blob: 5aa1917b5a4c8dd78e3d55336b39ea51662aa5cd [file] [log] [blame]
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08001/* @(#)s_expm1.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
Elliott Hughesa0ee0782013-01-30 19:06:37 -080013#include <sys/cdefs.h>
14__FBSDID("$FreeBSD$");
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080015
16/* expm1(x)
17 * Returns exp(x)-1, the exponential of x minus 1.
18 *
19 * Method
20 * 1. Argument reduction:
21 * Given x, find r and integer k such that
22 *
23 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
24 *
25 * Here a correction term c will be computed to compensate
26 * the error in r when rounded to a floating-point number.
27 *
28 * 2. Approximating expm1(r) by a special rational function on
29 * the interval [0,0.34658]:
30 * Since
31 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
32 * we define R1(r*r) by
33 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
34 * That is,
35 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
36 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
37 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
38 * We use a special Reme algorithm on [0,0.347] to generate
39 * a polynomial of degree 5 in r*r to approximate R1. The
40 * maximum error of this polynomial approximation is bounded
41 * by 2**-61. In other words,
42 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
43 * where Q1 = -1.6666666666666567384E-2,
44 * Q2 = 3.9682539681370365873E-4,
45 * Q3 = -9.9206344733435987357E-6,
46 * Q4 = 2.5051361420808517002E-7,
47 * Q5 = -6.2843505682382617102E-9;
Elliott Hughesa0ee0782013-01-30 19:06:37 -080048 * z = r*r,
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080049 * with error bounded by
50 * | 5 | -61
51 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
52 * | |
53 *
54 * expm1(r) = exp(r)-1 is then computed by the following
55 * specific way which minimize the accumulation rounding error:
56 * 2 3
57 * r r [ 3 - (R1 + R1*r/2) ]
58 * expm1(r) = r + --- + --- * [--------------------]
59 * 2 2 [ 6 - r*(3 - R1*r/2) ]
60 *
61 * To compensate the error in the argument reduction, we use
62 * expm1(r+c) = expm1(r) + c + expm1(r)*c
63 * ~ expm1(r) + c + r*c
64 * Thus c+r*c will be added in as the correction terms for
65 * expm1(r+c). Now rearrange the term to avoid optimization
66 * screw up:
67 * ( 2 2 )
68 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
69 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
70 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
71 * ( )
72 *
73 * = r - E
74 * 3. Scale back to obtain expm1(x):
75 * From step 1, we have
76 * expm1(x) = either 2^k*[expm1(r)+1] - 1
77 * = or 2^k*[expm1(r) + (1-2^-k)]
78 * 4. Implementation notes:
79 * (A). To save one multiplication, we scale the coefficient Qi
80 * to Qi*2^i, and replace z by (x^2)/2.
81 * (B). To achieve maximum accuracy, we compute expm1(x) by
82 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
83 * (ii) if k=0, return r-E
84 * (iii) if k=-1, return 0.5*(r-E)-0.5
85 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
86 * else return 1.0+2.0*(r-E);
87 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
88 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
89 * (vii) return 2^k(1-((E+2^-k)-r))
90 *
91 * Special cases:
92 * expm1(INF) is INF, expm1(NaN) is NaN;
93 * expm1(-INF) is -1, and
94 * for finite argument, only expm1(0)=0 is exact.
95 *
96 * Accuracy:
97 * according to an error analysis, the error is always less than
98 * 1 ulp (unit in the last place).
99 *
100 * Misc. info.
101 * For IEEE double
102 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
103 *
104 * Constants:
105 * The hexadecimal values are the intended ones for the following
106 * constants. The decimal values may be used, provided that the
107 * compiler will convert from decimal to binary accurately enough
108 * to produce the hexadecimal values shown.
109 */
110
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800111#include <float.h>
112
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800113#include "math.h"
114#include "math_private.h"
115
116static const double
117one = 1.0,
118huge = 1.0e+300,
119tiny = 1.0e-300,
120o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
121ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
122ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
123invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800124/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800125Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
126Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
127Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
128Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
129Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
130
131double
132expm1(double x)
133{
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800134 double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800135 int32_t k,xsb;
136 u_int32_t hx;
137
138 GET_HIGH_WORD(hx,x);
139 xsb = hx&0x80000000; /* sign bit of x */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800140 hx &= 0x7fffffff; /* high word of |x| */
141
142 /* filter out huge and non-finite argument */
143 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
144 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
145 if(hx>=0x7ff00000) {
146 u_int32_t low;
147 GET_LOW_WORD(low,x);
148 if(((hx&0xfffff)|low)!=0)
149 return x+x; /* NaN */
150 else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
151 }
152 if(x > o_threshold) return huge*huge; /* overflow */
153 }
154 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
155 if(x+tiny<0.0) /* raise inexact */
156 return tiny-one; /* return -1 */
157 }
158 }
159
160 /* argument reduction */
161 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
162 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
163 if(xsb==0)
164 {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
165 else
166 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
167 } else {
168 k = invln2*x+((xsb==0)?0.5:-0.5);
169 t = k;
170 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
171 lo = t*ln2_lo;
172 }
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800173 STRICT_ASSIGN(double, x, hi - lo);
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800174 c = (hi-x)-lo;
175 }
176 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
177 t = huge+x; /* return x with inexact flags when x!=0 */
178 return x - (t-(huge+x));
179 }
180 else k = 0;
181
182 /* x is now in primary range */
183 hfx = 0.5*x;
184 hxs = x*hfx;
185 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
186 t = 3.0-r1*hfx;
187 e = hxs*((r1-t)/(6.0 - x*t));
188 if(k==0) return x - (x*e-hxs); /* c is 0 */
189 else {
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800190 INSERT_WORDS(twopk,0x3ff00000+(k<<20),0); /* 2^k */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800191 e = (x*(e-c)-c);
192 e -= hxs;
193 if(k== -1) return 0.5*(x-e)-0.5;
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800194 if(k==1) {
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800195 if(x < -0.25) return -2.0*(e-(x+0.5));
196 else return one+2.0*(x-e);
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800197 }
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800198 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800199 y = one-(e-x);
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800200 if (k == 1024) y = y*2.0*0x1p1023;
201 else y = y*twopk;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800202 return y-one;
203 }
204 t = one;
205 if(k<20) {
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800206 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
207 y = t-(e-x);
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800208 y = y*twopk;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800209 } else {
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800210 SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
211 y = x-(e+t);
212 y += one;
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800213 y = y*twopk;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800214 }
215 }
216 return y;
217}