Elliott Hughes | f86ee10 | 2018-07-19 16:11:08 -0700 | [diff] [blame^] | 1 | /*- |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 14 | * |
| 15 | * Permission to use, copy, modify, and distribute this software for any |
| 16 | * purpose with or without fee is hereby granted, provided that the above |
| 17 | * copyright notice and this permission notice appear in all copies. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 20 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 21 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 22 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 23 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 24 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 25 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 26 | */ |
| 27 | |
| 28 | /* powl(x,y) return x**y |
| 29 | * |
| 30 | * n |
| 31 | * Method: Let x = 2 * (1+f) |
| 32 | * 1. Compute and return log2(x) in two pieces: |
| 33 | * log2(x) = w1 + w2, |
| 34 | * where w1 has 113-53 = 60 bit trailing zeros. |
| 35 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| 36 | * arithmetic, where |y'|<=0.5. |
| 37 | * 3. Return x**y = 2**n*exp(y'*log2) |
| 38 | * |
| 39 | * Special cases: |
| 40 | * 1. (anything) ** 0 is 1 |
| 41 | * 2. (anything) ** 1 is itself |
| 42 | * 3. (anything) ** NAN is NAN |
| 43 | * 4. NAN ** (anything except 0) is NAN |
| 44 | * 5. +-(|x| > 1) ** +INF is +INF |
| 45 | * 6. +-(|x| > 1) ** -INF is +0 |
| 46 | * 7. +-(|x| < 1) ** +INF is +0 |
| 47 | * 8. +-(|x| < 1) ** -INF is +INF |
| 48 | * 9. +-1 ** +-INF is NAN |
| 49 | * 10. +0 ** (+anything except 0, NAN) is +0 |
| 50 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| 51 | * 12. +0 ** (-anything except 0, NAN) is +INF |
| 52 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
| 53 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
| 54 | * 15. +INF ** (+anything except 0,NAN) is +INF |
| 55 | * 16. +INF ** (-anything except 0,NAN) is +0 |
| 56 | * 17. -INF ** (anything) = -0 ** (-anything) |
| 57 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| 58 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
| 59 | * |
| 60 | */ |
| 61 | |
| 62 | #include <sys/cdefs.h> |
| 63 | __FBSDID("$FreeBSD: head/lib/msun/ld128/e_powl.c 336362 2018-07-17 07:42:14Z bde $"); |
| 64 | |
| 65 | #include <float.h> |
| 66 | #include <math.h> |
| 67 | |
| 68 | #include "math_private.h" |
| 69 | |
| 70 | static const long double bp[] = { |
| 71 | 1.0L, |
| 72 | 1.5L, |
| 73 | }; |
| 74 | |
| 75 | /* log_2(1.5) */ |
| 76 | static const long double dp_h[] = { |
| 77 | 0.0, |
| 78 | 5.8496250072115607565592654282227158546448E-1L |
| 79 | }; |
| 80 | |
| 81 | /* Low part of log_2(1.5) */ |
| 82 | static const long double dp_l[] = { |
| 83 | 0.0, |
| 84 | 1.0579781240112554492329533686862998106046E-16L |
| 85 | }; |
| 86 | |
| 87 | static const long double zero = 0.0L, |
| 88 | one = 1.0L, |
| 89 | two = 2.0L, |
| 90 | two113 = 1.0384593717069655257060992658440192E34L, |
| 91 | huge = 1.0e3000L, |
| 92 | tiny = 1.0e-3000L; |
| 93 | |
| 94 | /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) |
| 95 | z = (x-1)/(x+1) |
| 96 | 1 <= x <= 1.25 |
| 97 | Peak relative error 2.3e-37 */ |
| 98 | static const long double LN[] = |
| 99 | { |
| 100 | -3.0779177200290054398792536829702930623200E1L, |
| 101 | 6.5135778082209159921251824580292116201640E1L, |
| 102 | -4.6312921812152436921591152809994014413540E1L, |
| 103 | 1.2510208195629420304615674658258363295208E1L, |
| 104 | -9.9266909031921425609179910128531667336670E-1L |
| 105 | }; |
| 106 | static const long double LD[] = |
| 107 | { |
| 108 | -5.129862866715009066465422805058933131960E1L, |
| 109 | 1.452015077564081884387441590064272782044E2L, |
| 110 | -1.524043275549860505277434040464085593165E2L, |
| 111 | 7.236063513651544224319663428634139768808E1L, |
| 112 | -1.494198912340228235853027849917095580053E1L |
| 113 | /* 1.0E0 */ |
| 114 | }; |
| 115 | |
| 116 | /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) |
| 117 | 0 <= x <= 0.5 |
| 118 | Peak relative error 5.7e-38 */ |
| 119 | static const long double PN[] = |
| 120 | { |
| 121 | 5.081801691915377692446852383385968225675E8L, |
| 122 | 9.360895299872484512023336636427675327355E6L, |
| 123 | 4.213701282274196030811629773097579432957E4L, |
| 124 | 5.201006511142748908655720086041570288182E1L, |
| 125 | 9.088368420359444263703202925095675982530E-3L, |
| 126 | }; |
| 127 | static const long double PD[] = |
| 128 | { |
| 129 | 3.049081015149226615468111430031590411682E9L, |
| 130 | 1.069833887183886839966085436512368982758E8L, |
| 131 | 8.259257717868875207333991924545445705394E5L, |
| 132 | 1.872583833284143212651746812884298360922E3L, |
| 133 | /* 1.0E0 */ |
| 134 | }; |
| 135 | |
| 136 | static const long double |
| 137 | /* ln 2 */ |
| 138 | lg2 = 6.9314718055994530941723212145817656807550E-1L, |
| 139 | lg2_h = 6.9314718055994528622676398299518041312695E-1L, |
| 140 | lg2_l = 2.3190468138462996154948554638754786504121E-17L, |
| 141 | ovt = 8.0085662595372944372e-0017L, |
| 142 | /* 2/(3*log(2)) */ |
| 143 | cp = 9.6179669392597560490661645400126142495110E-1L, |
| 144 | cp_h = 9.6179669392597555432899980587535537779331E-1L, |
| 145 | cp_l = 5.0577616648125906047157785230014751039424E-17L; |
| 146 | |
| 147 | long double |
| 148 | powl(long double x, long double y) |
| 149 | { |
| 150 | long double z, ax, z_h, z_l, p_h, p_l; |
| 151 | long double yy1, t1, t2, r, s, t, u, v, w; |
| 152 | long double s2, s_h, s_l, t_h, t_l; |
| 153 | int32_t i, j, k, yisint, n; |
| 154 | u_int32_t ix, iy; |
| 155 | int32_t hx, hy; |
| 156 | ieee_quad_shape_type o, p, q; |
| 157 | |
| 158 | p.value = x; |
| 159 | hx = p.parts32.mswhi; |
| 160 | ix = hx & 0x7fffffff; |
| 161 | |
| 162 | q.value = y; |
| 163 | hy = q.parts32.mswhi; |
| 164 | iy = hy & 0x7fffffff; |
| 165 | |
| 166 | |
| 167 | /* y==zero: x**0 = 1 */ |
| 168 | if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) |
| 169 | return one; |
| 170 | |
| 171 | /* 1.0**y = 1; -1.0**+-Inf = 1 */ |
| 172 | if (x == one) |
| 173 | return one; |
| 174 | if (x == -1.0L && iy == 0x7fff0000 |
| 175 | && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) |
| 176 | return one; |
| 177 | |
| 178 | /* +-NaN return x+y */ |
| 179 | if ((ix > 0x7fff0000) |
| 180 | || ((ix == 0x7fff0000) |
| 181 | && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0)) |
| 182 | || (iy > 0x7fff0000) |
| 183 | || ((iy == 0x7fff0000) |
| 184 | && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0))) |
| 185 | return nan_mix(x, y); |
| 186 | |
| 187 | /* determine if y is an odd int when x < 0 |
| 188 | * yisint = 0 ... y is not an integer |
| 189 | * yisint = 1 ... y is an odd int |
| 190 | * yisint = 2 ... y is an even int |
| 191 | */ |
| 192 | yisint = 0; |
| 193 | if (hx < 0) |
| 194 | { |
| 195 | if (iy >= 0x40700000) /* 2^113 */ |
| 196 | yisint = 2; /* even integer y */ |
| 197 | else if (iy >= 0x3fff0000) /* 1.0 */ |
| 198 | { |
| 199 | if (floorl (y) == y) |
| 200 | { |
| 201 | z = 0.5 * y; |
| 202 | if (floorl (z) == z) |
| 203 | yisint = 2; |
| 204 | else |
| 205 | yisint = 1; |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /* special value of y */ |
| 211 | if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) |
| 212 | { |
| 213 | if (iy == 0x7fff0000) /* y is +-inf */ |
| 214 | { |
| 215 | if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi | |
| 216 | p.parts32.lswlo) == 0) |
| 217 | return y - y; /* +-1**inf is NaN */ |
| 218 | else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ |
| 219 | return (hy >= 0) ? y : zero; |
| 220 | else /* (|x|<1)**-,+inf = inf,0 */ |
| 221 | return (hy < 0) ? -y : zero; |
| 222 | } |
| 223 | if (iy == 0x3fff0000) |
| 224 | { /* y is +-1 */ |
| 225 | if (hy < 0) |
| 226 | return one / x; |
| 227 | else |
| 228 | return x; |
| 229 | } |
| 230 | if (hy == 0x40000000) |
| 231 | return x * x; /* y is 2 */ |
| 232 | if (hy == 0x3ffe0000) |
| 233 | { /* y is 0.5 */ |
| 234 | if (hx >= 0) /* x >= +0 */ |
| 235 | return sqrtl (x); |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | ax = fabsl (x); |
| 240 | /* special value of x */ |
| 241 | if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0) |
| 242 | { |
| 243 | if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) |
| 244 | { |
| 245 | z = ax; /*x is +-0,+-inf,+-1 */ |
| 246 | if (hy < 0) |
| 247 | z = one / z; /* z = (1/|x|) */ |
| 248 | if (hx < 0) |
| 249 | { |
| 250 | if (((ix - 0x3fff0000) | yisint) == 0) |
| 251 | { |
| 252 | z = (z - z) / (z - z); /* (-1)**non-int is NaN */ |
| 253 | } |
| 254 | else if (yisint == 1) |
| 255 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| 256 | } |
| 257 | return z; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /* (x<0)**(non-int) is NaN */ |
| 262 | if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) |
| 263 | return (x - x) / (x - x); |
| 264 | |
| 265 | /* |y| is huge. |
| 266 | 2^-16495 = 1/2 of smallest representable value. |
| 267 | If (1 - 1/131072)^y underflows, y > 1.4986e9 */ |
| 268 | if (iy > 0x401d654b) |
| 269 | { |
| 270 | /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ |
| 271 | if (iy > 0x407d654b) |
| 272 | { |
| 273 | if (ix <= 0x3ffeffff) |
| 274 | return (hy < 0) ? huge * huge : tiny * tiny; |
| 275 | if (ix >= 0x3fff0000) |
| 276 | return (hy > 0) ? huge * huge : tiny * tiny; |
| 277 | } |
| 278 | /* over/underflow if x is not close to one */ |
| 279 | if (ix < 0x3ffeffff) |
| 280 | return (hy < 0) ? huge * huge : tiny * tiny; |
| 281 | if (ix > 0x3fff0000) |
| 282 | return (hy > 0) ? huge * huge : tiny * tiny; |
| 283 | } |
| 284 | |
| 285 | n = 0; |
| 286 | /* take care subnormal number */ |
| 287 | if (ix < 0x00010000) |
| 288 | { |
| 289 | ax *= two113; |
| 290 | n -= 113; |
| 291 | o.value = ax; |
| 292 | ix = o.parts32.mswhi; |
| 293 | } |
| 294 | n += ((ix) >> 16) - 0x3fff; |
| 295 | j = ix & 0x0000ffff; |
| 296 | /* determine interval */ |
| 297 | ix = j | 0x3fff0000; /* normalize ix */ |
| 298 | if (j <= 0x3988) |
| 299 | k = 0; /* |x|<sqrt(3/2) */ |
| 300 | else if (j < 0xbb67) |
| 301 | k = 1; /* |x|<sqrt(3) */ |
| 302 | else |
| 303 | { |
| 304 | k = 0; |
| 305 | n += 1; |
| 306 | ix -= 0x00010000; |
| 307 | } |
| 308 | |
| 309 | o.value = ax; |
| 310 | o.parts32.mswhi = ix; |
| 311 | ax = o.value; |
| 312 | |
| 313 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| 314 | u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| 315 | v = one / (ax + bp[k]); |
| 316 | s = u * v; |
| 317 | s_h = s; |
| 318 | |
| 319 | o.value = s_h; |
| 320 | o.parts32.lswlo = 0; |
| 321 | o.parts32.lswhi &= 0xf8000000; |
| 322 | s_h = o.value; |
| 323 | /* t_h=ax+bp[k] High */ |
| 324 | t_h = ax + bp[k]; |
| 325 | o.value = t_h; |
| 326 | o.parts32.lswlo = 0; |
| 327 | o.parts32.lswhi &= 0xf8000000; |
| 328 | t_h = o.value; |
| 329 | t_l = ax - (t_h - bp[k]); |
| 330 | s_l = v * ((u - s_h * t_h) - s_h * t_l); |
| 331 | /* compute log(ax) */ |
| 332 | s2 = s * s; |
| 333 | u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4]))); |
| 334 | v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2)))); |
| 335 | r = s2 * s2 * u / v; |
| 336 | r += s_l * (s_h + s); |
| 337 | s2 = s_h * s_h; |
| 338 | t_h = 3.0 + s2 + r; |
| 339 | o.value = t_h; |
| 340 | o.parts32.lswlo = 0; |
| 341 | o.parts32.lswhi &= 0xf8000000; |
| 342 | t_h = o.value; |
| 343 | t_l = r - ((t_h - 3.0) - s2); |
| 344 | /* u+v = s*(1+...) */ |
| 345 | u = s_h * t_h; |
| 346 | v = s_l * t_h + t_l * s; |
| 347 | /* 2/(3log2)*(s+...) */ |
| 348 | p_h = u + v; |
| 349 | o.value = p_h; |
| 350 | o.parts32.lswlo = 0; |
| 351 | o.parts32.lswhi &= 0xf8000000; |
| 352 | p_h = o.value; |
| 353 | p_l = v - (p_h - u); |
| 354 | z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| 355 | z_l = cp_l * p_h + p_l * cp + dp_l[k]; |
| 356 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| 357 | t = (long double) n; |
| 358 | t1 = (((z_h + z_l) + dp_h[k]) + t); |
| 359 | o.value = t1; |
| 360 | o.parts32.lswlo = 0; |
| 361 | o.parts32.lswhi &= 0xf8000000; |
| 362 | t1 = o.value; |
| 363 | t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
| 364 | |
| 365 | /* s (sign of result -ve**odd) = -1 else = 1 */ |
| 366 | s = one; |
| 367 | if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) |
| 368 | s = -one; /* (-ve)**(odd int) */ |
| 369 | |
| 370 | /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */ |
| 371 | yy1 = y; |
| 372 | o.value = yy1; |
| 373 | o.parts32.lswlo = 0; |
| 374 | o.parts32.lswhi &= 0xf8000000; |
| 375 | yy1 = o.value; |
| 376 | p_l = (y - yy1) * t1 + y * t2; |
| 377 | p_h = yy1 * t1; |
| 378 | z = p_l + p_h; |
| 379 | o.value = z; |
| 380 | j = o.parts32.mswhi; |
| 381 | if (j >= 0x400d0000) /* z >= 16384 */ |
| 382 | { |
| 383 | /* if z > 16384 */ |
| 384 | if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi | |
| 385 | o.parts32.lswlo) != 0) |
| 386 | return s * huge * huge; /* overflow */ |
| 387 | else |
| 388 | { |
| 389 | if (p_l + ovt > z - p_h) |
| 390 | return s * huge * huge; /* overflow */ |
| 391 | } |
| 392 | } |
| 393 | else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ |
| 394 | { |
| 395 | /* z < -16495 */ |
| 396 | if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi | |
| 397 | o.parts32.lswlo) |
| 398 | != 0) |
| 399 | return s * tiny * tiny; /* underflow */ |
| 400 | else |
| 401 | { |
| 402 | if (p_l <= z - p_h) |
| 403 | return s * tiny * tiny; /* underflow */ |
| 404 | } |
| 405 | } |
| 406 | /* compute 2**(p_h+p_l) */ |
| 407 | i = j & 0x7fffffff; |
| 408 | k = (i >> 16) - 0x3fff; |
| 409 | n = 0; |
| 410 | if (i > 0x3ffe0000) |
| 411 | { /* if |z| > 0.5, set n = [z+0.5] */ |
| 412 | n = floorl (z + 0.5L); |
| 413 | t = n; |
| 414 | p_h -= t; |
| 415 | } |
| 416 | t = p_l + p_h; |
| 417 | o.value = t; |
| 418 | o.parts32.lswlo = 0; |
| 419 | o.parts32.lswhi &= 0xf8000000; |
| 420 | t = o.value; |
| 421 | u = t * lg2_h; |
| 422 | v = (p_l - (t - p_h)) * lg2 + t * lg2_l; |
| 423 | z = u + v; |
| 424 | w = v - (z - u); |
| 425 | /* exp(z) */ |
| 426 | t = z * z; |
| 427 | u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); |
| 428 | v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); |
| 429 | t1 = z - t * u / v; |
| 430 | r = (z * t1) / (t1 - two) - (w + z * w); |
| 431 | z = one - (r - z); |
| 432 | o.value = z; |
| 433 | j = o.parts32.mswhi; |
| 434 | j += (n << 16); |
| 435 | if ((j >> 16) <= 0) |
| 436 | z = scalbnl (z, n); /* subnormal output */ |
| 437 | else |
| 438 | { |
| 439 | o.parts32.mswhi = j; |
| 440 | z = o.value; |
| 441 | } |
| 442 | return s * z; |
| 443 | } |