| The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 | /* s_log1pf.c -- float version of s_log1p.c. | 
|  | 2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | 
|  | 3 | */ | 
|  | 4 |  | 
|  | 5 | /* | 
|  | 6 | * ==================================================== | 
|  | 7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | 8 | * | 
|  | 9 | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | 10 | * Permission to use, copy, modify, and distribute this | 
|  | 11 | * software is freely granted, provided that this notice | 
|  | 12 | * is preserved. | 
|  | 13 | * ==================================================== | 
|  | 14 | */ | 
|  | 15 |  | 
|  | 16 | #ifndef lint | 
|  | 17 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_log1pf.c,v 1.9 2005/12/04 12:30:44 bde Exp $"; | 
|  | 18 | #endif | 
|  | 19 |  | 
|  | 20 | #include "math.h" | 
|  | 21 | #include "math_private.h" | 
|  | 22 |  | 
|  | 23 | static const float | 
|  | 24 | ln2_hi =   6.9313812256e-01,	/* 0x3f317180 */ | 
|  | 25 | ln2_lo =   9.0580006145e-06,	/* 0x3717f7d1 */ | 
|  | 26 | two25 =    3.355443200e+07,	/* 0x4c000000 */ | 
|  | 27 | Lp1 = 6.6666668653e-01,	/* 3F2AAAAB */ | 
|  | 28 | Lp2 = 4.0000000596e-01,	/* 3ECCCCCD */ | 
|  | 29 | Lp3 = 2.8571429849e-01, /* 3E924925 */ | 
|  | 30 | Lp4 = 2.2222198546e-01, /* 3E638E29 */ | 
|  | 31 | Lp5 = 1.8183572590e-01, /* 3E3A3325 */ | 
|  | 32 | Lp6 = 1.5313838422e-01, /* 3E1CD04F */ | 
|  | 33 | Lp7 = 1.4798198640e-01; /* 3E178897 */ | 
|  | 34 |  | 
|  | 35 | static const float zero = 0.0; | 
|  | 36 |  | 
|  | 37 | float | 
|  | 38 | log1pf(float x) | 
|  | 39 | { | 
|  | 40 | float hfsq,f,c,s,z,R,u; | 
|  | 41 | int32_t k,hx,hu,ax; | 
|  | 42 |  | 
|  | 43 | GET_FLOAT_WORD(hx,x); | 
|  | 44 | ax = hx&0x7fffffff; | 
|  | 45 |  | 
|  | 46 | k = 1; | 
|  | 47 | if (hx < 0x3ed413d0) {			/* 1+x < sqrt(2)+  */ | 
|  | 48 | if(ax>=0x3f800000) {		/* x <= -1.0 */ | 
|  | 49 | if(x==(float)-1.0) return -two25/zero; /* log1p(-1)=+inf */ | 
|  | 50 | else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */ | 
|  | 51 | } | 
|  | 52 | if(ax<0x31000000) {			/* |x| < 2**-29 */ | 
|  | 53 | if(two25+x>zero			/* raise inexact */ | 
|  | 54 | &&ax<0x24800000) 		/* |x| < 2**-54 */ | 
|  | 55 | return x; | 
|  | 56 | else | 
|  | 57 | return x - x*x*(float)0.5; | 
|  | 58 | } | 
|  | 59 | if(hx>0||hx<=((int32_t)0xbe95f619)) { | 
|  | 60 | k=0;f=x;hu=1;}		/* sqrt(2)/2- <= 1+x < sqrt(2)+ */ | 
|  | 61 | } | 
|  | 62 | if (hx >= 0x7f800000) return x+x; | 
|  | 63 | if(k!=0) { | 
|  | 64 | if(hx<0x5a000000) { | 
|  | 65 | *(volatile float *)&u = (float)1.0+x; | 
|  | 66 | GET_FLOAT_WORD(hu,u); | 
|  | 67 | k  = (hu>>23)-127; | 
|  | 68 | /* correction term */ | 
|  | 69 | c  = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0); | 
|  | 70 | c /= u; | 
|  | 71 | } else { | 
|  | 72 | u  = x; | 
|  | 73 | GET_FLOAT_WORD(hu,u); | 
|  | 74 | k  = (hu>>23)-127; | 
|  | 75 | c  = 0; | 
|  | 76 | } | 
|  | 77 | hu &= 0x007fffff; | 
|  | 78 | /* | 
|  | 79 | * The approximation to sqrt(2) used in thresholds is not | 
|  | 80 | * critical.  However, the ones used above must give less | 
|  | 81 | * strict bounds than the one here so that the k==0 case is | 
|  | 82 | * never reached from here, since here we have committed to | 
|  | 83 | * using the correction term but don't use it if k==0. | 
|  | 84 | */ | 
|  | 85 | if(hu<0x3504f4) {			/* u < sqrt(2) */ | 
|  | 86 | SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */ | 
|  | 87 | } else { | 
|  | 88 | k += 1; | 
|  | 89 | SET_FLOAT_WORD(u,hu|0x3f000000);	/* normalize u/2 */ | 
|  | 90 | hu = (0x00800000-hu)>>2; | 
|  | 91 | } | 
|  | 92 | f = u-(float)1.0; | 
|  | 93 | } | 
|  | 94 | hfsq=(float)0.5*f*f; | 
|  | 95 | if(hu==0) {	/* |f| < 2**-20 */ | 
|  | 96 | if(f==zero) if(k==0) return zero; | 
|  | 97 | else {c += k*ln2_lo; return k*ln2_hi+c;} | 
|  | 98 | R = hfsq*((float)1.0-(float)0.66666666666666666*f); | 
|  | 99 | if(k==0) return f-R; else | 
|  | 100 | return k*ln2_hi-((R-(k*ln2_lo+c))-f); | 
|  | 101 | } | 
|  | 102 | s = f/((float)2.0+f); | 
|  | 103 | z = s*s; | 
|  | 104 | R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); | 
|  | 105 | if(k==0) return f-(hfsq-s*(hfsq+R)); else | 
|  | 106 | return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); | 
|  | 107 | } |