| /* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved. |
| * Copyright 2014-2017 Pierre Ossman for Cendio AB |
| * |
| * This is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This software is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this software; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
| * USA. |
| */ |
| #include <assert.h> |
| #include <string.h> |
| #include <rfb/Cursor.h> |
| #include <rfb/LogWriter.h> |
| #include <rfb/Exception.h> |
| |
| using namespace rfb; |
| |
| static LogWriter vlog("Cursor"); |
| |
| Cursor::Cursor(int width, int height, const Point& hotspot, |
| const rdr::U8* data) : |
| width_(width), height_(height), hotspot_(hotspot) |
| { |
| this->data = new rdr::U8[width_*height_*4]; |
| memcpy(this->data, data, width_*height_*4); |
| } |
| |
| Cursor::Cursor(const Cursor& other) : |
| width_(other.width_), height_(other.height_), |
| hotspot_(other.hotspot_) |
| { |
| data = new rdr::U8[width_*height_*4]; |
| memcpy(data, other.data, width_*height_*4); |
| } |
| |
| Cursor::~Cursor() |
| { |
| delete [] data; |
| } |
| |
| static unsigned short pow223[] = { 0, 30, 143, 355, 676, 1113, 1673, |
| 2361, 3181, 4139, 5237, 6479, 7869, |
| 9409, 11103, 12952, 14961, 17130, |
| 19462, 21960, 24626, 27461, 30467, |
| 33647, 37003, 40535, 44245, 48136, |
| 52209, 56466, 60907, 65535 }; |
| |
| static unsigned short ipow(unsigned short val, unsigned short lut[]) |
| { |
| int idx = val >> (16-5); |
| int a, b; |
| |
| if (val < 0x8000) { |
| a = lut[idx]; |
| b = lut[idx+1]; |
| } else { |
| a = lut[idx-1]; |
| b = lut[idx]; |
| } |
| |
| return (val & 0x7ff) * (b-a) / 0x7ff + a; |
| } |
| |
| static unsigned short srgb_to_lin(unsigned char srgb) |
| { |
| return ipow((unsigned)srgb * 65535 / 255, pow223); |
| } |
| |
| // Floyd-Steinberg dithering |
| static void dither(int width, int height, rdr::S32* data) |
| { |
| for (int y = 0; y < height; y++) { |
| for (int x_ = 0; x_ < width; x_++) { |
| int x = (y & 1) ? (width - x_ - 1) : x_; |
| int error; |
| |
| if (data[x] > 32767) { |
| error = data[x] - 65535; |
| data[x] = 65535; |
| } else { |
| error = data[x] - 0; |
| data[x] = 0; |
| } |
| |
| if (y & 1) { |
| if (x > 0) { |
| data[x - 1] += error * 7 / 16; |
| } |
| if ((y + 1) < height) { |
| if (x > 0) |
| data[x - 1 + width] += error * 3 / 16; |
| data[x + width] += error * 5 / 16; |
| if ((x + 1) < width) |
| data[x + 1] += error * 1 / 16; |
| } |
| } else { |
| if ((x + 1) < width) { |
| data[x + 1] += error * 7 / 16; |
| } |
| if ((y + 1) < height) { |
| if ((x + 1) < width) |
| data[x + 1 + width] += error * 3 / 16; |
| data[x + width] += error * 5 / 16; |
| if (x > 0) |
| data[x - 1] += error * 1 / 16; |
| } |
| } |
| } |
| data += width; |
| } |
| } |
| |
| rdr::U8* Cursor::getBitmap() const |
| { |
| // First step is converting to luminance |
| rdr::S32Array luminance(width()*height()); |
| rdr::S32 *lum_ptr = luminance.buf; |
| const rdr::U8 *data_ptr = data; |
| for (int y = 0; y < height(); y++) { |
| for (int x = 0; x < width(); x++) { |
| rdr::S32 lum; |
| |
| // Use BT.709 coefficients for grayscale |
| lum = 0; |
| lum += (rdr::U32)srgb_to_lin(data_ptr[0]) * 6947; // 0.2126 |
| lum += (rdr::U32)srgb_to_lin(data_ptr[1]) * 23436; // 0.7152 |
| lum += (rdr::U32)srgb_to_lin(data_ptr[2]) * 2366; // 0.0722 |
| lum /= 32768; |
| |
| *lum_ptr++ = lum; |
| data_ptr += 4; |
| } |
| } |
| |
| // Then diterhing |
| dither(width(), height(), luminance.buf); |
| |
| // Then conversion to a bit mask |
| rdr::U8Array source((width()+7)/8*height()); |
| memset(source.buf, 0, (width()+7)/8*height()); |
| int maskBytesPerRow = (width() + 7) / 8; |
| lum_ptr = luminance.buf; |
| data_ptr = data; |
| for (int y = 0; y < height(); y++) { |
| for (int x = 0; x < width(); x++) { |
| int byte = y * maskBytesPerRow + x / 8; |
| int bit = 7 - x % 8; |
| if (*lum_ptr > 32767) |
| source.buf[byte] |= (1 << bit); |
| lum_ptr++; |
| data_ptr += 4; |
| } |
| } |
| |
| return source.takeBuf(); |
| } |
| |
| rdr::U8* Cursor::getMask() const |
| { |
| // First step is converting to integer array |
| rdr::S32Array alpha(width()*height()); |
| rdr::S32 *alpha_ptr = alpha.buf; |
| const rdr::U8 *data_ptr = data; |
| for (int y = 0; y < height(); y++) { |
| for (int x = 0; x < width(); x++) { |
| *alpha_ptr++ = (rdr::U32)data_ptr[3] * 65535 / 255; |
| data_ptr += 4; |
| } |
| } |
| |
| // Then diterhing |
| dither(width(), height(), alpha.buf); |
| |
| // Then conversion to a bit mask |
| rdr::U8Array mask((width()+7)/8*height()); |
| memset(mask.buf, 0, (width()+7)/8*height()); |
| int maskBytesPerRow = (width() + 7) / 8; |
| alpha_ptr = alpha.buf; |
| data_ptr = data; |
| for (int y = 0; y < height(); y++) { |
| for (int x = 0; x < width(); x++) { |
| int byte = y * maskBytesPerRow + x / 8; |
| int bit = 7 - x % 8; |
| if (*alpha_ptr > 32767) |
| mask.buf[byte] |= (1 << bit); |
| alpha_ptr++; |
| data_ptr += 4; |
| } |
| } |
| |
| return mask.takeBuf(); |
| } |
| |
| // crop() determines the "busy" rectangle for the cursor - the minimum bounding |
| // rectangle containing actual pixels. This isn't the most efficient algorithm |
| // but it's short. For sanity, we make sure that the busy rectangle always |
| // includes the hotspot (the hotspot is unsigned on the wire so otherwise it |
| // would cause problems if it was above or left of the actual pixels) |
| |
| void Cursor::crop() |
| { |
| Rect busy = Rect(0, 0, width_, height_); |
| busy = busy.intersect(Rect(hotspot_.x, hotspot_.y, |
| hotspot_.x+1, hotspot_.y+1)); |
| int x, y; |
| rdr::U8 *data_ptr = data; |
| for (y = 0; y < height(); y++) { |
| for (x = 0; x < width(); x++) { |
| if (data_ptr[3] > 0) { |
| if (x < busy.tl.x) busy.tl.x = x; |
| if (x+1 > busy.br.x) busy.br.x = x+1; |
| if (y < busy.tl.y) busy.tl.y = y; |
| if (y+1 > busy.br.y) busy.br.y = y+1; |
| } |
| data_ptr += 4; |
| } |
| } |
| |
| if (width() == busy.width() && height() == busy.height()) return; |
| |
| // Copy the pixel data |
| int newDataLen = busy.area() * 4; |
| rdr::U8* newData = new rdr::U8[newDataLen]; |
| data_ptr = newData; |
| for (y = busy.tl.y; y < busy.br.y; y++) { |
| memcpy(data_ptr, data + y*width()*4 + busy.tl.x*4, busy.width()*4); |
| data_ptr += busy.width()*4; |
| } |
| |
| // Set the size and data to the new, cropped cursor. |
| width_ = busy.width(); |
| height_ = busy.height(); |
| hotspot_ = hotspot_.subtract(busy.tl); |
| delete [] data; |
| data = newData; |
| } |
| |
| RenderedCursor::RenderedCursor() |
| { |
| } |
| |
| const rdr::U8* RenderedCursor::getBuffer(const Rect& _r, int* stride) const |
| { |
| Rect r; |
| |
| r = _r.translate(offset.negate()); |
| if (!r.enclosed_by(buffer.getRect())) |
| throw Exception("RenderedCursor: Invalid area requested"); |
| |
| return buffer.getBuffer(r, stride); |
| } |
| |
| void RenderedCursor::update(PixelBuffer* framebuffer, |
| Cursor* cursor, const Point& pos) |
| { |
| Point rawOffset, diff; |
| Rect clippedRect; |
| |
| const rdr::U8* data; |
| int stride; |
| |
| assert(framebuffer); |
| assert(cursor); |
| |
| format = framebuffer->getPF(); |
| width_ = framebuffer->width(); |
| height_ = framebuffer->height(); |
| |
| rawOffset = pos.subtract(cursor->hotspot()); |
| clippedRect = Rect(0, 0, cursor->width(), cursor->height()) |
| .translate(rawOffset) |
| .intersect(framebuffer->getRect()); |
| offset = clippedRect.tl; |
| |
| buffer.setPF(format); |
| buffer.setSize(clippedRect.width(), clippedRect.height()); |
| |
| // Bail out early to avoid pestering the framebuffer with |
| // bogus coordinates |
| if (clippedRect.area() == 0) |
| return; |
| |
| data = framebuffer->getBuffer(buffer.getRect(offset), &stride); |
| buffer.imageRect(buffer.getRect(), data, stride); |
| |
| diff = offset.subtract(rawOffset); |
| for (int y = 0;y < buffer.height();y++) { |
| for (int x = 0;x < buffer.width();x++) { |
| size_t idx; |
| rdr::U8 bg[4], fg[4]; |
| rdr::U8 rgb[3]; |
| |
| idx = (y+diff.y)*cursor->width() + (x+diff.x); |
| memcpy(fg, cursor->getBuffer() + idx*4, 4); |
| |
| if (fg[3] == 0x00) |
| continue; |
| else if (fg[3] == 0xff) { |
| memcpy(rgb, fg, 3); |
| } else { |
| buffer.getImage(bg, Rect(x, y, x+1, y+1)); |
| format.rgbFromBuffer(rgb, bg, 1); |
| // FIXME: Gamma aware blending |
| for (int i = 0;i < 3;i++) { |
| rgb[i] = (unsigned)rgb[i]*(255-fg[3])/255 + |
| (unsigned)fg[i]*fg[3]/255; |
| } |
| } |
| |
| format.bufferFromRGB(bg, rgb, 1); |
| buffer.imageRect(Rect(x, y, x+1, y+1), bg); |
| } |
| } |
| } |