| Christopher Ferris | 1fc5ccf | 2019-02-15 18:06:15 -0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2019 The Android Open Source Project | 
|  | 3 | * All rights reserved. | 
|  | 4 | * | 
|  | 5 | * Redistribution and use in source and binary forms, with or without | 
|  | 6 | * modification, are permitted provided that the following conditions | 
|  | 7 | * are met: | 
|  | 8 | *  * Redistributions of source code must retain the above copyright | 
|  | 9 | *    notice, this list of conditions and the following disclaimer. | 
|  | 10 | *  * Redistributions in binary form must reproduce the above copyright | 
|  | 11 | *    notice, this list of conditions and the following disclaimer in | 
|  | 12 | *    the documentation and/or other materials provided with the | 
|  | 13 | *    distribution. | 
|  | 14 | * | 
|  | 15 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | 16 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | 17 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
|  | 18 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
|  | 19 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | 20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
|  | 21 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
|  | 22 | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
|  | 23 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
|  | 24 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
|  | 25 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | 26 | * SUCH DAMAGE. | 
|  | 27 | */ | 
|  | 28 |  | 
|  | 29 | #include <inttypes.h> | 
|  | 30 | #include <pthread.h> | 
|  | 31 | #include <stdatomic.h> | 
|  | 32 | #include <stdint.h> | 
|  | 33 | #include <stdio.h> | 
|  | 34 |  | 
|  | 35 | #include <private/bionic_malloc_dispatch.h> | 
|  | 36 |  | 
| Peter Collingbourne | 149ce93 | 2019-03-15 22:43:47 -0700 | [diff] [blame] | 37 | #if __has_feature(hwaddress_sanitizer) | 
|  | 38 | #include <sanitizer/allocator_interface.h> | 
|  | 39 | #endif | 
|  | 40 |  | 
| Christopher Ferris | 1fc5ccf | 2019-02-15 18:06:15 -0800 | [diff] [blame] | 41 | #include "malloc_common.h" | 
|  | 42 | #include "malloc_common_dynamic.h" | 
|  | 43 | #include "malloc_heapprofd.h" | 
|  | 44 | #include "malloc_limit.h" | 
|  | 45 |  | 
|  | 46 | __BEGIN_DECLS | 
|  | 47 | static void* LimitCalloc(size_t n_elements, size_t elem_size); | 
|  | 48 | static void LimitFree(void* mem); | 
|  | 49 | static void* LimitMalloc(size_t bytes); | 
|  | 50 | static void* LimitMemalign(size_t alignment, size_t bytes); | 
|  | 51 | static int LimitPosixMemalign(void** memptr, size_t alignment, size_t size); | 
|  | 52 | static void* LimitRealloc(void* old_mem, size_t bytes); | 
|  | 53 | static void* LimitAlignedAlloc(size_t alignment, size_t size); | 
|  | 54 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
|  | 55 | static void* LimitPvalloc(size_t bytes); | 
|  | 56 | static void* LimitValloc(size_t bytes); | 
|  | 57 | #endif | 
|  | 58 |  | 
|  | 59 | // Pass through functions. | 
|  | 60 | static size_t LimitUsableSize(const void* mem); | 
|  | 61 | static struct mallinfo LimitMallinfo(); | 
|  | 62 | static int LimitIterate(uintptr_t base, size_t size, void (*callback)(uintptr_t, size_t, void*), void* arg); | 
|  | 63 | static void LimitMallocDisable(); | 
|  | 64 | static void LimitMallocEnable(); | 
|  | 65 | static int LimitMallocInfo(int options, FILE* fp); | 
|  | 66 | static int LimitMallopt(int param, int value); | 
|  | 67 | __END_DECLS | 
|  | 68 |  | 
|  | 69 | static constexpr MallocDispatch __limit_dispatch | 
|  | 70 | __attribute__((unused)) = { | 
|  | 71 | LimitCalloc, | 
|  | 72 | LimitFree, | 
|  | 73 | LimitMallinfo, | 
|  | 74 | LimitMalloc, | 
|  | 75 | LimitUsableSize, | 
|  | 76 | LimitMemalign, | 
|  | 77 | LimitPosixMemalign, | 
|  | 78 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
|  | 79 | LimitPvalloc, | 
|  | 80 | #endif | 
|  | 81 | LimitRealloc, | 
|  | 82 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
|  | 83 | LimitValloc, | 
|  | 84 | #endif | 
|  | 85 | LimitIterate, | 
|  | 86 | LimitMallocDisable, | 
|  | 87 | LimitMallocEnable, | 
|  | 88 | LimitMallopt, | 
|  | 89 | LimitAlignedAlloc, | 
|  | 90 | LimitMallocInfo, | 
|  | 91 | }; | 
|  | 92 |  | 
|  | 93 | static _Atomic uint64_t gAllocated; | 
|  | 94 | static uint64_t gAllocLimit; | 
|  | 95 |  | 
|  | 96 | static inline bool CheckLimit(size_t bytes) { | 
|  | 97 | uint64_t total; | 
|  | 98 | if (__predict_false(__builtin_add_overflow( | 
|  | 99 | atomic_load_explicit(&gAllocated, memory_order_relaxed), bytes, &total) || | 
|  | 100 | total > gAllocLimit)) { | 
|  | 101 | return false; | 
|  | 102 | } | 
|  | 103 | return true; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | static inline void* IncrementLimit(void* mem) { | 
|  | 107 | if (__predict_false(mem == nullptr)) { | 
|  | 108 | return nullptr; | 
|  | 109 | } | 
|  | 110 | atomic_fetch_add(&gAllocated, LimitUsableSize(mem)); | 
|  | 111 | return mem; | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | void* LimitCalloc(size_t n_elements, size_t elem_size) { | 
|  | 115 | size_t total; | 
| Marco Nelissen | 323431b | 2019-06-13 12:24:40 -0700 | [diff] [blame] | 116 | if (__builtin_mul_overflow(n_elements, elem_size, &total) || !CheckLimit(total)) { | 
| Christopher Ferris | 1fc5ccf | 2019-02-15 18:06:15 -0800 | [diff] [blame] | 117 | warning_log("malloc_limit: calloc(%zu, %zu) exceeds limit %" PRId64, n_elements, elem_size, | 
|  | 118 | gAllocLimit); | 
|  | 119 | return nullptr; | 
|  | 120 | } | 
|  | 121 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 122 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 123 | return IncrementLimit(dispatch_table->calloc(n_elements, elem_size)); | 
|  | 124 | } | 
|  | 125 | return IncrementLimit(Malloc(calloc)(n_elements, elem_size)); | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | void LimitFree(void* mem) { | 
|  | 129 | atomic_fetch_sub(&gAllocated, LimitUsableSize(mem)); | 
|  | 130 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 131 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 132 | return dispatch_table->free(mem); | 
|  | 133 | } | 
|  | 134 | return Malloc(free)(mem); | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | void* LimitMalloc(size_t bytes) { | 
|  | 138 | if (!CheckLimit(bytes)) { | 
|  | 139 | warning_log("malloc_limit: malloc(%zu) exceeds limit %" PRId64, bytes, gAllocLimit); | 
|  | 140 | return nullptr; | 
|  | 141 | } | 
|  | 142 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 143 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 144 | return IncrementLimit(dispatch_table->malloc(bytes)); | 
|  | 145 | } | 
|  | 146 | return IncrementLimit(Malloc(malloc)(bytes)); | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | static void* LimitMemalign(size_t alignment, size_t bytes) { | 
|  | 150 | if (!CheckLimit(bytes)) { | 
|  | 151 | warning_log("malloc_limit: memalign(%zu, %zu) exceeds limit %" PRId64, alignment, bytes, | 
|  | 152 | gAllocLimit); | 
|  | 153 | return nullptr; | 
|  | 154 | } | 
|  | 155 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 156 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 157 | return IncrementLimit(dispatch_table->memalign(alignment, bytes)); | 
|  | 158 | } | 
|  | 159 | return IncrementLimit(Malloc(memalign)(alignment, bytes)); | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | static int LimitPosixMemalign(void** memptr, size_t alignment, size_t size) { | 
|  | 163 | if (!CheckLimit(size)) { | 
|  | 164 | warning_log("malloc_limit: posix_memalign(%zu, %zu) exceeds limit %" PRId64, alignment, size, | 
|  | 165 | gAllocLimit); | 
|  | 166 | return ENOMEM; | 
|  | 167 | } | 
|  | 168 | int retval; | 
|  | 169 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 170 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 171 | retval = dispatch_table->posix_memalign(memptr, alignment, size); | 
|  | 172 | } else { | 
|  | 173 | retval = Malloc(posix_memalign)(memptr, alignment, size); | 
|  | 174 | } | 
|  | 175 | if (__predict_false(retval != 0)) { | 
|  | 176 | return retval; | 
|  | 177 | } | 
|  | 178 | IncrementLimit(*memptr); | 
|  | 179 | return 0; | 
|  | 180 | } | 
|  | 181 |  | 
|  | 182 | static void* LimitAlignedAlloc(size_t alignment, size_t size) { | 
|  | 183 | if (!CheckLimit(size)) { | 
|  | 184 | warning_log("malloc_limit: aligned_alloc(%zu, %zu) exceeds limit %" PRId64, alignment, size, | 
|  | 185 | gAllocLimit); | 
|  | 186 | return nullptr; | 
|  | 187 | } | 
|  | 188 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 189 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 190 | return IncrementLimit(dispatch_table->aligned_alloc(alignment, size)); | 
|  | 191 | } | 
|  | 192 | return IncrementLimit(Malloc(aligned_alloc)(alignment, size)); | 
|  | 193 | } | 
|  | 194 |  | 
|  | 195 | static void* LimitRealloc(void* old_mem, size_t bytes) { | 
|  | 196 | size_t old_usable_size = LimitUsableSize(old_mem); | 
|  | 197 | void* new_ptr; | 
|  | 198 | // Need to check the size only if the allocation will increase in size. | 
|  | 199 | if (bytes > old_usable_size && !CheckLimit(bytes - old_usable_size)) { | 
|  | 200 | warning_log("malloc_limit: realloc(%p, %zu) exceeds limit %" PRId64, old_mem, bytes, | 
|  | 201 | gAllocLimit); | 
|  | 202 | // Free the old pointer. | 
|  | 203 | LimitFree(old_mem); | 
|  | 204 | return nullptr; | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 208 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 209 | new_ptr = dispatch_table->realloc(old_mem, bytes); | 
|  | 210 | } else { | 
|  | 211 | new_ptr = Malloc(realloc)(old_mem, bytes); | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | if (__predict_false(new_ptr == nullptr)) { | 
|  | 215 | // This acts as if the pointer was freed. | 
|  | 216 | atomic_fetch_sub(&gAllocated, old_usable_size); | 
|  | 217 | return nullptr; | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | size_t new_usable_size = LimitUsableSize(new_ptr); | 
|  | 221 | // Assumes that most allocations increase in size, rather than shrink. | 
|  | 222 | if (__predict_false(old_usable_size > new_usable_size)) { | 
|  | 223 | atomic_fetch_sub(&gAllocated, old_usable_size - new_usable_size); | 
|  | 224 | } else { | 
|  | 225 | atomic_fetch_add(&gAllocated, new_usable_size - old_usable_size); | 
|  | 226 | } | 
|  | 227 | return new_ptr; | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
|  | 231 | static void* LimitPvalloc(size_t bytes) { | 
|  | 232 | if (!CheckLimit(bytes)) { | 
|  | 233 | warning_log("malloc_limit: pvalloc(%zu) exceeds limit %" PRId64, bytes, gAllocLimit); | 
|  | 234 | return nullptr; | 
|  | 235 | } | 
|  | 236 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 237 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 238 | return IncrementLimit(dispatch_table->pvalloc(bytes)); | 
|  | 239 | } | 
|  | 240 | return IncrementLimit(Malloc(pvalloc)(bytes)); | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | static void* LimitValloc(size_t bytes) { | 
|  | 244 | if (!CheckLimit(bytes)) { | 
|  | 245 | warning_log("malloc_limit: valloc(%zu) exceeds limit %" PRId64, bytes, gAllocLimit); | 
|  | 246 | return nullptr; | 
|  | 247 | } | 
|  | 248 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 249 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 250 | return IncrementLimit(dispatch_table->valloc(bytes)); | 
|  | 251 | } | 
|  | 252 | return IncrementLimit(Malloc(valloc)(bytes)); | 
|  | 253 | } | 
|  | 254 | #endif | 
|  | 255 |  | 
|  | 256 | #if defined(LIBC_STATIC) | 
|  | 257 | static bool EnableLimitDispatchTable() { | 
|  | 258 | // This is the only valid way to modify the dispatch tables for a | 
|  | 259 | // static executable so no locks are necessary. | 
|  | 260 | __libc_globals.mutate([](libc_globals* globals) { | 
|  | 261 | atomic_store(&globals->current_dispatch_table, &__limit_dispatch); | 
|  | 262 | }); | 
|  | 263 | return true; | 
|  | 264 | } | 
|  | 265 | #else | 
|  | 266 | static bool EnableLimitDispatchTable() { | 
|  | 267 | HeapprofdMaskSignal(); | 
|  | 268 | pthread_mutex_lock(&gGlobalsMutateLock); | 
|  | 269 | // All other code that calls mutate will grab the gGlobalsMutateLock. | 
|  | 270 | // However, there is one case where the lock cannot be acquired, in the | 
|  | 271 | // signal handler that enables heapprofd. In order to avoid having two | 
|  | 272 | // threads calling mutate at the same time, use an atomic variable to | 
|  | 273 | // verify that only this function or the signal handler are calling mutate. | 
|  | 274 | // If this function is called at the same time as the signal handler is | 
|  | 275 | // being called, allow up to five ms for the signal handler to complete | 
|  | 276 | // before failing. | 
|  | 277 | bool enabled = false; | 
| Christopher Ferris | ce491ab | 2019-03-26 15:45:34 -0700 | [diff] [blame] | 278 | size_t num_tries = 20; | 
| Christopher Ferris | 1fc5ccf | 2019-02-15 18:06:15 -0800 | [diff] [blame] | 279 | while (true) { | 
|  | 280 | if (!atomic_exchange(&gGlobalsMutating, true)) { | 
|  | 281 | __libc_globals.mutate([](libc_globals* globals) { | 
|  | 282 | atomic_store(&globals->current_dispatch_table, &__limit_dispatch); | 
|  | 283 | }); | 
|  | 284 | atomic_store(&gGlobalsMutating, false); | 
|  | 285 | enabled = true; | 
|  | 286 | break; | 
|  | 287 | } | 
| Christopher Ferris | 9b78aa3 | 2019-03-18 20:40:26 -0700 | [diff] [blame] | 288 | if (--num_tries == 0) { | 
| Christopher Ferris | 1fc5ccf | 2019-02-15 18:06:15 -0800 | [diff] [blame] | 289 | break; | 
|  | 290 | } | 
|  | 291 | usleep(1000); | 
|  | 292 | } | 
|  | 293 | pthread_mutex_unlock(&gGlobalsMutateLock); | 
|  | 294 | HeapprofdUnmaskSignal(); | 
|  | 295 | if (enabled) { | 
|  | 296 | info_log("malloc_limit: Allocation limit enabled, max size %" PRId64 " bytes\n", gAllocLimit); | 
|  | 297 | } else { | 
|  | 298 | error_log("malloc_limit: Failed to enable allocation limit."); | 
|  | 299 | } | 
|  | 300 | return enabled; | 
|  | 301 | } | 
|  | 302 | #endif | 
|  | 303 |  | 
|  | 304 | bool LimitEnable(void* arg, size_t arg_size) { | 
|  | 305 | if (arg == nullptr || arg_size != sizeof(size_t)) { | 
|  | 306 | errno = EINVAL; | 
|  | 307 | return false; | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | static _Atomic bool limit_enabled; | 
|  | 311 | if (atomic_exchange(&limit_enabled, true)) { | 
|  | 312 | // The limit can only be enabled once. | 
|  | 313 | error_log("malloc_limit: The allocation limit has already been set, it can only be set once."); | 
|  | 314 | return false; | 
|  | 315 | } | 
|  | 316 |  | 
|  | 317 | gAllocLimit = *reinterpret_cast<size_t*>(arg); | 
|  | 318 | #if __has_feature(hwaddress_sanitizer) | 
|  | 319 | size_t current_allocated = __sanitizer_get_current_allocated_bytes(); | 
|  | 320 | #else | 
|  | 321 | size_t current_allocated; | 
|  | 322 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 323 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 324 | current_allocated = dispatch_table->mallinfo().uordblks; | 
|  | 325 | } else { | 
|  | 326 | current_allocated = Malloc(mallinfo)().uordblks; | 
|  | 327 | } | 
|  | 328 | #endif | 
|  | 329 | atomic_store(&gAllocated, current_allocated); | 
|  | 330 |  | 
|  | 331 | return EnableLimitDispatchTable(); | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | static size_t LimitUsableSize(const void* mem) { | 
|  | 335 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 336 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 337 | return dispatch_table->malloc_usable_size(mem); | 
|  | 338 | } | 
|  | 339 | return Malloc(malloc_usable_size)(mem); | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 | static struct mallinfo LimitMallinfo() { | 
|  | 343 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 344 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 345 | return dispatch_table->mallinfo(); | 
|  | 346 | } | 
|  | 347 | return Malloc(mallinfo)(); | 
|  | 348 | } | 
|  | 349 |  | 
|  | 350 | static int LimitIterate(uintptr_t base, size_t size, void (*callback)(uintptr_t, size_t, void*), void* arg) { | 
|  | 351 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 352 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 353 | return dispatch_table->iterate(base, size, callback, arg); | 
|  | 354 | } | 
|  | 355 | return Malloc(iterate)(base, size, callback, arg); | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | static void LimitMallocDisable() { | 
|  | 359 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 360 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 361 | dispatch_table->malloc_disable(); | 
|  | 362 | } else { | 
|  | 363 | Malloc(malloc_disable)(); | 
|  | 364 | } | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 | static void LimitMallocEnable() { | 
|  | 368 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 369 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 370 | dispatch_table->malloc_enable(); | 
|  | 371 | } else { | 
|  | 372 | Malloc(malloc_enable)(); | 
|  | 373 | } | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | static int LimitMallocInfo(int options, FILE* fp) { | 
|  | 377 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 378 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 379 | return dispatch_table->malloc_info(options, fp); | 
|  | 380 | } | 
|  | 381 | return Malloc(malloc_info)(options, fp); | 
|  | 382 | } | 
|  | 383 |  | 
|  | 384 | static int LimitMallopt(int param, int value) { | 
|  | 385 | auto dispatch_table = GetDefaultDispatchTable(); | 
|  | 386 | if (__predict_false(dispatch_table != nullptr)) { | 
|  | 387 | return dispatch_table->mallopt(param, value); | 
|  | 388 | } | 
|  | 389 | return Malloc(mallopt)(param, value); | 
|  | 390 | } |