| The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 |  | 
 | 2 | /* @(#)e_jn.c 1.4 95/01/18 */ | 
 | 3 | /* | 
 | 4 |  * ==================================================== | 
 | 5 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 | 6 |  * | 
 | 7 |  * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
 | 8 |  * Permission to use, copy, modify, and distribute this | 
 | 9 |  * software is freely granted, provided that this notice  | 
 | 10 |  * is preserved. | 
 | 11 |  * ==================================================== | 
 | 12 |  */ | 
 | 13 |  | 
 | 14 | #ifndef lint | 
 | 15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jn.c,v 1.9 2005/02/04 18:26:06 das Exp $"; | 
 | 16 | #endif | 
 | 17 |  | 
 | 18 | /* | 
 | 19 |  * __ieee754_jn(n, x), __ieee754_yn(n, x) | 
 | 20 |  * floating point Bessel's function of the 1st and 2nd kind | 
 | 21 |  * of order n | 
 | 22 |  *           | 
 | 23 |  * Special cases: | 
 | 24 |  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; | 
 | 25 |  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. | 
 | 26 |  * Note 2. About jn(n,x), yn(n,x) | 
 | 27 |  *	For n=0, j0(x) is called, | 
 | 28 |  *	for n=1, j1(x) is called, | 
 | 29 |  *	for n<x, forward recursion us used starting | 
 | 30 |  *	from values of j0(x) and j1(x). | 
 | 31 |  *	for n>x, a continued fraction approximation to | 
 | 32 |  *	j(n,x)/j(n-1,x) is evaluated and then backward | 
 | 33 |  *	recursion is used starting from a supposed value | 
 | 34 |  *	for j(n,x). The resulting value of j(0,x) is | 
 | 35 |  *	compared with the actual value to correct the | 
 | 36 |  *	supposed value of j(n,x). | 
 | 37 |  * | 
 | 38 |  *	yn(n,x) is similar in all respects, except | 
 | 39 |  *	that forward recursion is used for all | 
 | 40 |  *	values of n>1. | 
 | 41 |  *	 | 
 | 42 |  */ | 
 | 43 |  | 
 | 44 | #include "math.h" | 
 | 45 | #include "math_private.h" | 
 | 46 |  | 
 | 47 | static const double | 
 | 48 | invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ | 
 | 49 | two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ | 
 | 50 | one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ | 
 | 51 |  | 
 | 52 | static const double zero  =  0.00000000000000000000e+00; | 
 | 53 |  | 
 | 54 | double | 
 | 55 | __ieee754_jn(int n, double x) | 
 | 56 | { | 
 | 57 | 	int32_t i,hx,ix,lx, sgn; | 
 | 58 | 	double a, b, temp, di; | 
 | 59 | 	double z, w; | 
 | 60 |  | 
 | 61 |     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) | 
 | 62 |      * Thus, J(-n,x) = J(n,-x) | 
 | 63 |      */ | 
 | 64 | 	EXTRACT_WORDS(hx,lx,x); | 
 | 65 | 	ix = 0x7fffffff&hx; | 
 | 66 |     /* if J(n,NaN) is NaN */ | 
 | 67 | 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; | 
 | 68 | 	if(n<0){		 | 
 | 69 | 		n = -n; | 
 | 70 | 		x = -x; | 
 | 71 | 		hx ^= 0x80000000; | 
 | 72 | 	} | 
 | 73 | 	if(n==0) return(__ieee754_j0(x)); | 
 | 74 | 	if(n==1) return(__ieee754_j1(x)); | 
 | 75 | 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */ | 
 | 76 | 	x = fabs(x); | 
 | 77 | 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */ | 
 | 78 | 	    b = zero; | 
 | 79 | 	else if((double)n<=x) {    | 
 | 80 | 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ | 
 | 81 | 	    if(ix>=0x52D00000) { /* x > 2**302 */ | 
 | 82 |     /* (x >> n**2)  | 
 | 83 |      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 84 |      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 85 |      *	    Let s=sin(x), c=cos(x),  | 
 | 86 |      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then | 
 | 87 |      * | 
 | 88 |      *		   n	sin(xn)*sqt2	cos(xn)*sqt2 | 
 | 89 |      *		---------------------------------- | 
 | 90 |      *		   0	 s-c		 c+s | 
 | 91 |      *		   1	-s-c 		-c+s | 
 | 92 |      *		   2	-s+c		-c-s | 
 | 93 |      *		   3	 s+c		 c-s | 
 | 94 |      */ | 
 | 95 | 		switch(n&3) { | 
 | 96 | 		    case 0: temp =  cos(x)+sin(x); break; | 
 | 97 | 		    case 1: temp = -cos(x)+sin(x); break; | 
 | 98 | 		    case 2: temp = -cos(x)-sin(x); break; | 
 | 99 | 		    case 3: temp =  cos(x)-sin(x); break; | 
 | 100 | 		} | 
 | 101 | 		b = invsqrtpi*temp/sqrt(x); | 
 | 102 | 	    } else {	 | 
 | 103 | 	        a = __ieee754_j0(x); | 
 | 104 | 	        b = __ieee754_j1(x); | 
 | 105 | 	        for(i=1;i<n;i++){ | 
 | 106 | 		    temp = b; | 
 | 107 | 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */ | 
 | 108 | 		    a = temp; | 
 | 109 | 	        } | 
 | 110 | 	    } | 
 | 111 | 	} else { | 
 | 112 | 	    if(ix<0x3e100000) {	/* x < 2**-29 */ | 
 | 113 |     /* x is tiny, return the first Taylor expansion of J(n,x)  | 
 | 114 |      * J(n,x) = 1/n!*(x/2)^n  - ... | 
 | 115 |      */ | 
 | 116 | 		if(n>33)	/* underflow */ | 
 | 117 | 		    b = zero; | 
 | 118 | 		else { | 
 | 119 | 		    temp = x*0.5; b = temp; | 
 | 120 | 		    for (a=one,i=2;i<=n;i++) { | 
 | 121 | 			a *= (double)i;		/* a = n! */ | 
 | 122 | 			b *= temp;		/* b = (x/2)^n */ | 
 | 123 | 		    } | 
 | 124 | 		    b = b/a; | 
 | 125 | 		} | 
 | 126 | 	    } else { | 
 | 127 | 		/* use backward recurrence */ | 
 | 128 | 		/* 			x      x^2      x^2        | 
 | 129 | 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   ..... | 
 | 130 | 		 *			2n  - 2(n+1) - 2(n+2) | 
 | 131 | 		 * | 
 | 132 | 		 * 			1      1        1        | 
 | 133 | 		 *  (for large x)   =  ----  ------   ------   ..... | 
 | 134 | 		 *			2n   2(n+1)   2(n+2) | 
 | 135 | 		 *			-- - ------ - ------ -  | 
 | 136 | 		 *			 x     x         x | 
 | 137 | 		 * | 
 | 138 | 		 * Let w = 2n/x and h=2/x, then the above quotient | 
 | 139 | 		 * is equal to the continued fraction: | 
 | 140 | 		 *		    1 | 
 | 141 | 		 *	= ----------------------- | 
 | 142 | 		 *		       1 | 
 | 143 | 		 *	   w - ----------------- | 
 | 144 | 		 *			  1 | 
 | 145 | 		 * 	        w+h - --------- | 
 | 146 | 		 *		       w+2h - ... | 
 | 147 | 		 * | 
 | 148 | 		 * To determine how many terms needed, let | 
 | 149 | 		 * Q(0) = w, Q(1) = w(w+h) - 1, | 
 | 150 | 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), | 
 | 151 | 		 * When Q(k) > 1e4	good for single  | 
 | 152 | 		 * When Q(k) > 1e9	good for double  | 
 | 153 | 		 * When Q(k) > 1e17	good for quadruple  | 
 | 154 | 		 */ | 
 | 155 | 	    /* determine k */ | 
 | 156 | 		double t,v; | 
 | 157 | 		double q0,q1,h,tmp; int32_t k,m; | 
 | 158 | 		w  = (n+n)/(double)x; h = 2.0/(double)x; | 
 | 159 | 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1; | 
 | 160 | 		while(q1<1.0e9) { | 
 | 161 | 			k += 1; z += h; | 
 | 162 | 			tmp = z*q1 - q0; | 
 | 163 | 			q0 = q1; | 
 | 164 | 			q1 = tmp; | 
 | 165 | 		} | 
 | 166 | 		m = n+n; | 
 | 167 | 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); | 
 | 168 | 		a = t; | 
 | 169 | 		b = one; | 
 | 170 | 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) | 
 | 171 | 		 *  Hence, if n*(log(2n/x)) > ... | 
 | 172 | 		 *  single 8.8722839355e+01 | 
 | 173 | 		 *  double 7.09782712893383973096e+02 | 
 | 174 | 		 *  long double 1.1356523406294143949491931077970765006170e+04 | 
 | 175 | 		 *  then recurrent value may overflow and the result is | 
 | 176 | 		 *  likely underflow to zero | 
 | 177 | 		 */ | 
 | 178 | 		tmp = n; | 
 | 179 | 		v = two/x; | 
 | 180 | 		tmp = tmp*__ieee754_log(fabs(v*tmp)); | 
 | 181 | 		if(tmp<7.09782712893383973096e+02) { | 
 | 182 | 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){ | 
 | 183 | 		        temp = b; | 
 | 184 | 			b *= di; | 
 | 185 | 			b  = b/x - a; | 
 | 186 | 		        a = temp; | 
 | 187 | 			di -= two; | 
 | 188 | 	     	    } | 
 | 189 | 		} else { | 
 | 190 | 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){ | 
 | 191 | 		        temp = b; | 
 | 192 | 			b *= di; | 
 | 193 | 			b  = b/x - a; | 
 | 194 | 		        a = temp; | 
 | 195 | 			di -= two; | 
 | 196 | 		    /* scale b to avoid spurious overflow */ | 
 | 197 | 			if(b>1e100) { | 
 | 198 | 			    a /= b; | 
 | 199 | 			    t /= b; | 
 | 200 | 			    b  = one; | 
 | 201 | 			} | 
 | 202 | 	     	    } | 
 | 203 | 		} | 
 | 204 | 	    	b = (t*__ieee754_j0(x)/b); | 
 | 205 | 	    } | 
 | 206 | 	} | 
 | 207 | 	if(sgn==1) return -b; else return b; | 
 | 208 | } | 
 | 209 |  | 
 | 210 | double | 
 | 211 | __ieee754_yn(int n, double x) | 
 | 212 | { | 
 | 213 | 	int32_t i,hx,ix,lx; | 
 | 214 | 	int32_t sign; | 
 | 215 | 	double a, b, temp; | 
 | 216 |  | 
 | 217 | 	EXTRACT_WORDS(hx,lx,x); | 
 | 218 | 	ix = 0x7fffffff&hx; | 
 | 219 |     /* if Y(n,NaN) is NaN */ | 
 | 220 | 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; | 
 | 221 | 	if((ix|lx)==0) return -one/zero; | 
 | 222 | 	if(hx<0) return zero/zero; | 
 | 223 | 	sign = 1; | 
 | 224 | 	if(n<0){ | 
 | 225 | 		n = -n; | 
 | 226 | 		sign = 1 - ((n&1)<<1); | 
 | 227 | 	} | 
 | 228 | 	if(n==0) return(__ieee754_y0(x)); | 
 | 229 | 	if(n==1) return(sign*__ieee754_y1(x)); | 
 | 230 | 	if(ix==0x7ff00000) return zero; | 
 | 231 | 	if(ix>=0x52D00000) { /* x > 2**302 */ | 
 | 232 |     /* (x >> n**2)  | 
 | 233 |      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 234 |      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 235 |      *	    Let s=sin(x), c=cos(x),  | 
 | 236 |      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then | 
 | 237 |      * | 
 | 238 |      *		   n	sin(xn)*sqt2	cos(xn)*sqt2 | 
 | 239 |      *		---------------------------------- | 
 | 240 |      *		   0	 s-c		 c+s | 
 | 241 |      *		   1	-s-c 		-c+s | 
 | 242 |      *		   2	-s+c		-c-s | 
 | 243 |      *		   3	 s+c		 c-s | 
 | 244 |      */ | 
 | 245 | 		switch(n&3) { | 
 | 246 | 		    case 0: temp =  sin(x)-cos(x); break; | 
 | 247 | 		    case 1: temp = -sin(x)-cos(x); break; | 
 | 248 | 		    case 2: temp = -sin(x)+cos(x); break; | 
 | 249 | 		    case 3: temp =  sin(x)+cos(x); break; | 
 | 250 | 		} | 
 | 251 | 		b = invsqrtpi*temp/sqrt(x); | 
 | 252 | 	} else { | 
 | 253 | 	    u_int32_t high; | 
 | 254 | 	    a = __ieee754_y0(x); | 
 | 255 | 	    b = __ieee754_y1(x); | 
 | 256 | 	/* quit if b is -inf */ | 
 | 257 | 	    GET_HIGH_WORD(high,b); | 
 | 258 | 	    for(i=1;i<n&&high!=0xfff00000;i++){ | 
 | 259 | 		temp = b; | 
 | 260 | 		b = ((double)(i+i)/x)*b - a; | 
 | 261 | 		GET_HIGH_WORD(high,b); | 
 | 262 | 		a = temp; | 
 | 263 | 	    } | 
 | 264 | 	} | 
 | 265 | 	if(sign>0) return b; else return -b; | 
 | 266 | } |