| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "drmhwc" |
| |
| #include "VSyncWorker.h" |
| |
| #include <xf86drm.h> |
| #include <xf86drmMode.h> |
| |
| #include <cstdlib> |
| #include <cstring> |
| #include <ctime> |
| |
| #include "drm/ResourceManager.h" |
| #include "utils/log.h" |
| |
| namespace android { |
| |
| auto VSyncWorker::CreateInstance(std::shared_ptr<DrmDisplayPipeline> &pipe) |
| -> std::unique_ptr<VSyncWorker> { |
| auto vsw = std::unique_ptr<VSyncWorker>(new VSyncWorker()); |
| |
| if (pipe) { |
| vsw->high_crtc_ = pipe->crtc->Get()->GetIndexInResArray() |
| << DRM_VBLANK_HIGH_CRTC_SHIFT; |
| vsw->drm_fd_ = pipe->device->GetFd(); |
| } |
| |
| vsw->vswt_ = std::thread(&VSyncWorker::ThreadFn, vsw.get()); |
| |
| return vsw; |
| } |
| |
| VSyncWorker::~VSyncWorker() { |
| StopThread(); |
| |
| vswt_.join(); |
| } |
| |
| void VSyncWorker::UpdateVSyncControl() { |
| { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| enabled_ = ShouldEnable(); |
| } |
| |
| cv_.notify_all(); |
| } |
| |
| void VSyncWorker::SetVsyncPeriodNs(uint32_t vsync_period_ns) { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| vsync_period_ns_ = vsync_period_ns; |
| last_timestamp_ = std::nullopt; |
| } |
| |
| void VSyncWorker::SetVsyncTimestampTracking(bool enabled) { |
| { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| enable_vsync_timestamps_ = enabled; |
| if (enabled) { |
| // Reset the freshness flag to ensure that only a fresh timestamp is |
| // returned from GetLastVsyncTimestamp. |
| last_timestamp_is_fresh_ = false; |
| } |
| } |
| UpdateVSyncControl(); |
| } |
| |
| uint32_t VSyncWorker::GetLastVsyncTimestamp() { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| return last_timestamp_is_fresh_ ? last_timestamp_.value_or(0) : 0; |
| } |
| |
| int64_t VSyncWorker::GetNextVsyncTimestamp(int64_t time) { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| return GetPhasedVSync(vsync_period_ns_, time); |
| } |
| |
| void VSyncWorker::SetTimestampCallback( |
| std::optional<VsyncTimestampCallback> &&callback) { |
| { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| callback_ = std::move(callback); |
| } |
| UpdateVSyncControl(); |
| } |
| |
| void VSyncWorker::StopThread() { |
| { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| thread_exit_ = true; |
| enabled_ = false; |
| } |
| |
| cv_.notify_all(); |
| } |
| |
| bool VSyncWorker::ShouldEnable() const { |
| return enable_vsync_timestamps_ || callback_.has_value(); |
| }; |
| |
| /* |
| * Returns the timestamp of the next vsync in phase with last_timestamp_. |
| * For example: |
| * last_timestamp_ = 137 |
| * frame_ns = 50 |
| * current = 683 |
| * |
| * ret = (50 * ((683 - 137)/50 + 1)) + 137 |
| * ret = 687 |
| * |
| * Thus, we must sleep until timestamp 687 to maintain phase with the last |
| * timestamp. |
| */ |
| int64_t VSyncWorker::GetPhasedVSync(int64_t frame_ns, int64_t current) const { |
| if (!last_timestamp_.has_value()) |
| return current + frame_ns; |
| |
| return (frame_ns * ((current - *last_timestamp_) / frame_ns + 1)) + |
| *last_timestamp_; |
| } |
| |
| static const int64_t kOneSecondNs = 1LL * 1000 * 1000 * 1000; |
| |
| int VSyncWorker::SyntheticWaitVBlank(int64_t *timestamp) { |
| int64_t phased_timestamp = 0; |
| { |
| std::lock_guard<std::mutex> lock(mutex_); |
| int64_t time_now = ResourceManager::GetTimeMonotonicNs(); |
| phased_timestamp = GetPhasedVSync(vsync_period_ns_, time_now); |
| } |
| |
| struct timespec vsync {}; |
| vsync.tv_sec = int(phased_timestamp / kOneSecondNs); |
| vsync.tv_nsec = int(phased_timestamp - (vsync.tv_sec * kOneSecondNs)); |
| |
| int ret = 0; |
| do { |
| ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &vsync, nullptr); |
| } while (ret == EINTR); |
| if (ret != 0) |
| return ret; |
| |
| *timestamp = phased_timestamp; |
| return 0; |
| } |
| |
| void VSyncWorker::ThreadFn() { |
| int ret = 0; |
| |
| for (;;) { |
| { |
| std::unique_lock<std::mutex> lock(mutex_); |
| // Thread safety analysis doesn't understand std::unique_lock. |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wthread-safety-analysis" |
| if (thread_exit_) |
| break; |
| |
| if (!enabled_) |
| cv_.wait(lock); |
| |
| if (!enabled_) |
| continue; |
| #pragma clang diagnostic pop |
| } |
| |
| ret = -EAGAIN; |
| int64_t timestamp = 0; |
| drmVBlank vblank{}; |
| |
| if (drm_fd_) { |
| vblank.request.type = (drmVBlankSeqType)(DRM_VBLANK_RELATIVE | |
| (high_crtc_ & |
| DRM_VBLANK_HIGH_CRTC_MASK)); |
| vblank.request.sequence = 1; |
| |
| ret = drmWaitVBlank(*drm_fd_, &vblank); |
| if (ret == -EINTR) |
| continue; |
| } |
| |
| if (ret != 0) { |
| ret = SyntheticWaitVBlank(×tamp); |
| if (ret != 0) |
| continue; |
| } else { |
| constexpr int kUsToNsMul = 1000; |
| timestamp = (int64_t)vblank.reply.tval_sec * kOneSecondNs + |
| (int64_t)vblank.reply.tval_usec * kUsToNsMul; |
| } |
| |
| std::optional<VsyncTimestampCallback> vsync_callback; |
| int64_t vsync_period_ns = 0; |
| |
| { |
| const std::lock_guard<std::mutex> lock(mutex_); |
| if (!enabled_) |
| continue; |
| if (enable_vsync_timestamps_) { |
| last_timestamp_is_fresh_ = true; |
| } |
| vsync_callback = callback_; |
| vsync_period_ns = vsync_period_ns_; |
| last_timestamp_ = timestamp; |
| } |
| |
| if (vsync_callback) { |
| vsync_callback.value()(timestamp, vsync_period_ns); |
| } |
| } |
| |
| ALOGI("VSyncWorker thread exit"); |
| } |
| } // namespace android |