| The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 |  | 
|  | 2 | /* @(#)e_acosh.c 1.3 95/01/18 */ | 
|  | 3 | /* | 
|  | 4 | * ==================================================== | 
|  | 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | 6 | * | 
|  | 7 | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | 8 | * Permission to use, copy, modify, and distribute this | 
|  | 9 | * software is freely granted, provided that this notice | 
|  | 10 | * is preserved. | 
|  | 11 | * ==================================================== | 
|  | 12 | * | 
|  | 13 | */ | 
|  | 14 |  | 
|  | 15 | #ifndef lint | 
|  | 16 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_acosh.c,v 1.8 2005/02/04 18:26:05 das Exp $"; | 
|  | 17 | #endif | 
|  | 18 |  | 
|  | 19 | /* __ieee754_acosh(x) | 
|  | 20 | * Method : | 
|  | 21 | *	Based on | 
|  | 22 | *		acosh(x) = log [ x + sqrt(x*x-1) ] | 
|  | 23 | *	we have | 
|  | 24 | *		acosh(x) := log(x)+ln2,	if x is large; else | 
|  | 25 | *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else | 
|  | 26 | *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. | 
|  | 27 | * | 
|  | 28 | * Special cases: | 
|  | 29 | *	acosh(x) is NaN with signal if x<1. | 
|  | 30 | *	acosh(NaN) is NaN without signal. | 
|  | 31 | */ | 
|  | 32 |  | 
|  | 33 | #include "math.h" | 
|  | 34 | #include "math_private.h" | 
|  | 35 |  | 
|  | 36 | static const double | 
|  | 37 | one	= 1.0, | 
|  | 38 | ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */ | 
|  | 39 |  | 
|  | 40 | double | 
|  | 41 | __ieee754_acosh(double x) | 
|  | 42 | { | 
|  | 43 | double t; | 
|  | 44 | int32_t hx; | 
|  | 45 | u_int32_t lx; | 
|  | 46 | EXTRACT_WORDS(hx,lx,x); | 
|  | 47 | if(hx<0x3ff00000) {		/* x < 1 */ | 
|  | 48 | return (x-x)/(x-x); | 
|  | 49 | } else if(hx >=0x41b00000) {	/* x > 2**28 */ | 
|  | 50 | if(hx >=0x7ff00000) {	/* x is inf of NaN */ | 
|  | 51 | return x+x; | 
|  | 52 | } else | 
|  | 53 | return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */ | 
|  | 54 | } else if(((hx-0x3ff00000)|lx)==0) { | 
|  | 55 | return 0.0;			/* acosh(1) = 0 */ | 
|  | 56 | } else if (hx > 0x40000000) {	/* 2**28 > x > 2 */ | 
|  | 57 | t=x*x; | 
|  | 58 | return __ieee754_log(2.0*x-one/(x+sqrt(t-one))); | 
|  | 59 | } else {			/* 1<x<2 */ | 
|  | 60 | t = x-one; | 
|  | 61 | return log1p(t+sqrt(2.0*t+t*t)); | 
|  | 62 | } | 
|  | 63 | } |