| The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 |  | 
|  | 2 | /* @(#)e_log.c 1.3 95/01/18 */ | 
|  | 3 | /* | 
|  | 4 | * ==================================================== | 
|  | 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | 6 | * | 
|  | 7 | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | 8 | * Permission to use, copy, modify, and distribute this | 
|  | 9 | * software is freely granted, provided that this notice | 
|  | 10 | * is preserved. | 
|  | 11 | * ==================================================== | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #ifndef lint | 
|  | 15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_log.c,v 1.10 2005/02/04 18:26:06 das Exp $"; | 
|  | 16 | #endif | 
|  | 17 |  | 
|  | 18 | /* __ieee754_log(x) | 
|  | 19 | * Return the logrithm of x | 
|  | 20 | * | 
|  | 21 | * Method : | 
|  | 22 | *   1. Argument Reduction: find k and f such that | 
|  | 23 | *			x = 2^k * (1+f), | 
|  | 24 | *	   where  sqrt(2)/2 < 1+f < sqrt(2) . | 
|  | 25 | * | 
|  | 26 | *   2. Approximation of log(1+f). | 
|  | 27 | *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | 
|  | 28 | *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., | 
|  | 29 | *	     	 = 2s + s*R | 
|  | 30 | *      We use a special Reme algorithm on [0,0.1716] to generate | 
|  | 31 | * 	a polynomial of degree 14 to approximate R The maximum error | 
|  | 32 | *	of this polynomial approximation is bounded by 2**-58.45. In | 
|  | 33 | *	other words, | 
|  | 34 | *		        2      4      6      8      10      12      14 | 
|  | 35 | *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s | 
|  | 36 | *  	(the values of Lg1 to Lg7 are listed in the program) | 
|  | 37 | *	and | 
|  | 38 | *	    |      2          14          |     -58.45 | 
|  | 39 | *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2 | 
|  | 40 | *	    |                             | | 
|  | 41 | *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | 
|  | 42 | *	In order to guarantee error in log below 1ulp, we compute log | 
|  | 43 | *	by | 
|  | 44 | *		log(1+f) = f - s*(f - R)	(if f is not too large) | 
|  | 45 | *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy) | 
|  | 46 | * | 
|  | 47 | *	3. Finally,  log(x) = k*ln2 + log(1+f). | 
|  | 48 | *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | 
|  | 49 | *	   Here ln2 is split into two floating point number: | 
|  | 50 | *			ln2_hi + ln2_lo, | 
|  | 51 | *	   where n*ln2_hi is always exact for |n| < 2000. | 
|  | 52 | * | 
|  | 53 | * Special cases: | 
|  | 54 | *	log(x) is NaN with signal if x < 0 (including -INF) ; | 
|  | 55 | *	log(+INF) is +INF; log(0) is -INF with signal; | 
|  | 56 | *	log(NaN) is that NaN with no signal. | 
|  | 57 | * | 
|  | 58 | * Accuracy: | 
|  | 59 | *	according to an error analysis, the error is always less than | 
|  | 60 | *	1 ulp (unit in the last place). | 
|  | 61 | * | 
|  | 62 | * Constants: | 
|  | 63 | * The hexadecimal values are the intended ones for the following | 
|  | 64 | * constants. The decimal values may be used, provided that the | 
|  | 65 | * compiler will convert from decimal to binary accurately enough | 
|  | 66 | * to produce the hexadecimal values shown. | 
|  | 67 | */ | 
|  | 68 |  | 
|  | 69 | #include "math.h" | 
|  | 70 | #include "math_private.h" | 
|  | 71 |  | 
|  | 72 | static const double | 
|  | 73 | ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */ | 
|  | 74 | ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */ | 
|  | 75 | two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */ | 
|  | 76 | Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */ | 
|  | 77 | Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */ | 
|  | 78 | Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */ | 
|  | 79 | Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */ | 
|  | 80 | Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */ | 
|  | 81 | Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */ | 
|  | 82 | Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */ | 
|  | 83 |  | 
|  | 84 | static const double zero   =  0.0; | 
|  | 85 |  | 
|  | 86 | double | 
|  | 87 | __ieee754_log(double x) | 
|  | 88 | { | 
|  | 89 | double hfsq,f,s,z,R,w,t1,t2,dk; | 
|  | 90 | int32_t k,hx,i,j; | 
|  | 91 | u_int32_t lx; | 
|  | 92 |  | 
|  | 93 | EXTRACT_WORDS(hx,lx,x); | 
|  | 94 |  | 
|  | 95 | k=0; | 
|  | 96 | if (hx < 0x00100000) {			/* x < 2**-1022  */ | 
|  | 97 | if (((hx&0x7fffffff)|lx)==0) | 
|  | 98 | return -two54/zero;		/* log(+-0)=-inf */ | 
|  | 99 | if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */ | 
|  | 100 | k -= 54; x *= two54; /* subnormal number, scale up x */ | 
|  | 101 | GET_HIGH_WORD(hx,x); | 
|  | 102 | } | 
|  | 103 | if (hx >= 0x7ff00000) return x+x; | 
|  | 104 | k += (hx>>20)-1023; | 
|  | 105 | hx &= 0x000fffff; | 
|  | 106 | i = (hx+0x95f64)&0x100000; | 
|  | 107 | SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */ | 
|  | 108 | k += (i>>20); | 
|  | 109 | f = x-1.0; | 
|  | 110 | if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */ | 
|  | 111 | if(f==zero) if(k==0) return zero;  else {dk=(double)k; | 
|  | 112 | return dk*ln2_hi+dk*ln2_lo;} | 
|  | 113 | R = f*f*(0.5-0.33333333333333333*f); | 
|  | 114 | if(k==0) return f-R; else {dk=(double)k; | 
|  | 115 | return dk*ln2_hi-((R-dk*ln2_lo)-f);} | 
|  | 116 | } | 
|  | 117 | s = f/(2.0+f); | 
|  | 118 | dk = (double)k; | 
|  | 119 | z = s*s; | 
|  | 120 | i = hx-0x6147a; | 
|  | 121 | w = z*z; | 
|  | 122 | j = 0x6b851-hx; | 
|  | 123 | t1= w*(Lg2+w*(Lg4+w*Lg6)); | 
|  | 124 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); | 
|  | 125 | i |= j; | 
|  | 126 | R = t2+t1; | 
|  | 127 | if(i>0) { | 
|  | 128 | hfsq=0.5*f*f; | 
|  | 129 | if(k==0) return f-(hfsq-s*(hfsq+R)); else | 
|  | 130 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); | 
|  | 131 | } else { | 
|  | 132 | if(k==0) return f-s*(f-R); else | 
|  | 133 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); | 
|  | 134 | } | 
|  | 135 | } |