; dy += SolidSearchBlock) { |
| 323 | |
| 324 | dh = SolidSearchBlock; |
| 325 | if (dy + dh > rect->br.y) |
| 326 | dh = rect->br.y - dy; |
| 327 | |
| 328 | for (dx = rect->tl.x; dx < rect->br.x; dx += SolidSearchBlock) { |
| 329 | // We define it like this to guarantee alignment |
| 330 | rdr::U32 _buffer; |
| 331 | rdr::U8* colourValue = (rdr::U8*)&_buffer; |
| 332 | |
| 333 | dw = SolidSearchBlock; |
| 334 | if (dx + dw > rect->br.x) |
| 335 | dw = rect->br.x - dx; |
| 336 | |
| 337 | pb->getImage(colourValue, Rect(dx, dy, dx+1, dy+1)); |
| 338 | |
| 339 | sr.setXYWH(dx, dy, dw, dh); |
| 340 | if (checkSolidTile(sr, colourValue, pb)) { |
| 341 | Rect erb, erp; |
| 342 | |
| 343 | Encoder *encoder; |
| 344 | |
| 345 | // We then try extending the area by adding more blocks |
| 346 | // in both directions and pick the combination that gives |
| 347 | // the largest area. |
| 348 | sr.setXYWH(dx, dy, rect->br.x - dx, rect->br.y - dy); |
| 349 | extendSolidAreaByBlock(sr, colourValue, pb, &erb); |
| 350 | |
| 351 | // Did we end up getting the entire rectangle? |
| 352 | if (erb.equals(*rect)) |
| 353 | erp = erb; |
| 354 | else { |
| 355 | // Don't bother with sending tiny rectangles |
| 356 | if (erb.area() < SolidBlockMinArea) |
| 357 | continue; |
| 358 | |
| 359 | // Extend the area again, but this time one pixel |
| 360 | // row/column at a time. |
| 361 | extendSolidAreaByPixel(*rect, erb, colourValue, pb, &erp); |
| 362 | } |
| 363 | |
| 364 | // Send solid-color rectangle. |
| 365 | encoder = encoders[activeEncoders[encoderSolid]]; |
| 366 | conn->writer()->startRect(erp, encoder->encoding); |
| 367 | if (encoder->flags & EncoderUseNativePF) { |
| 368 | encoder->writeSolidRect(erp.width(), erp.height(), |
| 369 | pb->getPF(), colourValue); |
| 370 | } else { |
| 371 | rdr::U32 _buffer2; |
| 372 | rdr::U8* converted = (rdr::U8*)&_buffer2; |
| 373 | |
| 374 | conn->cp.pf().bufferFromBuffer(converted, pb->getPF(), |
| 375 | colourValue, 1); |
| 376 | |
| 377 | encoder->writeSolidRect(erp.width(), erp.height(), |
| 378 | conn->cp.pf(), converted); |
| 379 | } |
| 380 | conn->writer()->endRect(); |
| 381 | |
| 382 | changed->assign_subtract(Region(erp)); |
| 383 | |
| 384 | break; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | if (dx < rect->br.x) |
| 389 | break; |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | void EncodeManager::writeRects(const Region& changed, const PixelBuffer* pb) |
| 395 | { |
| 396 | std::vector<Rect> rects; |
| 397 | std::vector<Rect>::const_iterator rect; |
| 398 | |
| 399 | changed.get_rects(&rects); |
| 400 | for (rect = rects.begin(); rect != rects.end(); ++rect) { |
| 401 | int w, h, sw, sh; |
| 402 | Rect sr; |
| 403 | |
| 404 | w = rect->width(); |
| 405 | h = rect->height(); |
| 406 | |
| 407 | // No split necessary? |
| 408 | if (((w*h) < SubRectMaxArea) && (w < SubRectMaxWidth)) { |
| 409 | writeSubRect(*rect, pb); |
| 410 | continue; |
| 411 | } |
| 412 | |
| 413 | if (w <= SubRectMaxWidth) |
| 414 | sw = w; |
| 415 | else |
| 416 | sw = SubRectMaxWidth; |
| 417 | |
| 418 | sh = SubRectMaxArea / sw; |
| 419 | |
| 420 | for (sr.tl.y = rect->tl.y; sr.tl.y < rect->br.y; sr.tl.y += sh) { |
| 421 | sr.br.y = sr.tl.y + sh; |
| 422 | if (sr.br.y > rect->br.y) |
| 423 | sr.br.y = rect->br.y; |
| 424 | |
| 425 | for (sr.tl.x = rect->tl.x; sr.tl.x < rect->br.x; sr.tl.x += sw) { |
| 426 | sr.br.x = sr.tl.x + sw; |
| 427 | if (sr.br.x > rect->br.x) |
| 428 | sr.br.x = rect->br.x; |
| 429 | |
| 430 | writeSubRect(sr, pb); |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | void EncodeManager::writeSubRect(const Rect& rect, const PixelBuffer *pb) |
| 437 | { |
| 438 | PixelBuffer *ppb; |
| 439 | |
| 440 | Encoder *encoder; |
| 441 | |
| 442 | struct RectInfo info; |
| 443 | int divisor, maxColours; |
| 444 | |
| 445 | bool useRLE; |
| 446 | EncoderType type; |
| 447 | |
| 448 | // FIXME: This is roughly the algorithm previously used by the Tight |
| 449 | // encoder. It seems a bit backwards though, that higher |
| 450 | // compression setting means spending less effort in building |
| 451 | // a palette. It might be that they figured the increase in |
| 452 | // zlib setting compensated for the loss. |
| 453 | if (conn->cp.compressLevel == -1) |
| 454 | divisor = 2 * 8; |
| 455 | else |
| 456 | divisor = conn->cp.compressLevel * 8; |
| 457 | if (divisor < 4) |
| 458 | divisor = 4; |
| 459 | |
| 460 | maxColours = rect.area()/divisor; |
| 461 | |
| 462 | // Special exception inherited from the Tight encoder |
| 463 | if (activeEncoders[encoderFullColour] == encoderTightJPEG) { |
| 464 | if (conn->cp.compressLevel < 2) |
| 465 | maxColours = 24; |
| 466 | else |
| 467 | maxColours = 96; |
| 468 | } |
| 469 | |
| 470 | if (maxColours < 2) |
| 471 | maxColours = 2; |
| 472 | |
| 473 | encoder = encoders[activeEncoders[encoderIndexedRLE]]; |
| 474 | if (maxColours > encoder->maxPaletteSize) |
| 475 | maxColours = encoder->maxPaletteSize; |
| 476 | encoder = encoders[activeEncoders[encoderIndexed]]; |
| 477 | if (maxColours > encoder->maxPaletteSize) |
| 478 | maxColours = encoder->maxPaletteSize; |
| 479 | |
| 480 | ppb = preparePixelBuffer(rect, pb, true); |
| 481 | |
| 482 | if (!analyseRect(ppb, &info, maxColours)) |
| 483 | info.palette.clear(); |
| 484 | |
| 485 | // Different encoders might have different RLE overhead, but |
| 486 | // here we do a guess at RLE being the better choice if reduces |
| 487 | // the pixel count by 50%. |
| 488 | useRLE = info.rleRuns <= (rect.area() * 2); |
| 489 | |
| 490 | switch (info.palette.size()) { |
| 491 | case 0: |
| 492 | type = encoderFullColour; |
| 493 | break; |
| 494 | case 1: |
| 495 | type = encoderSolid; |
| 496 | break; |
| 497 | case 2: |
| 498 | if (useRLE) |
| 499 | type = encoderBitmapRLE; |
| 500 | else |
| 501 | type = encoderBitmap; |
| 502 | break; |
| 503 | default: |
| 504 | if (useRLE) |
| 505 | type = encoderIndexedRLE; |
| 506 | else |
| 507 | type = encoderIndexed; |
| 508 | } |
| 509 | |
| 510 | encoder = encoders[activeEncoders[type]]; |
| 511 | |
| 512 | if (encoder->flags & EncoderUseNativePF) |
| 513 | ppb = preparePixelBuffer(rect, pb, false); |
| 514 | |
| 515 | conn->writer()->startRect(rect, encoder->encoding); |
| 516 | encoder->writeRect(ppb, info.palette); |
| 517 | conn->writer()->endRect(); |
| 518 | } |
| 519 | |
| 520 | bool EncodeManager::checkSolidTile(const Rect& r, const rdr::U8* colourValue, |
| 521 | const PixelBuffer *pb) |
| 522 | { |
| 523 | switch (pb->getPF().bpp) { |
| 524 | case 32: |
| 525 | return checkSolidTile(r, *(const rdr::U32*)colourValue, pb); |
| 526 | case 16: |
| 527 | return checkSolidTile(r, *(const rdr::U16*)colourValue, pb); |
| 528 | default: |
| 529 | return checkSolidTile(r, *(const rdr::U8*)colourValue, pb); |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | void EncodeManager::extendSolidAreaByBlock(const Rect& r, |
| 534 | const rdr::U8* colourValue, |
| 535 | const PixelBuffer *pb, Rect* er) |
| 536 | { |
| 537 | int dx, dy, dw, dh; |
| 538 | int w_prev; |
| 539 | Rect sr; |
| 540 | int w_best = 0, h_best = 0; |
| 541 | |
| 542 | w_prev = r.width(); |
| 543 | |
| 544 | // We search width first, back off when we hit a different colour, |
| 545 | // and restart with a larger height. We keep track of the |
| 546 | // width/height combination that gives us the largest area. |
| 547 | for (dy = r.tl.y; dy < r.br.y; dy += SolidSearchBlock) { |
| 548 | |
| 549 | dh = SolidSearchBlock; |
| 550 | if (dy + dh > r.br.y) |
| 551 | dh = r.br.y - dy; |
| 552 | |
| 553 | // We test one block here outside the x loop in order to break |
| 554 | // the y loop right away. |
| 555 | dw = SolidSearchBlock; |
| 556 | if (dw > w_prev) |
| 557 | dw = w_prev; |
| 558 | |
| 559 | sr.setXYWH(r.tl.x, dy, dw, dh); |
| 560 | if (!checkSolidTile(sr, colourValue, pb)) |
| 561 | break; |
| 562 | |
| 563 | for (dx = r.tl.x + dw; dx < r.tl.x + w_prev;) { |
| 564 | |
| 565 | dw = SolidSearchBlock; |
| 566 | if (dx + dw > r.tl.x + w_prev) |
| 567 | dw = r.tl.x + w_prev - dx; |
| 568 | |
| 569 | sr.setXYWH(dx, dy, dw, dh); |
| 570 | if (!checkSolidTile(sr, colourValue, pb)) |
| 571 | break; |
| 572 | |
| 573 | dx += dw; |
| 574 | } |
| 575 | |
| 576 | w_prev = dx - r.tl.x; |
| 577 | if (w_prev * (dy + dh - r.tl.y) > w_best * h_best) { |
| 578 | w_best = w_prev; |
| 579 | h_best = dy + dh - r.tl.y; |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | er->tl.x = r.tl.x; |
| 584 | er->tl.y = r.tl.y; |
| 585 | er->br.x = er->tl.x + w_best; |
| 586 | er->br.y = er->tl.y + h_best; |
| 587 | } |
| 588 | |
| 589 | void EncodeManager::extendSolidAreaByPixel(const Rect& r, const Rect& sr, |
| 590 | const rdr::U8* colourValue, |
| 591 | const PixelBuffer *pb, Rect* er) |
| 592 | { |
| 593 | int cx, cy; |
| 594 | Rect tr; |
| 595 | |
| 596 | // Try to extend the area upwards. |
| 597 | for (cy = sr.tl.y - 1; cy >= r.tl.y; cy--) { |
| 598 | tr.setXYWH(sr.tl.x, cy, sr.width(), 1); |
| 599 | if (!checkSolidTile(tr, colourValue, pb)) |
| 600 | break; |
| 601 | } |
| 602 | er->tl.y = cy + 1; |
| 603 | |
| 604 | // ... downwards. |
| 605 | for (cy = sr.br.y; cy < r.br.y; cy++) { |
| 606 | tr.setXYWH(sr.tl.x, cy, sr.width(), 1); |
| 607 | if (!checkSolidTile(tr, colourValue, pb)) |
| 608 | break; |
| 609 | } |
| 610 | er->br.y = cy; |
| 611 | |
| 612 | // ... to the left. |
| 613 | for (cx = sr.tl.x - 1; cx >= r.tl.x; cx--) { |
| 614 | tr.setXYWH(cx, er->tl.y, 1, er->height()); |
| 615 | if (!checkSolidTile(tr, colourValue, pb)) |
| 616 | break; |
| 617 | } |
| 618 | er->tl.x = cx + 1; |
| 619 | |
| 620 | // ... to the right. |
| 621 | for (cx = sr.br.x; cx < r.br.x; cx++) { |
| 622 | tr.setXYWH(cx, er->tl.y, 1, er->height()); |
| 623 | if (!checkSolidTile(tr, colourValue, pb)) |
| 624 | break; |
| 625 | } |
| 626 | er->br.x = cx; |
| 627 | } |
| 628 | |
| 629 | PixelBuffer* EncodeManager::preparePixelBuffer(const Rect& rect, |
| 630 | const PixelBuffer *pb, |
| 631 | bool convert) |
| 632 | { |
| 633 | const rdr::U8* buffer; |
| 634 | int stride; |
| 635 | |
| 636 | // Do wo need to convert the data? |
| 637 | if (convert && !conn->cp.pf().equal(pb->getPF())) { |
| 638 | convertedPixelBuffer.setPF(conn->cp.pf()); |
| 639 | convertedPixelBuffer.setSize(rect.width(), rect.height()); |
| 640 | |
| 641 | buffer = pb->getBuffer(rect, &stride); |
| 642 | convertedPixelBuffer.imageRect(pb->getPF(), |
| 643 | convertedPixelBuffer.getRect(), |
| 644 | buffer, stride); |
| 645 | |
| 646 | return &convertedPixelBuffer; |
| 647 | } |
| 648 | |
| 649 | // Otherwise we still need to shift the coordinates. We have our own |
| 650 | // abusive subclass of FullFramePixelBuffer for this. |
| 651 | |
| 652 | buffer = pb->getBuffer(rect, &stride); |
| 653 | |
| 654 | offsetPixelBuffer.update(pb->getPF(), rect.width(), rect.height(), |
| 655 | buffer, stride); |
| 656 | |
| 657 | return &offsetPixelBuffer; |
| 658 | } |
| 659 | |
| 660 | bool EncodeManager::analyseRect(const PixelBuffer *pb, |
| 661 | struct RectInfo *info, int maxColours) |
| 662 | { |
| 663 | const rdr::U8* buffer; |
| 664 | int stride; |
| 665 | |
| 666 | buffer = pb->getBuffer(pb->getRect(), &stride); |
| 667 | |
| 668 | switch (pb->getPF().bpp) { |
| 669 | case 32: |
| 670 | return analyseRect(pb->width(), pb->height(), |
| 671 | (const rdr::U32*)buffer, stride, |
| 672 | info, maxColours); |
| 673 | case 16: |
| 674 | return analyseRect(pb->width(), pb->height(), |
| 675 | (const rdr::U16*)buffer, stride, |
| 676 | info, maxColours); |
| 677 | default: |
| 678 | return analyseRect(pb->width(), pb->height(), |
| 679 | (const rdr::U8*)buffer, stride, |
| 680 | info, maxColours); |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | void EncodeManager::OffsetPixelBuffer::update(const PixelFormat& pf, |
| 685 | int width, int height, |
| 686 | const rdr::U8* data_, |
| 687 | int stride_) |
| 688 | { |
| 689 | format = pf; |
| 690 | width_ = width; |
| 691 | height_ = height; |
| 692 | // Forced cast. We never write anything though, so it should be safe. |
| 693 | data = (rdr::U8*)data_; |
| 694 | stride = stride_; |
| 695 | } |
| 696 | |
| 697 | // Preprocessor generated, optimised methods |
| 698 | |
| 699 | #define BPP 8 |
| 700 | #include "EncodeManagerBPP.cxx" |
| 701 | #undef BPP |
| 702 | #define BPP 16 |
| 703 | #include "EncodeManagerBPP.cxx" |
| 704 | #undef BPP |
| 705 | #define BPP 32 |
| 706 | #include "EncodeManagerBPP.cxx" |
| 707 | #undef BPP |