enikey | f7160bd | 2008-12-19 07:54:40 +0000 | [diff] [blame] | 1 | package com.tightvnc.decoder; |
| 2 | |
| 3 | import com.tightvnc.decoder.common.Repaintable; |
| 4 | import com.tightvnc.vncviewer.RfbInputStream; |
| 5 | import java.awt.Graphics; |
| 6 | import java.awt.Color; |
| 7 | import java.awt.Image; |
| 8 | import java.awt.Rectangle; |
| 9 | import java.awt.Toolkit; |
| 10 | import java.awt.image.ImageObserver; |
| 11 | import java.util.zip.Inflater; |
| 12 | |
| 13 | // |
| 14 | // Class that used for decoding Tight encoded data. |
| 15 | // |
| 16 | |
enikey | 1893c9a | 2008-12-19 08:16:45 +0000 | [diff] [blame] | 17 | public class TightDecoder extends RawDecoder implements ImageObserver { |
enikey | f7160bd | 2008-12-19 07:54:40 +0000 | [diff] [blame] | 18 | |
enikey | 6558a30 | 2008-12-24 05:14:30 +0000 | [diff] [blame] | 19 | final static int EncodingTight = 7; |
| 20 | |
enikey | f7160bd | 2008-12-19 07:54:40 +0000 | [diff] [blame] | 21 | // |
| 22 | // Tight decoder constants |
| 23 | // |
| 24 | |
| 25 | final static int TightExplicitFilter = 0x04; |
| 26 | final static int TightFill = 0x08; |
| 27 | final static int TightJpeg = 0x09; |
| 28 | final static int TightMaxSubencoding = 0x09; |
| 29 | final static int TightFilterCopy = 0x00; |
| 30 | final static int TightFilterPalette = 0x01; |
| 31 | final static int TightFilterGradient = 0x02; |
| 32 | final static int TightMinToCompress = 12; |
| 33 | |
| 34 | // Tight encoder's data. |
| 35 | final static int tightZlibBufferSize = 512; |
| 36 | |
| 37 | public TightDecoder(Graphics g, RfbInputStream is) { |
| 38 | super(g, is); |
| 39 | tightInflaters = new Inflater[4]; |
| 40 | } |
| 41 | |
| 42 | public TightDecoder(Graphics g, RfbInputStream is, int frameBufferW, |
| 43 | int frameBufferH) { |
| 44 | super(g, is, frameBufferW, frameBufferH); |
| 45 | tightInflaters = new Inflater[4]; |
| 46 | } |
| 47 | |
| 48 | // |
| 49 | // Set and get methods for private TightDecoder |
| 50 | // |
| 51 | |
| 52 | public void setRepainableControl(Repaintable r) { |
| 53 | repainatableControl = r; |
| 54 | } |
| 55 | |
| 56 | // |
| 57 | // JPEG processing statistic methods |
| 58 | // |
| 59 | |
| 60 | public int getNumJPEGRects() { |
| 61 | return statNumRectsTightJPEG; |
| 62 | } |
| 63 | |
| 64 | public void setNumJPEGRects(int v) { |
| 65 | statNumRectsTightJPEG = v; |
| 66 | } |
| 67 | |
| 68 | // |
enikey | 1893c9a | 2008-12-19 08:16:45 +0000 | [diff] [blame] | 69 | // Handle a Tight-encoded rectangle. |
| 70 | // |
| 71 | |
| 72 | public void handleRect(int x, int y, int w, int h) throws Exception { |
| 73 | |
enikey | 2f0294e | 2008-12-24 08:18:54 +0000 | [diff] [blame^] | 74 | // |
| 75 | // Write encoding ID to record output stream |
| 76 | // |
| 77 | |
| 78 | if (dos != null) { |
| 79 | dos.writeInt(TightDecoder.EncodingTight); |
| 80 | } |
| 81 | |
enikey | 1893c9a | 2008-12-19 08:16:45 +0000 | [diff] [blame] | 82 | int comp_ctl = rfbis.readU8(); |
| 83 | if (rec.canWrite()) { |
| 84 | if (rec.isRecordFromBeginning() || |
| 85 | comp_ctl == (TightFill << 4) || |
| 86 | comp_ctl == (TightJpeg << 4)) { |
| 87 | // Send data exactly as received. |
| 88 | rec.writeByte(comp_ctl); |
| 89 | } else { |
| 90 | // Tell the decoder to flush each of the four zlib streams. |
| 91 | rec.writeByte(comp_ctl | 0x0F); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | // Flush zlib streams if we are told by the server to do so. |
| 96 | for (int stream_id = 0; stream_id < 4; stream_id++) { |
| 97 | if ((comp_ctl & 1) != 0 && tightInflaters[stream_id] != null) { |
| 98 | tightInflaters[stream_id] = null; |
| 99 | } |
| 100 | comp_ctl >>= 1; |
| 101 | } |
| 102 | |
| 103 | // Check correctness of subencoding value. |
| 104 | if (comp_ctl > TightDecoder.TightMaxSubencoding) { |
| 105 | throw new Exception("Incorrect tight subencoding: " + comp_ctl); |
| 106 | } |
| 107 | |
| 108 | // Handle solid-color rectangles. |
| 109 | if (comp_ctl == TightDecoder.TightFill) { |
| 110 | |
| 111 | if (bytesPerPixel == 1) { |
| 112 | int idx = rfbis.readU8(); |
| 113 | graphics.setColor(getColor256()[idx]); |
| 114 | if (rec.canWrite()) { |
| 115 | rec.writeByte(idx); |
| 116 | } |
| 117 | } else { |
| 118 | byte[] buf = new byte[3]; |
| 119 | rfbis.readFully(buf); |
| 120 | if (rec.canWrite()) { |
| 121 | rec.write(buf); |
| 122 | } |
| 123 | Color bg = new Color(0xFF000000 | (buf[0] & 0xFF) << 16 | |
| 124 | (buf[1] & 0xFF) << 8 | (buf[2] & 0xFF)); |
| 125 | graphics.setColor(bg); |
| 126 | } |
| 127 | graphics.fillRect(x, y, w, h); |
| 128 | repainatableControl.scheduleRepaint(x, y, w, h); |
| 129 | return; |
| 130 | |
| 131 | } |
| 132 | |
| 133 | if (comp_ctl == TightDecoder.TightJpeg) { |
| 134 | |
| 135 | statNumRectsTightJPEG++; |
| 136 | |
| 137 | // Read JPEG data. |
| 138 | byte[] jpegData = new byte[rfbis.readCompactLen()]; |
| 139 | rfbis.readFully(jpegData); |
| 140 | if (rec.canWrite()) { |
| 141 | if (!rec.isRecordFromBeginning()) { |
| 142 | rec.recordCompactLen(jpegData.length); |
| 143 | } |
| 144 | rec.write(jpegData); |
| 145 | } |
| 146 | |
| 147 | // Create an Image object from the JPEG data. |
| 148 | Image jpegImage = Toolkit.getDefaultToolkit().createImage(jpegData); |
| 149 | |
| 150 | // Remember the rectangle where the image should be drawn. |
| 151 | jpegRect = new Rectangle(x, y, w, h); |
| 152 | |
| 153 | // Let the imageUpdate() method do the actual drawing, here just |
| 154 | // wait until the image is fully loaded and drawn. |
| 155 | synchronized(jpegRect) { |
| 156 | Toolkit.getDefaultToolkit().prepareImage(jpegImage, -1, -1, this); |
| 157 | try { |
| 158 | // Wait no longer than three seconds. |
| 159 | jpegRect.wait(3000); |
| 160 | } catch (InterruptedException e) { |
| 161 | throw new Exception("Interrupted while decoding JPEG image"); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | // Done, jpegRect is not needed any more. |
| 166 | jpegRect = null; |
| 167 | return; |
| 168 | |
| 169 | } |
| 170 | |
| 171 | // Read filter id and parameters. |
| 172 | int numColors = 0, rowSize = w; |
| 173 | byte[] palette8 = new byte[2]; |
| 174 | int[] palette24 = new int[256]; |
| 175 | boolean useGradient = false; |
| 176 | if ((comp_ctl & TightDecoder.TightExplicitFilter) != 0) { |
| 177 | int filter_id = rfbis.readU8(); |
| 178 | if (rec.canWrite()) { |
| 179 | rec.writeByte(filter_id); |
| 180 | } |
| 181 | if (filter_id == TightDecoder.TightFilterPalette) { |
| 182 | numColors = rfbis.readU8() + 1; |
| 183 | if (rec.canWrite()) { |
| 184 | rec.writeByte((numColors - 1)); |
| 185 | } |
| 186 | if (bytesPerPixel == 1) { |
| 187 | if (numColors != 2) { |
| 188 | throw new Exception("Incorrect tight palette size: " + numColors); |
| 189 | } |
| 190 | rfbis.readFully(palette8); |
| 191 | if (rec.canWrite()) { |
| 192 | rec.write(palette8); |
| 193 | } |
| 194 | } else { |
| 195 | byte[] buf = new byte[numColors * 3]; |
| 196 | rfbis.readFully(buf); |
| 197 | if (rec.canWrite()) { |
| 198 | rec.write(buf); |
| 199 | } |
| 200 | for (int i = 0; i < numColors; i++) { |
| 201 | palette24[i] = ((buf[i * 3] & 0xFF) << 16 | |
| 202 | (buf[i * 3 + 1] & 0xFF) << 8 | |
| 203 | (buf[i * 3 + 2] & 0xFF)); |
| 204 | } |
| 205 | } |
| 206 | if (numColors == 2) { |
| 207 | rowSize = (w + 7) / 8; |
| 208 | } |
| 209 | } else if (filter_id == TightDecoder.TightFilterGradient) { |
| 210 | useGradient = true; |
| 211 | } else if (filter_id != TightDecoder.TightFilterCopy) { |
| 212 | throw new Exception("Incorrect tight filter id: " + filter_id); |
| 213 | } |
| 214 | } |
| 215 | if (numColors == 0 && bytesPerPixel == 4) |
| 216 | rowSize *= 3; |
| 217 | |
| 218 | // Read, optionally uncompress and decode data. |
| 219 | int dataSize = h * rowSize; |
| 220 | if (dataSize < TightDecoder.TightMinToCompress) { |
| 221 | // Data size is small - not compressed with zlib. |
| 222 | if (numColors != 0) { |
| 223 | // Indexed colors. |
| 224 | byte[] indexedData = new byte[dataSize]; |
| 225 | rfbis.readFully(indexedData); |
| 226 | if (rec.canWrite()) { |
| 227 | rec.write(indexedData); |
| 228 | } |
| 229 | if (numColors == 2) { |
| 230 | // Two colors. |
| 231 | if (bytesPerPixel == 1) { |
| 232 | decodeMonoData(x, y, w, h, indexedData, palette8); |
| 233 | } else { |
| 234 | decodeMonoData(x, y, w, h, indexedData, palette24); |
| 235 | } |
| 236 | } else { |
| 237 | // 3..255 colors (assuming bytesPixel == 4). |
| 238 | int i = 0; |
| 239 | for (int dy = y; dy < y + h; dy++) { |
| 240 | for (int dx = x; dx < x + w; dx++) { |
| 241 | pixels24[dy * framebufferWidth + dx] = |
| 242 | palette24[indexedData[i++] & 0xFF]; |
| 243 | } |
| 244 | } |
| 245 | } |
| 246 | } else if (useGradient) { |
| 247 | // "Gradient"-processed data |
| 248 | byte[] buf = new byte[w * h * 3]; |
| 249 | rfbis.readFully(buf); |
| 250 | if (rec.canWrite()) { |
| 251 | rec.write(buf); |
| 252 | } |
| 253 | decodeGradientData(x, y, w, h, buf); |
| 254 | } else { |
| 255 | // Raw truecolor data. |
| 256 | if (bytesPerPixel == 1) { |
| 257 | for (int dy = y; dy < y + h; dy++) { |
| 258 | rfbis.readFully(pixels8, dy * framebufferWidth + x, w); |
| 259 | if (rec.canWrite()) { |
| 260 | rec.write(pixels8, dy * framebufferWidth + x, w); |
| 261 | } |
| 262 | } |
| 263 | } else { |
| 264 | byte[] buf = new byte[w * 3]; |
| 265 | int i, offset; |
| 266 | for (int dy = y; dy < y + h; dy++) { |
| 267 | rfbis.readFully(buf); |
| 268 | if (rec.canWrite()) { |
| 269 | rec.write(buf); |
| 270 | } |
| 271 | offset = dy * framebufferWidth + x; |
| 272 | for (i = 0; i < w; i++) { |
| 273 | pixels24[offset + i] = |
| 274 | (buf[i * 3] & 0xFF) << 16 | |
| 275 | (buf[i * 3 + 1] & 0xFF) << 8 | |
| 276 | (buf[i * 3 + 2] & 0xFF); |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | } |
| 281 | } else { |
| 282 | // Data was compressed with zlib. |
| 283 | int zlibDataLen = rfbis.readCompactLen(); |
| 284 | byte[] zlibData = new byte[zlibDataLen]; |
| 285 | rfbis.readFully(zlibData); |
| 286 | if ( (rec.canWrite()) && (rec.isRecordFromBeginning()) ) { |
| 287 | rec.write(zlibData); |
| 288 | } |
| 289 | int stream_id = comp_ctl & 0x03; |
| 290 | if (tightInflaters[stream_id] == null) { |
| 291 | tightInflaters[stream_id] = new Inflater(); |
| 292 | } |
| 293 | Inflater myInflater = tightInflaters[stream_id]; |
| 294 | myInflater.setInput(zlibData); |
| 295 | byte[] buf = new byte[dataSize]; |
| 296 | myInflater.inflate(buf); |
| 297 | if ( (rec.canWrite()) && (!rec.isRecordFromBeginning()) ) { |
| 298 | rec.recordCompressedData(buf); |
| 299 | } |
| 300 | |
| 301 | if (numColors != 0) { |
| 302 | // Indexed colors. |
| 303 | if (numColors == 2) { |
| 304 | // Two colors. |
| 305 | if (bytesPerPixel == 1) { |
| 306 | decodeMonoData(x, y, w, h, buf, palette8); |
| 307 | } else { |
| 308 | decodeMonoData(x, y, w, h, buf, palette24); |
| 309 | } |
| 310 | } else { |
| 311 | // More than two colors (assuming bytesPixel == 4). |
| 312 | int i = 0; |
| 313 | for (int dy = y; dy < y + h; dy++) { |
| 314 | for (int dx = x; dx < x + w; dx++) { |
| 315 | pixels24[dy * framebufferWidth + dx] = |
| 316 | palette24[buf[i++] & 0xFF]; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | } else if (useGradient) { |
| 321 | // Compressed "Gradient"-filtered data (assuming bytesPixel == 4). |
| 322 | decodeGradientData(x, y, w, h, buf); |
| 323 | } else { |
| 324 | // Compressed truecolor data. |
| 325 | if (bytesPerPixel == 1) { |
| 326 | int destOffset = y * framebufferWidth + x; |
| 327 | for (int dy = 0; dy < h; dy++) { |
| 328 | System.arraycopy(buf, dy * w, pixels8, destOffset, w); |
| 329 | destOffset += framebufferWidth; |
| 330 | } |
| 331 | } else { |
| 332 | int srcOffset = 0; |
| 333 | int destOffset, i; |
| 334 | for (int dy = 0; dy < h; dy++) { |
| 335 | myInflater.inflate(buf); |
| 336 | destOffset = (y + dy) * framebufferWidth + x; |
| 337 | for (i = 0; i < w; i++) { |
| 338 | RawDecoder.pixels24[destOffset + i] = |
| 339 | (buf[srcOffset] & 0xFF) << 16 | |
| 340 | (buf[srcOffset + 1] & 0xFF) << 8 | |
| 341 | (buf[srcOffset + 2] & 0xFF); |
| 342 | srcOffset += 3; |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | handleUpdatedPixels(x, y, w, h); |
| 349 | } |
| 350 | |
| 351 | // |
enikey | a909a90 | 2008-12-19 08:04:11 +0000 | [diff] [blame] | 352 | // Decode 1bpp-encoded bi-color rectangle (8-bit and 24-bit versions). |
| 353 | // |
| 354 | |
| 355 | private void decodeMonoData(int x, int y, int w, int h, byte[] src, byte[] palette) { |
| 356 | |
| 357 | int dx, dy, n; |
| 358 | int i = y * framebufferWidth + x; |
| 359 | int rowBytes = (w + 7) / 8; |
| 360 | byte b; |
| 361 | |
| 362 | for (dy = 0; dy < h; dy++) { |
| 363 | for (dx = 0; dx < w / 8; dx++) { |
| 364 | b = src[dy*rowBytes+dx]; |
| 365 | for (n = 7; n >= 0; n--) |
| 366 | pixels8[i++] = palette[b >> n & 1]; |
| 367 | } |
| 368 | for (n = 7; n >= 8 - w % 8; n--) { |
| 369 | pixels8[i++] = palette[src[dy*rowBytes+dx] >> n & 1]; |
| 370 | } |
| 371 | i += (framebufferWidth - w); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | private void decodeMonoData(int x, int y, int w, int h, byte[] src, int[] palette) { |
| 376 | |
| 377 | int dx, dy, n; |
| 378 | int i = y * framebufferWidth + x; |
| 379 | int rowBytes = (w + 7) / 8; |
| 380 | byte b; |
| 381 | |
| 382 | for (dy = 0; dy < h; dy++) { |
| 383 | for (dx = 0; dx < w / 8; dx++) { |
| 384 | b = src[dy*rowBytes+dx]; |
| 385 | for (n = 7; n >= 0; n--) |
| 386 | pixels24[i++] = palette[b >> n & 1]; |
| 387 | } |
| 388 | for (n = 7; n >= 8 - w % 8; n--) { |
| 389 | pixels24[i++] = palette[src[dy*rowBytes+dx] >> n & 1]; |
| 390 | } |
| 391 | i += (framebufferWidth - w); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | // |
| 396 | // Decode data processed with the "Gradient" filter. |
| 397 | // |
| 398 | |
| 399 | private void decodeGradientData (int x, int y, int w, int h, byte[] buf) { |
| 400 | |
| 401 | int dx, dy, c; |
| 402 | byte[] prevRow = new byte[w * 3]; |
| 403 | byte[] thisRow = new byte[w * 3]; |
| 404 | byte[] pix = new byte[3]; |
| 405 | int[] est = new int[3]; |
| 406 | |
| 407 | int offset = y * framebufferWidth + x; |
| 408 | |
| 409 | for (dy = 0; dy < h; dy++) { |
| 410 | |
| 411 | /* First pixel in a row */ |
| 412 | for (c = 0; c < 3; c++) { |
| 413 | pix[c] = (byte)(prevRow[c] + buf[dy * w * 3 + c]); |
| 414 | thisRow[c] = pix[c]; |
| 415 | } |
| 416 | pixels24[offset++] = |
| 417 | (pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF); |
| 418 | |
| 419 | /* Remaining pixels of a row */ |
| 420 | for (dx = 1; dx < w; dx++) { |
| 421 | for (c = 0; c < 3; c++) { |
| 422 | est[c] = ((prevRow[dx * 3 + c] & 0xFF) + (pix[c] & 0xFF) - |
| 423 | (prevRow[(dx-1) * 3 + c] & 0xFF)); |
| 424 | if (est[c] > 0xFF) { |
| 425 | est[c] = 0xFF; |
| 426 | } else if (est[c] < 0x00) { |
| 427 | est[c] = 0x00; |
| 428 | } |
| 429 | pix[c] = (byte)(est[c] + buf[(dy * w + dx) * 3 + c]); |
| 430 | thisRow[dx * 3 + c] = pix[c]; |
| 431 | } |
| 432 | pixels24[offset++] = |
| 433 | (pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF); |
| 434 | } |
| 435 | |
| 436 | System.arraycopy(thisRow, 0, prevRow, 0, w * 3); |
| 437 | offset += (framebufferWidth - w); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // |
enikey | 1893c9a | 2008-12-19 08:16:45 +0000 | [diff] [blame] | 442 | // Override the ImageObserver interface method to handle drawing of |
| 443 | // JPEG-encoded data. |
| 444 | // |
| 445 | |
| 446 | public boolean imageUpdate(Image img, int infoflags, |
| 447 | int x, int y, int width, int height) { |
| 448 | if ((infoflags & (ALLBITS | ABORT)) == 0) { |
| 449 | return true; // We need more image data. |
| 450 | } else { |
| 451 | // If the whole image is available, draw it now. |
| 452 | if ((infoflags & ALLBITS) != 0) { |
| 453 | if (jpegRect != null) { |
| 454 | synchronized(jpegRect) { |
| 455 | graphics.drawImage(img, jpegRect.x, jpegRect.y, null); |
| 456 | repainatableControl.scheduleRepaint(jpegRect.x, jpegRect.y, |
| 457 | jpegRect.width, jpegRect.height); |
| 458 | jpegRect.notify(); |
| 459 | } |
| 460 | } |
| 461 | } |
| 462 | return false; // All image data was processed. |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | // |
enikey | f7160bd | 2008-12-19 07:54:40 +0000 | [diff] [blame] | 467 | // Private members |
| 468 | // |
| 469 | |
| 470 | private Inflater[] tightInflaters; |
| 471 | // Since JPEG images are loaded asynchronously, we have to remember |
| 472 | // their position in the framebuffer. Also, this jpegRect object is |
| 473 | // used for synchronization between the rfbThread and a JVM's thread |
| 474 | // which decodes and loads JPEG images. |
| 475 | private Rectangle jpegRect; |
| 476 | private Repaintable repainatableControl = null; |
| 477 | // Jpeg decoding statistics |
| 478 | private int statNumRectsTightJPEG = 0; |
| 479 | } |