The Android Open Source Project | 88b6079 | 2009-03-03 19:28:42 -0800 | [diff] [blame] | 1 | #include <stdio.h> |
| 2 | #include <common.h> |
| 3 | #include <debug.h> |
| 4 | #include <libelf.h> |
| 5 | #include <libebl.h> |
| 6 | #include <elf.h> |
| 7 | #include <gelf.h> |
| 8 | #include <string.h> |
| 9 | #include <errno.h> |
| 10 | #include <string.h> |
| 11 | #include <sys/types.h> |
| 12 | #include <sys/stat.h> |
| 13 | #include <fcntl.h> |
| 14 | #include <unistd.h> |
| 15 | #include <hash.h> |
| 16 | #include <lsd.h> |
| 17 | |
| 18 | extern int verbose_flag; |
| 19 | |
| 20 | typedef struct source_t source_t; |
| 21 | |
| 22 | typedef struct { |
| 23 | Elf_Scn *scn; |
| 24 | GElf_Shdr shdr; |
| 25 | Elf_Data *data; |
| 26 | } section_info_t; |
| 27 | |
| 28 | typedef struct next_export_t { |
| 29 | source_t *source; |
| 30 | int next_idx; |
| 31 | } next_export_t; |
| 32 | |
| 33 | struct source_t { |
| 34 | source_t *next; |
| 35 | int visited; |
| 36 | |
| 37 | char *name; /* full path name of this executable file */ |
| 38 | /* ELF-related information: */ |
| 39 | Elf *elf; |
| 40 | int elf_fd; |
| 41 | GElf_Ehdr elf_hdr; |
| 42 | size_t shstrndx; |
| 43 | int shnum; /* number of sections */ |
| 44 | |
| 45 | section_info_t symtab; |
| 46 | section_info_t strtab; |
| 47 | section_info_t dynamic; |
| 48 | section_info_t hash; |
| 49 | |
| 50 | section_info_t *relocations; |
| 51 | int num_relocations; /* number of relocs (<= relocations_size) */ |
| 52 | int relocations_size; /* sice of array -- NOT number of relocs! */ |
| 53 | |
| 54 | /* satisfied_execs: array containing pointers to the libraries or |
| 55 | executables that this executable satisfies symbol references for. */ |
| 56 | source_t **satisfied_execs; |
| 57 | int num_satisfied_execs; |
| 58 | int satisfied_execs_size; |
| 59 | |
| 60 | /* satisfied: array is parallel to symbol table; for each undefined symbol |
| 61 | in that array, we maintain a flag stating whether that symbol has been |
| 62 | satisfied, and if so, by which library. This applies both to executable |
| 63 | files and libraries. |
| 64 | */ |
| 65 | source_t **satisfied; |
| 66 | |
| 67 | /* exports: array is parallel to symbol table; for each global symbol |
| 68 | in that array, we maintain a flag stating whether that symbol satisfies |
| 69 | a dependency in some other file. num_syms is the length of the exports |
| 70 | array, as well as the satisfied array. This applied to libraries only. |
| 71 | |
| 72 | next_exports: this is a bit tricky. We use this field to maintain a |
| 73 | linked list of source_t for each global symbol of a shared library. |
| 74 | For a shared library's global symbol at index N has the property that |
| 75 | exports[N] is the head of a linked list (threaded through next_export) |
| 76 | of all source_t that this symbol resolves a reference to. For example, |
| 77 | if symbol printf has index 1000 in libc.so, and an executable A and |
| 78 | library L use printf, then the source_t entry corresponding to libc.so |
| 79 | will have exports[1000] be a linked list that contains the nodes for |
| 80 | application A and library L. |
| 81 | */ |
| 82 | |
| 83 | next_export_t *exports; |
| 84 | /* num_exported is the number of symbols in this file actually used by |
| 85 | somebody else; it's not the size of the exports array. */ |
| 86 | int num_exported; |
| 87 | next_export_t *next_export; |
| 88 | int num_next_export; |
| 89 | int next_export_size; |
| 90 | |
| 91 | int num_syms; /* number of symbols in symbol table. This is the length of |
| 92 | both exports[] and satisfied[] arrays. */ |
| 93 | |
| 94 | /* This is an array that contains one element for each library dependency |
| 95 | listed in the executable or shared library. */ |
| 96 | source_t **lib_deps; /* list of library dependencies */ |
| 97 | int num_lib_deps; /* actual number of library dependencies */ |
| 98 | int lib_deps_size; /* size of lib_deps array--NOT actual number of deps! */ |
| 99 | |
| 100 | }; |
| 101 | |
| 102 | static source_t *sources = NULL; |
| 103 | |
| 104 | static char * find_file(const char *libname, |
| 105 | char **lib_lookup_dirs, |
| 106 | int num_lib_lookup_dirs); |
| 107 | |
| 108 | static inline source_t* find_source(const char *name, |
| 109 | char **lib_lookup_dirs, |
| 110 | int num_lib_lookup_dirs) { |
| 111 | source_t *trav = sources; |
| 112 | char *full = find_file(name, lib_lookup_dirs, num_lib_lookup_dirs); |
| 113 | FAILIF(full == NULL, "Cannot construct full path for file [%s]!\n", name); |
| 114 | while (trav) { |
| 115 | if (!strcmp(trav->name, full)) |
| 116 | break; |
| 117 | trav = trav->next; |
| 118 | } |
| 119 | free(full); |
| 120 | return trav; |
| 121 | } |
| 122 | |
| 123 | static inline void add_to_sources(source_t *src) { |
| 124 | src->next = sources; |
| 125 | sources = src; |
| 126 | } |
| 127 | |
| 128 | static source_t* init_source(char *full_path) { |
| 129 | source_t *source = (source_t *)CALLOC(1, sizeof(source_t)); |
| 130 | |
| 131 | ASSERT(full_path); |
| 132 | source->name = full_path; |
| 133 | source->elf_fd = -1; |
| 134 | |
| 135 | INFO("Opening %s...\n", full_path); |
| 136 | source->elf_fd = open(full_path, O_RDONLY); |
| 137 | FAILIF(source->elf_fd < 0, "open(%s): %s (%d)\n", |
| 138 | full_path, |
| 139 | strerror(errno), |
| 140 | errno); |
| 141 | INFO("Calling elf_begin(%s)...\n", full_path); |
| 142 | source->elf = elf_begin(source->elf_fd, ELF_C_READ, NULL); |
| 143 | FAILIF_LIBELF(source->elf == NULL, elf_begin); |
| 144 | |
| 145 | /* libelf can recognize COFF and A.OUT formats, but we handle only ELF. */ |
| 146 | if (elf_kind(source->elf) != ELF_K_ELF) { |
| 147 | ERROR("Input file %s is not in ELF format!\n", full_path); |
| 148 | return NULL; |
| 149 | } |
| 150 | |
| 151 | /* Make sure this is a shared library or an executable. */ |
| 152 | { |
| 153 | INFO("Making sure %s is a shared library or an executable...\n", |
| 154 | full_path); |
| 155 | FAILIF_LIBELF(0 == gelf_getehdr(source->elf, &source->elf_hdr), gelf_getehdr); |
| 156 | FAILIF(source->elf_hdr.e_type != ET_DYN && |
| 157 | source->elf_hdr.e_type != ET_EXEC, |
| 158 | "%s must be a shared library (elf type is %d, expecting %d).\n", |
| 159 | full_path, |
| 160 | source->elf_hdr.e_type, |
| 161 | ET_DYN); |
| 162 | } |
| 163 | |
| 164 | /* Get the index of the section-header-strings-table section. */ |
| 165 | FAILIF_LIBELF(elf_getshstrndx (source->elf, &source->shstrndx) < 0, |
| 166 | elf_getshstrndx); |
| 167 | |
| 168 | FAILIF_LIBELF(elf_getshnum (source->elf, &source->shnum) < 0, elf_getshnum); |
| 169 | |
| 170 | /* Find various sections. */ |
| 171 | size_t scnidx; |
| 172 | Elf_Scn *scn; |
| 173 | GElf_Shdr *shdr, shdr_mem; |
| 174 | INFO("Locating %d sections in %s...\n", source->shnum, full_path); |
| 175 | for (scnidx = 1; scnidx < source->shnum; scnidx++) { |
| 176 | scn = elf_getscn(source->elf, scnidx); |
| 177 | FAILIF_LIBELF(NULL == scn, elf_getscn); |
| 178 | shdr = gelf_getshdr(scn, &shdr_mem); |
| 179 | FAILIF_LIBELF(NULL == shdr, gelf_getshdr); |
| 180 | INFO("\tfound section [%s]...\n", elf_strptr(source->elf, source->shstrndx, shdr->sh_name)); |
| 181 | if (shdr->sh_type == SHT_DYNSYM) { |
| 182 | source->symtab.scn = scn; |
| 183 | source->symtab.data = elf_getdata(scn, NULL); |
| 184 | FAILIF_LIBELF(NULL == source->symtab.data, elf_getdata); |
| 185 | memcpy(&source->symtab.shdr, shdr, sizeof(GElf_Shdr)); |
| 186 | |
| 187 | /* The sh_link field of the section header of the symbol table |
| 188 | contains the index of the associated strings table. */ |
| 189 | source->strtab.scn = elf_getscn(source->elf, |
| 190 | source->symtab.shdr.sh_link); |
| 191 | FAILIF_LIBELF(NULL == source->strtab.scn, elf_getscn); |
| 192 | FAILIF_LIBELF(NULL == gelf_getshdr(scn, &source->strtab.shdr), |
| 193 | gelf_getshdr); |
| 194 | source->strtab.data = elf_getdata(source->strtab.scn, NULL); |
| 195 | FAILIF_LIBELF(NULL == source->strtab.data, elf_getdata); |
| 196 | } |
| 197 | else if (shdr->sh_type == SHT_DYNAMIC) { |
| 198 | source->dynamic.scn = scn; |
| 199 | source->dynamic.data = elf_getdata(scn, NULL); |
| 200 | FAILIF_LIBELF(NULL == source->symtab.data, elf_getdata); |
| 201 | memcpy(&source->dynamic.shdr, shdr, sizeof(GElf_Shdr)); |
| 202 | } |
| 203 | else if (shdr->sh_type == SHT_HASH) { |
| 204 | source->hash.scn = scn; |
| 205 | source->hash.data = elf_getdata(scn, NULL); |
| 206 | FAILIF_LIBELF(NULL == source->hash.data, elf_getdata); |
| 207 | memcpy(&source->hash.shdr, shdr, sizeof(GElf_Shdr)); |
| 208 | } |
| 209 | else if (shdr->sh_type == SHT_REL || shdr->sh_type == SHT_RELA) { |
| 210 | if (source->num_relocations == source->relocations_size) { |
| 211 | source->relocations_size += 5; |
| 212 | source->relocations = |
| 213 | (section_info_t *)REALLOC(source->relocations, |
| 214 | source->relocations_size * |
| 215 | sizeof(section_info_t)); |
| 216 | } |
| 217 | section_info_t *reloc = |
| 218 | source->relocations + source->num_relocations; |
| 219 | reloc->scn = scn; |
| 220 | reloc->data = elf_getdata(scn, NULL); |
| 221 | FAILIF_LIBELF(NULL == reloc->data, elf_getdata); |
| 222 | memcpy(&reloc->shdr, shdr, sizeof(GElf_Shdr)); |
| 223 | source->num_relocations++; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | if (source->dynamic.scn == NULL) { |
| 228 | INFO("File [%s] does not have a dynamic section!\n", full_path); |
| 229 | return 0; |
| 230 | } |
| 231 | |
| 232 | FAILIF(source->symtab.scn == NULL, |
| 233 | "File [%s] does not have a dynamic symbol table!\n", |
| 234 | full_path); |
| 235 | |
| 236 | FAILIF(source->hash.scn == NULL, |
| 237 | "File [%s] does not have a hash table!\n", |
| 238 | full_path); |
| 239 | FAILIF(source->hash.shdr.sh_link != elf_ndxscn(source->symtab.scn), |
| 240 | "Hash points to section %d, not to %d as expected!\n", |
| 241 | source->hash.shdr.sh_link, |
| 242 | elf_ndxscn(scn)); |
| 243 | |
| 244 | /* Now, find out how many symbols we have and allocate the array of |
| 245 | satisfied symbols. |
| 246 | |
| 247 | NOTE: We don't count the number of undefined symbols here; we will |
| 248 | iterate over the symbol table later, and count them then, when it is |
| 249 | more convenient. |
| 250 | */ |
| 251 | size_t symsize = gelf_fsize (source->elf, |
| 252 | ELF_T_SYM, |
| 253 | 1, source->elf_hdr.e_version); |
| 254 | ASSERT(symsize); |
| 255 | |
| 256 | source->num_syms = source->symtab.data->d_size / symsize; |
| 257 | source->satisfied = (source_t **)CALLOC(source->num_syms, |
| 258 | sizeof(source_t *)); |
| 259 | source->exports = (source_t **)CALLOC(source->num_syms, |
| 260 | sizeof(next_export_t)); |
| 261 | |
| 262 | source->num_exported = 0; |
| 263 | source->satisfied_execs = NULL; |
| 264 | source->num_satisfied_execs = 0; |
| 265 | source->satisfied_execs_size = 0; |
| 266 | |
| 267 | add_to_sources(source); |
| 268 | return source; |
| 269 | } |
| 270 | |
| 271 | static void destroy_source(source_t *source) { |
| 272 | FREE(source->satisfied_execs); |
| 273 | FREE(source->satisfied); |
| 274 | FREE(source->exports); |
| 275 | FREE(source->next_export); |
| 276 | FREE(source->lib_deps); /* list of library dependencies */ |
| 277 | FAILIF_LIBELF(elf_end(source->elf), elf_end); |
| 278 | FAILIF(close(source->elf_fd) < 0, "Could not close file %s: %s (%d)!\n", |
| 279 | source->name, strerror(errno), errno); |
| 280 | FREE(source->name); |
| 281 | FREE(source); |
| 282 | } |
| 283 | |
| 284 | static void print_needed_libs(source_t *source) |
| 285 | { |
| 286 | size_t idx; |
| 287 | for (idx = 0; idx < source->num_lib_deps; idx++) { |
| 288 | PRINT("%s:%s\n", |
| 289 | source->name, |
| 290 | source->lib_deps[idx]->name); |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | static int is_symbol_imported(source_t *source, |
| 295 | GElf_Sym *sym, |
| 296 | size_t symidx) |
| 297 | { |
| 298 | const char *symname = elf_strptr(source->elf, |
| 299 | elf_ndxscn(source->strtab.scn), |
| 300 | sym->st_name); |
| 301 | |
| 302 | /* A symbol is imported by an executable or a library if it is undefined |
| 303 | and is either global or weak. There is an additional case for |
| 304 | executables that we will check below. */ |
| 305 | if (sym->st_shndx == SHN_UNDEF && |
| 306 | (GELF_ST_BIND(sym->st_info) == STB_GLOBAL || |
| 307 | GELF_ST_BIND(sym->st_info) == STB_WEAK)) { |
| 308 | INFO("*** symbol [%s:%s] is imported (UNDEFIEND).\n", |
| 309 | source->name, |
| 310 | symname); |
| 311 | return 1; |
| 312 | } |
| 313 | |
| 314 | #ifdef ARM_SPECIFIC_HACKS |
| 315 | /* A symbol is imported by an executable if is marked as an undefined |
| 316 | symbol--this is standard to all ELF formats. Alternatively, according |
| 317 | to the ARM specifications, a symbol in a BSS section that is also marked |
| 318 | by an R_ARM_COPY relocation is also imported. */ |
| 319 | |
| 320 | if (source->elf_hdr.e_type != ET_EXEC) { |
| 321 | INFO("is_symbol_imported(): [%s] is a library, " |
| 322 | "no further checks.\n", source->name); |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | /* Is the symbol in the BSS section, and is there a COPY relocation on |
| 327 | that symbol? */ |
| 328 | INFO("*** [%s:%s] checking further to see if symbol is imported.\n", |
| 329 | source->name, symname); |
| 330 | if (sym->st_shndx < source->shnum) { |
| 331 | /* Is it the .bss section? */ |
| 332 | Elf_Scn *scn = elf_getscn(source->elf, sym->st_shndx); |
| 333 | FAILIF_LIBELF(NULL == scn, elf_getscn); |
| 334 | GElf_Shdr *shdr, shdr_mem; |
| 335 | shdr = gelf_getshdr(scn, &shdr_mem); |
| 336 | FAILIF_LIBELF(NULL == shdr, gelf_getshdr); |
| 337 | if (!strcmp(".bss", elf_strptr(source->elf, |
| 338 | source->shstrndx, |
| 339 | shdr->sh_name))) |
| 340 | { |
| 341 | /* Is there an R_ARM_COPY relocation on this symbol? Iterate |
| 342 | over the list of relocation sections and scan each section for |
| 343 | an entry that matches the symbol. */ |
| 344 | size_t idx; |
| 345 | for (idx = 0; idx < source->num_relocations; idx++) { |
| 346 | section_info_t *reloc = source->relocations + idx; |
| 347 | /* Does the relocation section refer to the symbol table in |
| 348 | which this symbol resides, and does it relocate the .bss |
| 349 | section? */ |
| 350 | if (reloc->shdr.sh_link == elf_ndxscn(source->symtab.scn) && |
| 351 | reloc->shdr.sh_info == sym->st_shndx) |
| 352 | { |
| 353 | /* Go over the relocations and see if any of them matches |
| 354 | our symbol. */ |
| 355 | size_t nrels = reloc->shdr.sh_size / reloc->shdr.sh_entsize; |
| 356 | size_t relidx, newidx; |
| 357 | if (reloc->shdr.sh_type == SHT_REL) { |
| 358 | for (newidx = relidx = 0; relidx < nrels; ++relidx) { |
| 359 | GElf_Rel rel_mem; |
| 360 | FAILIF_LIBELF(gelf_getrel (reloc->data, |
| 361 | relidx, |
| 362 | &rel_mem) == NULL, |
| 363 | gelf_getrel); |
| 364 | if (GELF_R_TYPE(rel_mem.r_info) == R_ARM_COPY && |
| 365 | GELF_R_SYM (rel_mem.r_info) == symidx) |
| 366 | { |
| 367 | INFO("*** symbol [%s:%s] is imported " |
| 368 | "(DEFINED, REL-COPY-RELOCATED).\n", |
| 369 | source->name, |
| 370 | symname); |
| 371 | return 1; |
| 372 | } |
| 373 | } /* for each rel entry... */ |
| 374 | } else { |
| 375 | for (newidx = relidx = 0; relidx < nrels; ++relidx) { |
| 376 | GElf_Rela rel_mem; |
| 377 | FAILIF_LIBELF(gelf_getrela (reloc->data, |
| 378 | relidx, |
| 379 | &rel_mem) == NULL, |
| 380 | gelf_getrela); |
| 381 | if (GELF_R_TYPE(rel_mem.r_info) == R_ARM_COPY && |
| 382 | GELF_R_SYM (rel_mem.r_info) == symidx) |
| 383 | { |
| 384 | INFO("*** symbol [%s:%s] is imported " |
| 385 | "(DEFINED, RELA-COPY-RELOCATED).\n", |
| 386 | source->name, |
| 387 | symname); |
| 388 | return 1; |
| 389 | } |
| 390 | } /* for each rela entry... */ |
| 391 | } /* if rel else rela */ |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | #endif/*ARM_SPECIFIC_HACKS*/ |
| 397 | |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | static void resolve(source_t *source) { |
| 402 | /* Iterate the symbol table. For each undefined symbol, scan the |
| 403 | list of dependencies till we find a global symbol in one of them that |
| 404 | satisfies the undefined reference. At this point, we update both the |
| 405 | satisfied[] array of the sources entry, as well as the exports array of |
| 406 | the dependency where we found the match. |
| 407 | */ |
| 408 | |
| 409 | GElf_Sym *sym, sym_mem; |
| 410 | size_t symidx; |
| 411 | for (symidx = 0; symidx < source->num_syms; symidx++) { |
| 412 | sym = gelf_getsymshndx(source->symtab.data, |
| 413 | NULL, |
| 414 | symidx, |
| 415 | &sym_mem, |
| 416 | NULL); |
| 417 | FAILIF_LIBELF(NULL == sym, gelf_getsymshndx); |
| 418 | if (is_symbol_imported(source, sym, symidx)) |
| 419 | { |
| 420 | /* This is an undefined symbol. Go over the list of libraries |
| 421 | and look it up. */ |
| 422 | size_t libidx; |
| 423 | int found = 0; |
| 424 | source_t *last_found = NULL; |
| 425 | const char *symname = elf_strptr(source->elf, |
| 426 | elf_ndxscn(source->strtab.scn), |
| 427 | sym->st_name); |
| 428 | for (libidx = 0; libidx < source->num_lib_deps; libidx++) { |
| 429 | source_t *lib = source->lib_deps[libidx]; |
| 430 | int lib_symidx = hash_lookup(lib->elf, |
| 431 | lib->hash.data, |
| 432 | lib->symtab.data, |
| 433 | lib->strtab.data, |
| 434 | symname); |
| 435 | if (STN_UNDEF != lib_symidx) |
| 436 | { |
| 437 | /* We found the symbol--now check to see if it is global |
| 438 | or weak. If this is the case, then the symbol satisfies |
| 439 | the dependency. */ |
| 440 | GElf_Sym *lib_sym, lib_sym_mem; |
| 441 | lib_sym = gelf_getsymshndx(lib->symtab.data, |
| 442 | NULL, |
| 443 | lib_symidx, |
| 444 | &lib_sym_mem, |
| 445 | NULL); |
| 446 | FAILIF_LIBELF(NULL == lib_sym, gelf_getsymshndx); |
| 447 | |
| 448 | if(lib_sym->st_shndx != STN_UNDEF && |
| 449 | (GELF_ST_BIND(lib_sym->st_info) == STB_GLOBAL || |
| 450 | GELF_ST_BIND(lib_sym->st_info) == STB_WEAK)) |
| 451 | { |
| 452 | /* We found the symbol! Update the satisfied array at this |
| 453 | index location. */ |
| 454 | source->satisfied[symidx] = lib; |
| 455 | /* Now, link this structure into the linked list |
| 456 | corresponding to the found symbol in the library's |
| 457 | global array. */ |
| 458 | if (source->num_next_export == source->next_export_size) { |
| 459 | source->next_export_size += 30; |
| 460 | source->next_export = |
| 461 | (source_t **)REALLOC(source->next_export, |
| 462 | source->next_export_size * |
| 463 | sizeof(struct next_export_t)); |
| 464 | } |
| 465 | source->next_export[source->num_next_export] = lib->exports[lib_symidx]; |
| 466 | lib->exports[lib_symidx].source = source; |
| 467 | lib->exports[lib_symidx].next_idx = source->num_next_export; |
| 468 | |
| 469 | source->num_next_export++; |
| 470 | lib->num_exported++; |
| 471 | |
| 472 | INFO("[%s:%s (index %d)] satisfied by [%s] (index %d)\n", |
| 473 | source->name, |
| 474 | symname, |
| 475 | symidx, |
| 476 | lib->name, |
| 477 | lib_symidx); |
| 478 | if (found) { |
| 479 | if (found == 1) { |
| 480 | found++; |
| 481 | ERROR("ERROR: multiple definitions found for [%s:%s]!\n", |
| 482 | source->name, symname); |
| 483 | ERROR("\tthis definition [%s]\n", lib->name); |
| 484 | } |
| 485 | ERROR("\tprevious definition [%s]\n", last_found->name); |
| 486 | } |
| 487 | |
| 488 | last_found = lib; |
| 489 | if (!found) found = 1; |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | if(found == 0) { |
| 494 | ERROR("ERROR: could not find match for %s:%s.\n", |
| 495 | source->name, |
| 496 | symname); |
| 497 | } |
| 498 | } /* if we found the symbol... */ |
| 499 | } /* for each symbol... */ |
| 500 | } /* resolve() */ |
| 501 | |
| 502 | static void print_used_symbols(source_t *source) { |
| 503 | |
| 504 | int name_len = strlen(source->name); |
| 505 | static const char ext[] = ".syms"; |
| 506 | char *filter = (char *)MALLOC(name_len + sizeof(ext)); |
| 507 | strcpy(filter, source->name); |
| 508 | strcpy(filter + name_len, ext); |
| 509 | |
| 510 | FILE *fp = fopen(filter, "w+"); |
| 511 | FAILIF(NULL == fp, |
| 512 | "Can't open %s: %s (%d)\n", |
| 513 | filter, |
| 514 | strerror(errno), errno); |
| 515 | |
| 516 | /* Is anybody using the symbols defined in source? */ |
| 517 | |
| 518 | if (source->num_exported > 0) { |
| 519 | INFO("[%s] exports %d symbols to %d libraries and executables.\n", |
| 520 | source->name, |
| 521 | source->num_exported, |
| 522 | source->num_satisfied_execs); |
| 523 | size_t symidx; |
| 524 | for (symidx = 0; symidx < source->num_syms; symidx++) { |
| 525 | if (source->exports[symidx].source != NULL) { |
| 526 | GElf_Sym *sym, sym_mem; |
| 527 | sym = gelf_getsymshndx(source->symtab.data, |
| 528 | NULL, |
| 529 | symidx, |
| 530 | &sym_mem, |
| 531 | NULL); |
| 532 | FAILIF_LIBELF(NULL == sym, gelf_getsymshndx); |
| 533 | fprintf(fp, "%s\n", elf_strptr(source->elf, |
| 534 | elf_ndxscn(source->strtab.scn), |
| 535 | sym->st_name)); |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | else if (source->num_satisfied_execs > 0) { |
| 540 | |
| 541 | /* Is the source listed as a depenency on anyone? If so, then the source exports no symbols |
| 542 | to anyone, but someone lists it as a dependency, which is unnecessary, so we print a warning. |
| 543 | */ |
| 544 | |
| 545 | ERROR("WARNING: [%s] is listed as a dependency in: ", source->name); |
| 546 | int i; |
| 547 | for (i = 0; i < source->num_satisfied_execs; i++) { |
| 548 | ERROR(" [%s],", source->satisfied_execs[i]->name); |
| 549 | } |
| 550 | ERROR(" but none of its symbols are used!.\n"); |
| 551 | } |
| 552 | #if 0 /* This is not really an error--a library's symbols may not be used anyone as specified in the ELF file, |
| 553 | but someone may still open a library via dlopen(). |
| 554 | */ |
| 555 | else { |
| 556 | ERROR("WARNING: None of [%s]'s symbols are used by any library or executable!\n", source->name); |
| 557 | } |
| 558 | #endif |
| 559 | |
| 560 | fclose(fp); |
| 561 | FREE(filter); |
| 562 | } |
| 563 | |
| 564 | static void print_symbol_references(source_t *source) { |
| 565 | |
| 566 | int name_len = strlen(source->name); |
| 567 | static const char ext[] = ".info"; |
| 568 | char *filter = (char *)MALLOC(name_len + sizeof(ext)); |
| 569 | strcpy(filter, source->name); |
| 570 | strcpy(filter + name_len, ext); |
| 571 | |
| 572 | FILE *fp = fopen(filter, "w+"); |
| 573 | FAILIF(NULL == fp, |
| 574 | "Can't open %s: %s (%d)\n", |
| 575 | filter, |
| 576 | strerror(errno), errno); |
| 577 | |
| 578 | if (source->num_exported > 0) { |
| 579 | size_t symidx; |
| 580 | for (symidx = 0; symidx < source->num_syms; symidx++) { |
| 581 | if (source->exports[symidx].source != NULL) { |
| 582 | const char *symname; |
| 583 | GElf_Sym *sym, sym_mem; |
| 584 | sym = gelf_getsymshndx(source->symtab.data, |
| 585 | NULL, |
| 586 | symidx, |
| 587 | &sym_mem, |
| 588 | NULL); |
| 589 | FAILIF_LIBELF(NULL == sym, gelf_getsymshndx); |
| 590 | symname = elf_strptr(source->elf, |
| 591 | elf_ndxscn(source->strtab.scn), |
| 592 | sym->st_name); |
| 593 | fprintf(fp, "%s\n", symname); |
| 594 | next_export_t *export = &source->exports[symidx]; |
| 595 | while (export->source != NULL) { |
| 596 | //fprintf(stderr, "%s:%s\n", symname, export->source->name); |
| 597 | fprintf(fp, "\t%s\n", export->source->name); |
| 598 | export = &export->source->next_export[export->next_idx]; |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | fclose(fp); |
| 605 | FREE(filter); |
| 606 | } |
| 607 | |
| 608 | static char * find_file(const char *libname, |
| 609 | char **lib_lookup_dirs, |
| 610 | int num_lib_lookup_dirs) { |
| 611 | if (libname[0] == '/') { |
| 612 | /* This is an absolute path name--just return it. */ |
| 613 | INFO("ABSOLUTE PATH: [%s].\n", libname); |
| 614 | return strdup(libname); |
| 615 | } else { |
| 616 | /* First try the working directory. */ |
| 617 | int fd; |
| 618 | if ((fd = open(libname, O_RDONLY)) > 0) { |
| 619 | close(fd); |
| 620 | INFO("FOUND IN CURRENT DIR: [%s].\n", libname); |
| 621 | return strdup(libname); |
| 622 | } else { |
| 623 | /* Iterate over all library paths. For each path, append the file |
| 624 | name and see if there is a file at that place. If that fails, |
| 625 | bail out. */ |
| 626 | |
| 627 | char *name; |
| 628 | while (num_lib_lookup_dirs--) { |
| 629 | size_t lib_len = strlen(*lib_lookup_dirs); |
| 630 | /* one extra character for the slash, and another for the |
| 631 | terminating NULL. */ |
| 632 | name = (char *)MALLOC(lib_len + strlen(libname) + 2); |
| 633 | strcpy(name, *lib_lookup_dirs); |
| 634 | name[lib_len] = '/'; |
| 635 | strcpy(name + lib_len + 1, libname); |
| 636 | if ((fd = open(name, O_RDONLY)) > 0) { |
| 637 | close(fd); |
| 638 | INFO("FOUND: [%s] in [%s].\n", libname, name); |
| 639 | return name; |
| 640 | } |
| 641 | INFO("NOT FOUND: [%s] in [%s].\n", libname, name); |
| 642 | free(name); |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | return NULL; |
| 647 | } |
| 648 | |
| 649 | static source_t* process_library(const char *libname, |
| 650 | char **lib_lookup_dirs, |
| 651 | int num_lib_lookup_dirs) { |
| 652 | source_t *source = find_source(libname, lib_lookup_dirs, num_lib_lookup_dirs); |
| 653 | if (NULL == source) { |
| 654 | INFO("Processing [%s].\n", libname); |
| 655 | char *full = find_file(libname, lib_lookup_dirs, num_lib_lookup_dirs); |
| 656 | FAILIF(NULL == full, |
| 657 | "Could not find [%s] in the current directory or in any of " |
| 658 | "the search paths!\n", libname); |
| 659 | source = init_source(full); |
| 660 | if (source) { |
| 661 | GElf_Dyn *dyn, dyn_mem; |
| 662 | size_t dynidx; |
| 663 | size_t numdyn = |
| 664 | source->dynamic.shdr.sh_size / |
| 665 | source->dynamic.shdr.sh_entsize; |
| 666 | |
| 667 | for (dynidx = 0; dynidx < numdyn; dynidx++) { |
| 668 | dyn = gelf_getdyn (source->dynamic.data, |
| 669 | dynidx, |
| 670 | &dyn_mem); |
| 671 | FAILIF_LIBELF(NULL == dyn, gelf_getdyn); |
| 672 | if (dyn->d_tag == DT_NEEDED) { |
| 673 | /* Process the needed library recursively. */ |
| 674 | const char *dep_lib = |
| 675 | elf_strptr (source->elf, |
| 676 | source->dynamic.shdr.sh_link, |
| 677 | dyn->d_un.d_val); |
| 678 | INFO("[%s] depends on [%s].\n", libname, dep_lib); |
| 679 | source_t *dep = process_library(dep_lib, |
| 680 | lib_lookup_dirs, |
| 681 | num_lib_lookup_dirs); |
| 682 | |
| 683 | /* Tell dep that source depends on it. */ |
| 684 | if (dep->num_satisfied_execs == dep->satisfied_execs_size) { |
| 685 | dep->satisfied_execs_size += 10; |
| 686 | dep->satisfied_execs = |
| 687 | REALLOC(dep->satisfied_execs, |
| 688 | dep->satisfied_execs_size * |
| 689 | sizeof(source_t *)); |
| 690 | } |
| 691 | dep->satisfied_execs[dep->num_satisfied_execs++] = source; |
| 692 | |
| 693 | /* Add the library to the dependency list. */ |
| 694 | if (source->num_lib_deps == source->lib_deps_size) { |
| 695 | source->lib_deps_size += 10; |
| 696 | source->lib_deps = REALLOC(source->lib_deps, |
| 697 | source->lib_deps_size * |
| 698 | sizeof(source_t *)); |
| 699 | } |
| 700 | source->lib_deps[source->num_lib_deps++] = dep; |
| 701 | } |
| 702 | } /* for each dynamic entry... */ |
| 703 | } |
| 704 | } else INFO("[%s] has been processed already.\n", libname); |
| 705 | |
| 706 | return source; |
| 707 | } |
| 708 | |
| 709 | void lsd(char **execs, int num_execs, |
| 710 | int list_needed_libs, |
| 711 | int print_info, |
| 712 | char **lib_lookup_dirs, int num_lib_lookup_dirs) { |
| 713 | |
| 714 | source_t *source; /* for general usage */ |
| 715 | int input_idx; |
| 716 | |
| 717 | for (input_idx = 0; input_idx < num_execs; input_idx++) { |
| 718 | INFO("executable: [%s]\n", execs[input_idx]); |
| 719 | /* Here process library is actually processing the top-level executable |
| 720 | files. */ |
| 721 | process_library(execs[input_idx], lib_lookup_dirs, num_lib_lookup_dirs); |
| 722 | /* if source is NULL, then the respective executable is static */ |
| 723 | /* Mark the source as an executable */ |
| 724 | } /* for each input executable... */ |
| 725 | |
| 726 | if (list_needed_libs) { |
| 727 | source = sources; |
| 728 | while (source) { |
| 729 | print_needed_libs(source); |
| 730 | source = source->next; |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | /* Now, for each entry in the sources array, iterate its symbol table. For |
| 735 | each undefined symbol, scan the list of dependencies till we find a |
| 736 | global symbol in one of them that satisfies the undefined reference. |
| 737 | At this point, we update both the satisfied[] array of the sources entry, |
| 738 | as well as the exports array of the dependency where we found the match. |
| 739 | */ |
| 740 | |
| 741 | source = sources; |
| 742 | while (source) { |
| 743 | resolve(source); |
| 744 | source = source->next; |
| 745 | } |
| 746 | |
| 747 | /* We are done! Since the end result of our calculations is a set of |
| 748 | symbols for each library that other libraries or executables link |
| 749 | against, we iterate over the set of libraries one last time, and for |
| 750 | each symbol that is marked as satisfying some dependence, we emit |
| 751 | a line with the symbol's name to a text file derived from the library's |
| 752 | name by appending the suffix .syms to it. */ |
| 753 | |
| 754 | source = sources; |
| 755 | while (source) { |
| 756 | /* If it's a library, print the results. */ |
| 757 | if (source->elf_hdr.e_type == ET_DYN) { |
| 758 | print_used_symbols(source); |
| 759 | if (print_info) |
| 760 | print_symbol_references(source); |
| 761 | } |
| 762 | source = source->next; |
| 763 | } |
| 764 | |
| 765 | /* Free the resources--you can't do it in the loop above because function |
| 766 | print_symbol_references() accesses nodes other than the one being |
| 767 | iterated over. |
| 768 | */ |
| 769 | source = sources; |
| 770 | while (source) { |
| 771 | source_t *old = source; |
| 772 | source = source->next; |
| 773 | /* Destroy the evidence. */ |
| 774 | destroy_source(old); |
| 775 | } |
| 776 | } |
| 777 | |