| The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 | /* @(#)s_erf.c 5.1 93/09/24 */ | 
|  | 2 | /* | 
|  | 3 | * ==================================================== | 
|  | 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | 5 | * | 
|  | 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | 7 | * Permission to use, copy, modify, and distribute this | 
|  | 8 | * software is freely granted, provided that this notice | 
|  | 9 | * is preserved. | 
|  | 10 | * ==================================================== | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | #ifndef lint | 
|  | 14 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_erf.c,v 1.7 2002/05/28 18:15:04 alfred Exp $"; | 
|  | 15 | #endif | 
|  | 16 |  | 
|  | 17 | /* double erf(double x) | 
|  | 18 | * double erfc(double x) | 
|  | 19 | *			     x | 
|  | 20 | *		      2      |\ | 
|  | 21 | *     erf(x)  =  ---------  | exp(-t*t)dt | 
|  | 22 | *	 	   sqrt(pi) \| | 
|  | 23 | *			     0 | 
|  | 24 | * | 
|  | 25 | *     erfc(x) =  1-erf(x) | 
|  | 26 | *  Note that | 
|  | 27 | *		erf(-x) = -erf(x) | 
|  | 28 | *		erfc(-x) = 2 - erfc(x) | 
|  | 29 | * | 
|  | 30 | * Method: | 
|  | 31 | *	1. For |x| in [0, 0.84375] | 
|  | 32 | *	    erf(x)  = x + x*R(x^2) | 
|  | 33 | *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25] | 
|  | 34 | *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375] | 
|  | 35 | *	   where R = P/Q where P is an odd poly of degree 8 and | 
|  | 36 | *	   Q is an odd poly of degree 10. | 
|  | 37 | *						 -57.90 | 
|  | 38 | *			| R - (erf(x)-x)/x | <= 2 | 
|  | 39 | * | 
|  | 40 | * | 
|  | 41 | *	   Remark. The formula is derived by noting | 
|  | 42 | *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) | 
|  | 43 | *	   and that | 
|  | 44 | *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 | 
|  | 45 | *	   is close to one. The interval is chosen because the fix | 
|  | 46 | *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is | 
|  | 47 | *	   near 0.6174), and by some experiment, 0.84375 is chosen to | 
|  | 48 | * 	   guarantee the error is less than one ulp for erf. | 
|  | 49 | * | 
|  | 50 | *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and | 
|  | 51 | *         c = 0.84506291151 rounded to single (24 bits) | 
|  | 52 | *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s)) | 
|  | 53 | *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0 | 
|  | 54 | *			  1+(c+P1(s)/Q1(s))    if x < 0 | 
|  | 55 | *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 | 
|  | 56 | *	   Remark: here we use the taylor series expansion at x=1. | 
|  | 57 | *		erf(1+s) = erf(1) + s*Poly(s) | 
|  | 58 | *			 = 0.845.. + P1(s)/Q1(s) | 
|  | 59 | *	   That is, we use rational approximation to approximate | 
|  | 60 | *			erf(1+s) - (c = (single)0.84506291151) | 
|  | 61 | *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] | 
|  | 62 | *	   where | 
|  | 63 | *		P1(s) = degree 6 poly in s | 
|  | 64 | *		Q1(s) = degree 6 poly in s | 
|  | 65 | * | 
|  | 66 | *      3. For x in [1.25,1/0.35(~2.857143)], | 
|  | 67 | *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) | 
|  | 68 | *         	erf(x)  = 1 - erfc(x) | 
|  | 69 | *	   where | 
|  | 70 | *		R1(z) = degree 7 poly in z, (z=1/x^2) | 
|  | 71 | *		S1(z) = degree 8 poly in z | 
|  | 72 | * | 
|  | 73 | *      4. For x in [1/0.35,28] | 
|  | 74 | *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 | 
|  | 75 | *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 | 
|  | 76 | *			= 2.0 - tiny		(if x <= -6) | 
|  | 77 | *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else | 
|  | 78 | *         	erf(x)  = sign(x)*(1.0 - tiny) | 
|  | 79 | *	   where | 
|  | 80 | *		R2(z) = degree 6 poly in z, (z=1/x^2) | 
|  | 81 | *		S2(z) = degree 7 poly in z | 
|  | 82 | * | 
|  | 83 | *      Note1: | 
|  | 84 | *	   To compute exp(-x*x-0.5625+R/S), let s be a single | 
|  | 85 | *	   precision number and s := x; then | 
|  | 86 | *		-x*x = -s*s + (s-x)*(s+x) | 
|  | 87 | *	        exp(-x*x-0.5626+R/S) = | 
|  | 88 | *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); | 
|  | 89 | *      Note2: | 
|  | 90 | *	   Here 4 and 5 make use of the asymptotic series | 
|  | 91 | *			  exp(-x*x) | 
|  | 92 | *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) | 
|  | 93 | *			  x*sqrt(pi) | 
|  | 94 | *	   We use rational approximation to approximate | 
|  | 95 | *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 | 
|  | 96 | *	   Here is the error bound for R1/S1 and R2/S2 | 
|  | 97 | *      	|R1/S1 - f(x)|  < 2**(-62.57) | 
|  | 98 | *      	|R2/S2 - f(x)|  < 2**(-61.52) | 
|  | 99 | * | 
|  | 100 | *      5. For inf > x >= 28 | 
|  | 101 | *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact) | 
|  | 102 | *         	erfc(x) = tiny*tiny (raise underflow) if x > 0 | 
|  | 103 | *			= 2 - tiny if x<0 | 
|  | 104 | * | 
|  | 105 | *      7. Special case: | 
|  | 106 | *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, | 
|  | 107 | *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, | 
|  | 108 | *	   	erfc/erf(NaN) is NaN | 
|  | 109 | */ | 
|  | 110 |  | 
|  | 111 |  | 
|  | 112 | #include "math.h" | 
|  | 113 | #include "math_private.h" | 
|  | 114 |  | 
|  | 115 | static const double | 
|  | 116 | tiny	    = 1e-300, | 
|  | 117 | half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ | 
|  | 118 | one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | 
|  | 119 | two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ | 
|  | 120 | /* c = (float)0.84506291151 */ | 
|  | 121 | erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ | 
|  | 122 | /* | 
|  | 123 | * Coefficients for approximation to  erf on [0,0.84375] | 
|  | 124 | */ | 
|  | 125 | efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ | 
|  | 126 | efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ | 
|  | 127 | pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ | 
|  | 128 | pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ | 
|  | 129 | pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ | 
|  | 130 | pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ | 
|  | 131 | pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ | 
|  | 132 | qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ | 
|  | 133 | qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ | 
|  | 134 | qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ | 
|  | 135 | qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ | 
|  | 136 | qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ | 
|  | 137 | /* | 
|  | 138 | * Coefficients for approximation to  erf  in [0.84375,1.25] | 
|  | 139 | */ | 
|  | 140 | pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ | 
|  | 141 | pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ | 
|  | 142 | pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ | 
|  | 143 | pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ | 
|  | 144 | pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ | 
|  | 145 | pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ | 
|  | 146 | pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ | 
|  | 147 | qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ | 
|  | 148 | qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ | 
|  | 149 | qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ | 
|  | 150 | qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ | 
|  | 151 | qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ | 
|  | 152 | qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ | 
|  | 153 | /* | 
|  | 154 | * Coefficients for approximation to  erfc in [1.25,1/0.35] | 
|  | 155 | */ | 
|  | 156 | ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ | 
|  | 157 | ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ | 
|  | 158 | ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ | 
|  | 159 | ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ | 
|  | 160 | ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ | 
|  | 161 | ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ | 
|  | 162 | ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ | 
|  | 163 | ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ | 
|  | 164 | sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ | 
|  | 165 | sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ | 
|  | 166 | sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ | 
|  | 167 | sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ | 
|  | 168 | sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ | 
|  | 169 | sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ | 
|  | 170 | sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ | 
|  | 171 | sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ | 
|  | 172 | /* | 
|  | 173 | * Coefficients for approximation to  erfc in [1/.35,28] | 
|  | 174 | */ | 
|  | 175 | rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ | 
|  | 176 | rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ | 
|  | 177 | rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ | 
|  | 178 | rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ | 
|  | 179 | rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ | 
|  | 180 | rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ | 
|  | 181 | rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ | 
|  | 182 | sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ | 
|  | 183 | sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ | 
|  | 184 | sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ | 
|  | 185 | sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ | 
|  | 186 | sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ | 
|  | 187 | sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ | 
|  | 188 | sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ | 
|  | 189 |  | 
|  | 190 | double | 
|  | 191 | erf(double x) | 
|  | 192 | { | 
|  | 193 | int32_t hx,ix,i; | 
|  | 194 | double R,S,P,Q,s,y,z,r; | 
|  | 195 | GET_HIGH_WORD(hx,x); | 
|  | 196 | ix = hx&0x7fffffff; | 
|  | 197 | if(ix>=0x7ff00000) {		/* erf(nan)=nan */ | 
|  | 198 | i = ((u_int32_t)hx>>31)<<1; | 
|  | 199 | return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */ | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | if(ix < 0x3feb0000) {		/* |x|<0.84375 */ | 
|  | 203 | if(ix < 0x3e300000) { 	/* |x|<2**-28 */ | 
|  | 204 | if (ix < 0x00800000) | 
|  | 205 | return 0.125*(8.0*x+efx8*x);  /*avoid underflow */ | 
|  | 206 | return x + efx*x; | 
|  | 207 | } | 
|  | 208 | z = x*x; | 
|  | 209 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); | 
|  | 210 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); | 
|  | 211 | y = r/s; | 
|  | 212 | return x + x*y; | 
|  | 213 | } | 
|  | 214 | if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */ | 
|  | 215 | s = fabs(x)-one; | 
|  | 216 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); | 
|  | 217 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); | 
|  | 218 | if(hx>=0) return erx + P/Q; else return -erx - P/Q; | 
|  | 219 | } | 
|  | 220 | if (ix >= 0x40180000) {		/* inf>|x|>=6 */ | 
|  | 221 | if(hx>=0) return one-tiny; else return tiny-one; | 
|  | 222 | } | 
|  | 223 | x = fabs(x); | 
|  | 224 | s = one/(x*x); | 
|  | 225 | if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */ | 
|  | 226 | R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( | 
|  | 227 | ra5+s*(ra6+s*ra7)))))); | 
|  | 228 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( | 
|  | 229 | sa5+s*(sa6+s*(sa7+s*sa8))))))); | 
|  | 230 | } else {	/* |x| >= 1/0.35 */ | 
|  | 231 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( | 
|  | 232 | rb5+s*rb6))))); | 
|  | 233 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( | 
|  | 234 | sb5+s*(sb6+s*sb7)))))); | 
|  | 235 | } | 
|  | 236 | z  = x; | 
|  | 237 | SET_LOW_WORD(z,0); | 
|  | 238 | r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); | 
|  | 239 | if(hx>=0) return one-r/x; else return  r/x-one; | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | double | 
|  | 243 | erfc(double x) | 
|  | 244 | { | 
|  | 245 | int32_t hx,ix; | 
|  | 246 | double R,S,P,Q,s,y,z,r; | 
|  | 247 | GET_HIGH_WORD(hx,x); | 
|  | 248 | ix = hx&0x7fffffff; | 
|  | 249 | if(ix>=0x7ff00000) {			/* erfc(nan)=nan */ | 
|  | 250 | /* erfc(+-inf)=0,2 */ | 
|  | 251 | return (double)(((u_int32_t)hx>>31)<<1)+one/x; | 
|  | 252 | } | 
|  | 253 |  | 
|  | 254 | if(ix < 0x3feb0000) {		/* |x|<0.84375 */ | 
|  | 255 | if(ix < 0x3c700000)  	/* |x|<2**-56 */ | 
|  | 256 | return one-x; | 
|  | 257 | z = x*x; | 
|  | 258 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); | 
|  | 259 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); | 
|  | 260 | y = r/s; | 
|  | 261 | if(hx < 0x3fd00000) {  	/* x<1/4 */ | 
|  | 262 | return one-(x+x*y); | 
|  | 263 | } else { | 
|  | 264 | r = x*y; | 
|  | 265 | r += (x-half); | 
|  | 266 | return half - r ; | 
|  | 267 | } | 
|  | 268 | } | 
|  | 269 | if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */ | 
|  | 270 | s = fabs(x)-one; | 
|  | 271 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); | 
|  | 272 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); | 
|  | 273 | if(hx>=0) { | 
|  | 274 | z  = one-erx; return z - P/Q; | 
|  | 275 | } else { | 
|  | 276 | z = erx+P/Q; return one+z; | 
|  | 277 | } | 
|  | 278 | } | 
|  | 279 | if (ix < 0x403c0000) {		/* |x|<28 */ | 
|  | 280 | x = fabs(x); | 
|  | 281 | s = one/(x*x); | 
|  | 282 | if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/ | 
|  | 283 | R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( | 
|  | 284 | ra5+s*(ra6+s*ra7)))))); | 
|  | 285 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( | 
|  | 286 | sa5+s*(sa6+s*(sa7+s*sa8))))))); | 
|  | 287 | } else {			/* |x| >= 1/.35 ~ 2.857143 */ | 
|  | 288 | if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ | 
|  | 289 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( | 
|  | 290 | rb5+s*rb6))))); | 
|  | 291 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( | 
|  | 292 | sb5+s*(sb6+s*sb7)))))); | 
|  | 293 | } | 
|  | 294 | z  = x; | 
|  | 295 | SET_LOW_WORD(z,0); | 
|  | 296 | r  =  __ieee754_exp(-z*z-0.5625)* | 
|  | 297 | __ieee754_exp((z-x)*(z+x)+R/S); | 
|  | 298 | if(hx>0) return r/x; else return two-r/x; | 
|  | 299 | } else { | 
|  | 300 | if(hx>0) return tiny*tiny; else return two-tiny; | 
|  | 301 | } | 
|  | 302 | } |