blob: df526e71e545b80ee7ab33115519db505e3b6e72 [file] [log] [blame]
Elliott Hughesa0ee0782013-01-30 19:06:37 -08001/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
13 * from: @(#)fdlibm.h 5.1 93/09/24
Elliott Hughesbac0ebb2021-01-26 14:17:20 -080014 * $FreeBSD$
Elliott Hughesa0ee0782013-01-30 19:06:37 -080015 */
16
17#ifndef _MATH_PRIVATE_H_
18#define _MATH_PRIVATE_H_
19
20#include <sys/types.h>
21#include <machine/endian.h>
22
23/*
24 * The original fdlibm code used statements like:
25 * n0 = ((*(int*)&one)>>29)^1; * index of high word *
26 * ix0 = *(n0+(int*)&x); * high word of x *
27 * ix1 = *((1-n0)+(int*)&x); * low word of x *
28 * to dig two 32 bit words out of the 64 bit IEEE floating point
29 * value. That is non-ANSI, and, moreover, the gcc instruction
30 * scheduler gets it wrong. We instead use the following macros.
31 * Unlike the original code, we determine the endianness at compile
32 * time, not at run time; I don't see much benefit to selecting
33 * endianness at run time.
34 */
35
36/*
37 * A union which permits us to convert between a double and two 32 bit
38 * ints.
39 */
40
41#ifdef __arm__
Calin Juravlebd3155d2014-03-13 16:20:36 +000042#if defined(__VFP_FP__) || defined(__ARM_EABI__)
Elliott Hughesa0ee0782013-01-30 19:06:37 -080043#define IEEE_WORD_ORDER BYTE_ORDER
44#else
45#define IEEE_WORD_ORDER BIG_ENDIAN
46#endif
47#else /* __arm__ */
48#define IEEE_WORD_ORDER BYTE_ORDER
49#endif
50
Elliott Hughesab528072018-07-24 00:01:52 +000051/* A union which permits us to convert between a long double and
52 four 32 bit ints. */
53
54#if IEEE_WORD_ORDER == BIG_ENDIAN
55
56typedef union
57{
58 long double value;
59 struct {
60 u_int32_t mswhi;
61 u_int32_t mswlo;
62 u_int32_t lswhi;
63 u_int32_t lswlo;
64 } parts32;
65 struct {
66 u_int64_t msw;
67 u_int64_t lsw;
68 } parts64;
69} ieee_quad_shape_type;
70
71#endif
72
73#if IEEE_WORD_ORDER == LITTLE_ENDIAN
74
75typedef union
76{
77 long double value;
78 struct {
79 u_int32_t lswlo;
80 u_int32_t lswhi;
81 u_int32_t mswlo;
82 u_int32_t mswhi;
83 } parts32;
84 struct {
85 u_int64_t lsw;
86 u_int64_t msw;
87 } parts64;
88} ieee_quad_shape_type;
89
90#endif
91
Elliott Hughesa0ee0782013-01-30 19:06:37 -080092#if IEEE_WORD_ORDER == BIG_ENDIAN
93
94typedef union
95{
96 double value;
97 struct
98 {
99 u_int32_t msw;
100 u_int32_t lsw;
101 } parts;
102 struct
103 {
104 u_int64_t w;
105 } xparts;
106} ieee_double_shape_type;
107
108#endif
109
110#if IEEE_WORD_ORDER == LITTLE_ENDIAN
111
112typedef union
113{
114 double value;
115 struct
116 {
117 u_int32_t lsw;
118 u_int32_t msw;
119 } parts;
120 struct
121 {
122 u_int64_t w;
123 } xparts;
124} ieee_double_shape_type;
125
126#endif
127
128/* Get two 32 bit ints from a double. */
129
130#define EXTRACT_WORDS(ix0,ix1,d) \
131do { \
132 ieee_double_shape_type ew_u; \
133 ew_u.value = (d); \
134 (ix0) = ew_u.parts.msw; \
135 (ix1) = ew_u.parts.lsw; \
136} while (0)
137
138/* Get a 64-bit int from a double. */
139#define EXTRACT_WORD64(ix,d) \
140do { \
141 ieee_double_shape_type ew_u; \
142 ew_u.value = (d); \
143 (ix) = ew_u.xparts.w; \
144} while (0)
145
146/* Get the more significant 32 bit int from a double. */
147
148#define GET_HIGH_WORD(i,d) \
149do { \
150 ieee_double_shape_type gh_u; \
151 gh_u.value = (d); \
152 (i) = gh_u.parts.msw; \
153} while (0)
154
155/* Get the less significant 32 bit int from a double. */
156
157#define GET_LOW_WORD(i,d) \
158do { \
159 ieee_double_shape_type gl_u; \
160 gl_u.value = (d); \
161 (i) = gl_u.parts.lsw; \
162} while (0)
163
164/* Set a double from two 32 bit ints. */
165
166#define INSERT_WORDS(d,ix0,ix1) \
167do { \
168 ieee_double_shape_type iw_u; \
169 iw_u.parts.msw = (ix0); \
170 iw_u.parts.lsw = (ix1); \
171 (d) = iw_u.value; \
172} while (0)
173
174/* Set a double from a 64-bit int. */
175#define INSERT_WORD64(d,ix) \
176do { \
177 ieee_double_shape_type iw_u; \
178 iw_u.xparts.w = (ix); \
179 (d) = iw_u.value; \
180} while (0)
181
182/* Set the more significant 32 bits of a double from an int. */
183
184#define SET_HIGH_WORD(d,v) \
185do { \
186 ieee_double_shape_type sh_u; \
187 sh_u.value = (d); \
188 sh_u.parts.msw = (v); \
189 (d) = sh_u.value; \
190} while (0)
191
192/* Set the less significant 32 bits of a double from an int. */
193
194#define SET_LOW_WORD(d,v) \
195do { \
196 ieee_double_shape_type sl_u; \
197 sl_u.value = (d); \
198 sl_u.parts.lsw = (v); \
199 (d) = sl_u.value; \
200} while (0)
201
202/*
203 * A union which permits us to convert between a float and a 32 bit
204 * int.
205 */
206
207typedef union
208{
209 float value;
210 /* FIXME: Assumes 32 bit int. */
211 unsigned int word;
212} ieee_float_shape_type;
213
214/* Get a 32 bit int from a float. */
215
216#define GET_FLOAT_WORD(i,d) \
217do { \
218 ieee_float_shape_type gf_u; \
219 gf_u.value = (d); \
220 (i) = gf_u.word; \
221} while (0)
222
223/* Set a float from a 32 bit int. */
224
225#define SET_FLOAT_WORD(d,i) \
226do { \
227 ieee_float_shape_type sf_u; \
228 sf_u.word = (i); \
229 (d) = sf_u.value; \
230} while (0)
231
Elliott Hughes78419462013-06-12 16:37:58 -0700232/*
233 * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
234 * double.
235 */
236
237#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
238do { \
239 union IEEEl2bits ew_u; \
240 ew_u.e = (d); \
241 (ix0) = ew_u.xbits.expsign; \
242 (ix1) = ew_u.xbits.man; \
243} while (0)
244
245/*
246 * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
247 * long double.
248 */
249
250#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
251do { \
252 union IEEEl2bits ew_u; \
253 ew_u.e = (d); \
254 (ix0) = ew_u.xbits.expsign; \
255 (ix1) = ew_u.xbits.manh; \
256 (ix2) = ew_u.xbits.manl; \
257} while (0)
258
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800259/* Get expsign as a 16 bit int from a long double. */
260
261#define GET_LDBL_EXPSIGN(i,d) \
262do { \
263 union IEEEl2bits ge_u; \
264 ge_u.e = (d); \
265 (i) = ge_u.xbits.expsign; \
266} while (0)
267
Elliott Hughes78419462013-06-12 16:37:58 -0700268/*
269 * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
270 * mantissa.
271 */
272
273#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
274do { \
275 union IEEEl2bits iw_u; \
276 iw_u.xbits.expsign = (ix0); \
277 iw_u.xbits.man = (ix1); \
278 (d) = iw_u.e; \
279} while (0)
280
281/*
282 * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
283 * comprising the mantissa.
284 */
285
286#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
287do { \
288 union IEEEl2bits iw_u; \
289 iw_u.xbits.expsign = (ix0); \
290 iw_u.xbits.manh = (ix1); \
291 iw_u.xbits.manl = (ix2); \
292 (d) = iw_u.e; \
293} while (0)
294
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800295/* Set expsign of a long double from a 16 bit int. */
296
297#define SET_LDBL_EXPSIGN(d,v) \
298do { \
299 union IEEEl2bits se_u; \
300 se_u.e = (d); \
301 se_u.xbits.expsign = (v); \
302 (d) = se_u.e; \
303} while (0)
304
305#ifdef __i386__
306/* Long double constants are broken on i386. */
307#define LD80C(m, ex, v) { \
308 .xbits.man = __CONCAT(m, ULL), \
309 .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
310}
311#else
312/* The above works on non-i386 too, but we use this to check v. */
313#define LD80C(m, ex, v) { .e = (v), }
314#endif
315
316#ifdef FLT_EVAL_METHOD
317/*
318 * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
319 */
320#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
321#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
322#else
323#define STRICT_ASSIGN(type, lval, rval) do { \
324 volatile type __lval; \
325 \
326 if (sizeof(type) >= sizeof(long double)) \
327 (lval) = (rval); \
328 else { \
329 __lval = (rval); \
330 (lval) = __lval; \
331 } \
332} while (0)
333#endif
334#endif /* FLT_EVAL_METHOD */
335
336/* Support switching the mode to FP_PE if necessary. */
337#if defined(__i386__) && !defined(NO_FPSETPREC)
Elliott Hughesab528072018-07-24 00:01:52 +0000338#define ENTERI() ENTERIT(long double)
339#define ENTERIT(returntype) \
340 returntype __retval; \
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800341 fp_prec_t __oprec; \
342 \
343 if ((__oprec = fpgetprec()) != FP_PE) \
344 fpsetprec(FP_PE)
345#define RETURNI(x) do { \
346 __retval = (x); \
347 if (__oprec != FP_PE) \
348 fpsetprec(__oprec); \
349 RETURNF(__retval); \
350} while (0)
Elliott Hughes8da8ca42018-05-08 13:35:33 -0700351#define ENTERV() \
352 fp_prec_t __oprec; \
353 \
354 if ((__oprec = fpgetprec()) != FP_PE) \
355 fpsetprec(FP_PE)
356#define RETURNV() do { \
357 if (__oprec != FP_PE) \
358 fpsetprec(__oprec); \
359 return; \
360} while (0)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800361#else
Elliott Hughes8da8ca42018-05-08 13:35:33 -0700362#define ENTERI()
Elliott Hughesab528072018-07-24 00:01:52 +0000363#define ENTERIT(x)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800364#define RETURNI(x) RETURNF(x)
Elliott Hughes8da8ca42018-05-08 13:35:33 -0700365#define ENTERV()
366#define RETURNV() return
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800367#endif
368
369/* Default return statement if hack*_t() is not used. */
370#define RETURNF(v) return (v)
371
372/*
Elliott Hughes78419462013-06-12 16:37:58 -0700373 * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
374 * a == 0, but is slower.
375 */
376#define _2sum(a, b) do { \
377 __typeof(a) __s, __w; \
378 \
379 __w = (a) + (b); \
380 __s = __w - (a); \
381 (b) = ((a) - (__w - __s)) + ((b) - __s); \
382 (a) = __w; \
383} while (0)
384
385/*
386 * 2sumF algorithm.
387 *
388 * "Normalize" the terms in the infinite-precision expression a + b for
389 * the sum of 2 floating point values so that b is as small as possible
390 * relative to 'a'. (The resulting 'a' is the value of the expression in
391 * the same precision as 'a' and the resulting b is the rounding error.)
392 * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
393 * exponent overflow or underflow must not occur. This uses a Theorem of
394 * Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
395 * is apparently due to Skewchuk (1997).
396 *
397 * For this to always work, assignment of a + b to 'a' must not retain any
398 * extra precision in a + b. This is required by C standards but broken
399 * in many compilers. The brokenness cannot be worked around using
400 * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
401 * algorithm would be destroyed by non-null strict assignments. (The
402 * compilers are correct to be broken -- the efficiency of all floating
403 * point code calculations would be destroyed similarly if they forced the
404 * conversions.)
405 *
406 * Fortunately, a case that works well can usually be arranged by building
407 * any extra precision into the type of 'a' -- 'a' should have type float_t,
408 * double_t or long double. b's type should be no larger than 'a's type.
409 * Callers should use these types with scopes as large as possible, to
410 * reduce their own extra-precision and efficiciency problems. In
411 * particular, they shouldn't convert back and forth just to call here.
412 */
413#ifdef DEBUG
414#define _2sumF(a, b) do { \
415 __typeof(a) __w; \
416 volatile __typeof(a) __ia, __ib, __r, __vw; \
417 \
418 __ia = (a); \
419 __ib = (b); \
420 assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
421 \
422 __w = (a) + (b); \
423 (b) = ((a) - __w) + (b); \
424 (a) = __w; \
425 \
426 /* The next 2 assertions are weak if (a) is already long double. */ \
427 assert((long double)__ia + __ib == (long double)(a) + (b)); \
428 __vw = __ia + __ib; \
429 __r = __ia - __vw; \
430 __r += __ib; \
431 assert(__vw == (a) && __r == (b)); \
432} while (0)
433#else /* !DEBUG */
434#define _2sumF(a, b) do { \
435 __typeof(a) __w; \
436 \
437 __w = (a) + (b); \
438 (b) = ((a) - __w) + (b); \
439 (a) = __w; \
440} while (0)
441#endif /* DEBUG */
442
443/*
444 * Set x += c, where x is represented in extra precision as a + b.
445 * x must be sufficiently normalized and sufficiently larger than c,
446 * and the result is then sufficiently normalized.
447 *
448 * The details of ordering are that |a| must be >= |c| (so that (a, c)
449 * can be normalized without extra work to swap 'a' with c). The details of
450 * the normalization are that b must be small relative to the normalized 'a'.
451 * Normalization of (a, c) makes the normalized c tiny relative to the
452 * normalized a, so b remains small relative to 'a' in the result. However,
453 * b need not ever be tiny relative to 'a'. For example, b might be about
454 * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
455 * That is usually enough, and adding c (which by normalization is about
456 * 2**53 times smaller than a) cannot change b significantly. However,
457 * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
458 * significantly relative to b. The caller must ensure that significant
459 * cancellation doesn't occur, either by having c of the same sign as 'a',
460 * or by having |c| a few percent smaller than |a|. Pre-normalization of
461 * (a, b) may help.
462 *
Elliott Hughes022e1aa2022-07-12 17:01:46 -0700463 * This is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
Elliott Hughes78419462013-06-12 16:37:58 -0700464 * exercise 19). We gain considerable efficiency by requiring the terms to
465 * be sufficiently normalized and sufficiently increasing.
466 */
467#define _3sumF(a, b, c) do { \
468 __typeof(a) __tmp; \
469 \
470 __tmp = (c); \
471 _2sumF(__tmp, (a)); \
472 (b) += (a); \
473 (a) = __tmp; \
474} while (0)
475
476/*
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800477 * Common routine to process the arguments to nan(), nanf(), and nanl().
478 */
479void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
480
Elliott Hughesab528072018-07-24 00:01:52 +0000481/*
482 * Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns
483 * signaling NaNs into quiet NaNs by setting a quiet bit. We do this
484 * because we want to never return a signaling NaN, and also because we
485 * don't want the quiet bit to affect the result. Then mix the converted
486 * args using the specified operation.
487 *
488 * When one arg is NaN, the result is typically that arg quieted. When both
489 * args are NaNs, the result is typically the quietening of the arg whose
490 * mantissa is largest after quietening. When neither arg is NaN, the
491 * result may be NaN because it is indeterminate, or finite for subsequent
492 * construction of a NaN as the indeterminate 0.0L/0.0L.
493 *
494 * Technical complications: the result in bits after rounding to the final
495 * precision might depend on the runtime precision and/or on compiler
496 * optimizations, especially when different register sets are used for
497 * different precisions. Try to make the result not depend on at least the
498 * runtime precision by always doing the main mixing step in long double
499 * precision. Try to reduce dependencies on optimizations by adding the
500 * the 0's in different precisions (unless everything is in long double
501 * precision).
502 */
503#define nan_mix(x, y) (nan_mix_op((x), (y), +))
504#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0))
505
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800506#ifdef _COMPLEX_H
507
508/*
509 * C99 specifies that complex numbers have the same representation as
510 * an array of two elements, where the first element is the real part
511 * and the second element is the imaginary part.
512 */
513typedef union {
514 float complex f;
515 float a[2];
516} float_complex;
517typedef union {
518 double complex f;
519 double a[2];
520} double_complex;
521typedef union {
522 long double complex f;
523 long double a[2];
524} long_double_complex;
525#define REALPART(z) ((z).a[0])
526#define IMAGPART(z) ((z).a[1])
527
528/*
529 * Inline functions that can be used to construct complex values.
530 *
531 * The C99 standard intends x+I*y to be used for this, but x+I*y is
532 * currently unusable in general since gcc introduces many overflow,
533 * underflow, sign and efficiency bugs by rewriting I*y as
534 * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
535 * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
536 * to -0.0+I*0.0.
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700537 *
538 * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
539 * to construct complex values. Compilers that conform to the C99
540 * standard require the following functions to avoid the above issues.
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800541 */
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700542
543#ifndef CMPLXF
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800544static __inline float complex
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700545CMPLXF(float x, float y)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800546{
547 float_complex z;
548
549 REALPART(z) = x;
550 IMAGPART(z) = y;
551 return (z.f);
552}
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700553#endif
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800554
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700555#ifndef CMPLX
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800556static __inline double complex
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700557CMPLX(double x, double y)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800558{
559 double_complex z;
560
561 REALPART(z) = x;
562 IMAGPART(z) = y;
563 return (z.f);
564}
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700565#endif
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800566
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700567#ifndef CMPLXL
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800568static __inline long double complex
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700569CMPLXL(long double x, long double y)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800570{
571 long_double_complex z;
572
573 REALPART(z) = x;
574 IMAGPART(z) = y;
575 return (z.f);
576}
Elliott Hughes8cff2f92015-08-28 20:21:43 -0700577#endif
578
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800579#endif /* _COMPLEX_H */
580
Elliott Hughesab528072018-07-24 00:01:52 +0000581/*
582 * The rnint() family rounds to the nearest integer for a restricted range
583 * range of args (up to about 2**MANT_DIG). We assume that the current
584 * rounding mode is FE_TONEAREST so that this can be done efficiently.
585 * Extra precision causes more problems in practice, and we only centralize
586 * this here to reduce those problems, and have not solved the efficiency
587 * problems. The exp2() family uses a more delicate version of this that
588 * requires extracting bits from the intermediate value, so it is not
589 * centralized here and should copy any solution of the efficiency problems.
590 */
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800591
Elliott Hughesab528072018-07-24 00:01:52 +0000592static inline double
593rnint(__double_t x)
594{
595 /*
596 * This casts to double to kill any extra precision. This depends
597 * on the cast being applied to a double_t to avoid compiler bugs
598 * (this is a cleaner version of STRICT_ASSIGN()). This is
599 * inefficient if there actually is extra precision, but is hard
600 * to improve on. We use double_t in the API to minimise conversions
601 * for just calling here. Note that we cannot easily change the
602 * magic number to the one that works directly with double_t, since
603 * the rounding precision is variable at runtime on x86 so the
604 * magic number would need to be variable. Assuming that the
605 * rounding precision is always the default is too fragile. This
606 * and many other complications will move when the default is
607 * changed to FP_PE.
608 */
609 return ((double)(x + 0x1.8p52) - 0x1.8p52);
610}
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800611
Elliott Hughesab528072018-07-24 00:01:52 +0000612static inline float
613rnintf(__float_t x)
614{
615 /*
616 * As for rnint(), except we could just call that to handle the
617 * extra precision case, usually without losing efficiency.
618 */
619 return ((float)(x + 0x1.8p23F) - 0x1.8p23F);
620}
621
622#ifdef LDBL_MANT_DIG
623/*
624 * The complications for extra precision are smaller for rnintl() since it
625 * can safely assume that the rounding precision has been increased from
626 * its default to FP_PE on x86. We don't exploit that here to get small
627 * optimizations from limiting the rangle to double. We just need it for
628 * the magic number to work with long doubles. ld128 callers should use
629 * rnint() instead of this if possible. ld80 callers should prefer
630 * rnintl() since for amd64 this avoids swapping the register set, while
631 * for i386 it makes no difference (assuming FP_PE), and for other arches
632 * it makes little difference.
633 */
634static inline long double
635rnintl(long double x)
636{
637 return (x + __CONCAT(0x1.8p, LDBL_MANT_DIG) / 2 -
638 __CONCAT(0x1.8p, LDBL_MANT_DIG) / 2);
639}
640#endif /* LDBL_MANT_DIG */
641
642/*
643 * irint() and i64rint() give the same result as casting to their integer
644 * return type provided their arg is a floating point integer. They can
645 * sometimes be more efficient because no rounding is required.
646 */
Elliott Hughes022e1aa2022-07-12 17:01:46 -0700647#if defined(amd64) || defined(__i386__)
Elliott Hughesab528072018-07-24 00:01:52 +0000648#define irint(x) \
649 (sizeof(x) == sizeof(float) && \
650 sizeof(__float_t) == sizeof(long double) ? irintf(x) : \
651 sizeof(x) == sizeof(double) && \
652 sizeof(__double_t) == sizeof(long double) ? irintd(x) : \
653 sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x))
654#else
655#define irint(x) ((int)(x))
656#endif
657
658#define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */
659
Elliott Hughes022e1aa2022-07-12 17:01:46 -0700660#if defined(__i386__)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800661static __inline int
Elliott Hughesab528072018-07-24 00:01:52 +0000662irintf(float x)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800663{
664 int n;
665
Elliott Hughesab528072018-07-24 00:01:52 +0000666 __asm("fistl %0" : "=m" (n) : "t" (x));
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800667 return (n);
668}
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800669
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800670static __inline int
Elliott Hughesab528072018-07-24 00:01:52 +0000671irintd(double x)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800672{
673 int n;
674
Elliott Hughesab528072018-07-24 00:01:52 +0000675 __asm("fistl %0" : "=m" (n) : "t" (x));
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800676 return (n);
677}
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800678#endif
679
Elliott Hughes022e1aa2022-07-12 17:01:46 -0700680#if defined(__amd64__) || defined(__i386__)
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800681static __inline int
682irintl(long double x)
683{
684 int n;
685
Elliott Hughesab528072018-07-24 00:01:52 +0000686 __asm("fistl %0" : "=m" (n) : "t" (x));
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800687 return (n);
688}
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800689#endif
690
Elliott Hughes78419462013-06-12 16:37:58 -0700691#ifdef DEBUG
692#if defined(__amd64__) || defined(__i386__)
693#define breakpoint() asm("int $3")
694#else
695#include <signal.h>
696
697#define breakpoint() raise(SIGTRAP)
698#endif
699#endif
700
701/* Write a pari script to test things externally. */
702#ifdef DOPRINT
703#include <stdio.h>
704
705#ifndef DOPRINT_SWIZZLE
706#define DOPRINT_SWIZZLE 0
707#endif
708
709#ifdef DOPRINT_LD80
710
711#define DOPRINT_START(xp) do { \
712 uint64_t __lx; \
713 uint16_t __hx; \
714 \
715 /* Hack to give more-problematic args. */ \
716 EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
717 __lx ^= DOPRINT_SWIZZLE; \
718 INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
719 printf("x = %.21Lg; ", (long double)*xp); \
720} while (0)
721#define DOPRINT_END1(v) \
722 printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
723#define DOPRINT_END2(hi, lo) \
724 printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
725 (long double)(hi), (long double)(lo))
726
727#elif defined(DOPRINT_D64)
728
729#define DOPRINT_START(xp) do { \
730 uint32_t __hx, __lx; \
731 \
732 EXTRACT_WORDS(__hx, __lx, *xp); \
733 __lx ^= DOPRINT_SWIZZLE; \
734 INSERT_WORDS(*xp, __hx, __lx); \
735 printf("x = %.21Lg; ", (long double)*xp); \
736} while (0)
737#define DOPRINT_END1(v) \
738 printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
739#define DOPRINT_END2(hi, lo) \
740 printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
741 (long double)(hi), (long double)(lo))
742
743#elif defined(DOPRINT_F32)
744
745#define DOPRINT_START(xp) do { \
746 uint32_t __hx; \
747 \
748 GET_FLOAT_WORD(__hx, *xp); \
749 __hx ^= DOPRINT_SWIZZLE; \
750 SET_FLOAT_WORD(*xp, __hx); \
751 printf("x = %.21Lg; ", (long double)*xp); \
752} while (0)
753#define DOPRINT_END1(v) \
754 printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
755#define DOPRINT_END2(hi, lo) \
756 printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
757 (long double)(hi), (long double)(lo))
758
759#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
760
761#ifndef DOPRINT_SWIZZLE_HIGH
762#define DOPRINT_SWIZZLE_HIGH 0
763#endif
764
765#define DOPRINT_START(xp) do { \
766 uint64_t __lx, __llx; \
767 uint16_t __hx; \
768 \
769 EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
770 __llx ^= DOPRINT_SWIZZLE; \
771 __lx ^= DOPRINT_SWIZZLE_HIGH; \
772 INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
773 printf("x = %.36Lg; ", (long double)*xp); \
774} while (0)
775#define DOPRINT_END1(v) \
776 printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
777#define DOPRINT_END2(hi, lo) \
778 printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
779 (long double)(hi), (long double)(lo))
780
781#endif /* DOPRINT_LD80 */
782
783#else /* !DOPRINT */
784#define DOPRINT_START(xp)
785#define DOPRINT_END1(v)
786#define DOPRINT_END2(hi, lo)
787#endif /* DOPRINT */
788
789#define RETURNP(x) do { \
790 DOPRINT_END1(x); \
791 RETURNF(x); \
792} while (0)
793#define RETURNPI(x) do { \
794 DOPRINT_END1(x); \
795 RETURNI(x); \
796} while (0)
797#define RETURN2P(x, y) do { \
798 DOPRINT_END2((x), (y)); \
799 RETURNF((x) + (y)); \
800} while (0)
801#define RETURN2PI(x, y) do { \
802 DOPRINT_END2((x), (y)); \
803 RETURNI((x) + (y)); \
804} while (0)
805#ifdef STRUCT_RETURN
806#define RETURNSP(rp) do { \
807 if (!(rp)->lo_set) \
808 RETURNP((rp)->hi); \
809 RETURN2P((rp)->hi, (rp)->lo); \
810} while (0)
811#define RETURNSPI(rp) do { \
812 if (!(rp)->lo_set) \
813 RETURNPI((rp)->hi); \
814 RETURN2PI((rp)->hi, (rp)->lo); \
815} while (0)
816#endif
817#define SUM2P(x, y) ({ \
818 const __typeof (x) __x = (x); \
819 const __typeof (y) __y = (y); \
820 \
821 DOPRINT_END2(__x, __y); \
822 __x + __y; \
823})
824
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800825/*
826 * ieee style elementary functions
827 *
828 * We rename functions here to improve other sources' diffability
829 * against fdlibm.
830 */
831#define __ieee754_sqrt sqrt
832#define __ieee754_acos acos
833#define __ieee754_acosh acosh
834#define __ieee754_log log
835#define __ieee754_log2 log2
836#define __ieee754_atanh atanh
837#define __ieee754_asin asin
838#define __ieee754_atan2 atan2
839#define __ieee754_exp exp
840#define __ieee754_cosh cosh
841#define __ieee754_fmod fmod
842#define __ieee754_pow pow
843#define __ieee754_lgamma lgamma
844#define __ieee754_gamma gamma
845#define __ieee754_lgamma_r lgamma_r
846#define __ieee754_gamma_r gamma_r
847#define __ieee754_log10 log10
848#define __ieee754_sinh sinh
849#define __ieee754_hypot hypot
850#define __ieee754_j0 j0
851#define __ieee754_j1 j1
852#define __ieee754_y0 y0
853#define __ieee754_y1 y1
854#define __ieee754_jn jn
855#define __ieee754_yn yn
856#define __ieee754_remainder remainder
857#define __ieee754_scalb scalb
858#define __ieee754_sqrtf sqrtf
859#define __ieee754_acosf acosf
860#define __ieee754_acoshf acoshf
861#define __ieee754_logf logf
862#define __ieee754_atanhf atanhf
863#define __ieee754_asinf asinf
864#define __ieee754_atan2f atan2f
865#define __ieee754_expf expf
866#define __ieee754_coshf coshf
867#define __ieee754_fmodf fmodf
868#define __ieee754_powf powf
869#define __ieee754_lgammaf lgammaf
870#define __ieee754_gammaf gammaf
871#define __ieee754_lgammaf_r lgammaf_r
872#define __ieee754_gammaf_r gammaf_r
873#define __ieee754_log10f log10f
874#define __ieee754_log2f log2f
875#define __ieee754_sinhf sinhf
876#define __ieee754_hypotf hypotf
877#define __ieee754_j0f j0f
878#define __ieee754_j1f j1f
879#define __ieee754_y0f y0f
880#define __ieee754_y1f y1f
881#define __ieee754_jnf jnf
882#define __ieee754_ynf ynf
883#define __ieee754_remainderf remainderf
884#define __ieee754_scalbf scalbf
885
886/* fdlibm kernel function */
887int __kernel_rem_pio2(double*,double*,int,int,int);
888
889/* double precision kernel functions */
890#ifndef INLINE_REM_PIO2
891int __ieee754_rem_pio2(double,double*);
892#endif
893double __kernel_sin(double,double,int);
894double __kernel_cos(double,double);
895double __kernel_tan(double,double,int);
896double __ldexp_exp(double,int);
897#ifdef _COMPLEX_H
898double complex __ldexp_cexp(double complex,int);
899#endif
900
901/* float precision kernel functions */
902#ifndef INLINE_REM_PIO2F
903int __ieee754_rem_pio2f(float,double*);
904#endif
905#ifndef INLINE_KERNEL_SINDF
906float __kernel_sindf(double);
907#endif
908#ifndef INLINE_KERNEL_COSDF
909float __kernel_cosdf(double);
910#endif
911#ifndef INLINE_KERNEL_TANDF
912float __kernel_tandf(double,int);
913#endif
914float __ldexp_expf(float,int);
915#ifdef _COMPLEX_H
916float complex __ldexp_cexpf(float complex,int);
917#endif
918
919/* long double precision kernel functions */
920long double __kernel_sinl(long double, long double, int);
921long double __kernel_cosl(long double, long double);
922long double __kernel_tanl(long double, long double, int);
923
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800924#endif /* !_MATH_PRIVATE_H_ */