| The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 |  | 
|  | 2 | /* @(#)e_atanh.c 1.3 95/01/18 */ | 
|  | 3 | /* | 
|  | 4 | * ==================================================== | 
|  | 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | 6 | * | 
|  | 7 | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | 8 | * Permission to use, copy, modify, and distribute this | 
|  | 9 | * software is freely granted, provided that this notice | 
|  | 10 | * is preserved. | 
|  | 11 | * ==================================================== | 
|  | 12 | * | 
|  | 13 | */ | 
|  | 14 |  | 
|  | 15 | #ifndef lint | 
|  | 16 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_atanh.c,v 1.7 2005/02/04 18:26:05 das Exp $"; | 
|  | 17 | #endif | 
|  | 18 |  | 
|  | 19 | /* __ieee754_atanh(x) | 
|  | 20 | * Method : | 
|  | 21 | *    1.Reduced x to positive by atanh(-x) = -atanh(x) | 
|  | 22 | *    2.For x>=0.5 | 
|  | 23 | *                  1              2x                          x | 
|  | 24 | *	atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) | 
|  | 25 | *                  2             1 - x                      1 - x | 
|  | 26 | * | 
|  | 27 | * 	For x<0.5 | 
|  | 28 | *	atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) | 
|  | 29 | * | 
|  | 30 | * Special cases: | 
|  | 31 | *	atanh(x) is NaN if |x| > 1 with signal; | 
|  | 32 | *	atanh(NaN) is that NaN with no signal; | 
|  | 33 | *	atanh(+-1) is +-INF with signal. | 
|  | 34 | * | 
|  | 35 | */ | 
|  | 36 |  | 
|  | 37 | #include "math.h" | 
|  | 38 | #include "math_private.h" | 
|  | 39 |  | 
|  | 40 | static const double one = 1.0, huge = 1e300; | 
|  | 41 | static const double zero = 0.0; | 
|  | 42 |  | 
|  | 43 | double | 
|  | 44 | __ieee754_atanh(double x) | 
|  | 45 | { | 
|  | 46 | double t; | 
|  | 47 | int32_t hx,ix; | 
|  | 48 | u_int32_t lx; | 
|  | 49 | EXTRACT_WORDS(hx,lx,x); | 
|  | 50 | ix = hx&0x7fffffff; | 
|  | 51 | if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */ | 
|  | 52 | return (x-x)/(x-x); | 
|  | 53 | if(ix==0x3ff00000) | 
|  | 54 | return x/zero; | 
|  | 55 | if(ix<0x3e300000&&(huge+x)>zero) return x;	/* x<2**-28 */ | 
|  | 56 | SET_HIGH_WORD(x,ix); | 
|  | 57 | if(ix<0x3fe00000) {		/* x < 0.5 */ | 
|  | 58 | t = x+x; | 
|  | 59 | t = 0.5*log1p(t+t*x/(one-x)); | 
|  | 60 | } else | 
|  | 61 | t = 0.5*log1p((x+x)/(one-x)); | 
|  | 62 | if(hx>=0) return t; else return -t; | 
|  | 63 | } |