Upgrade libm.

This brings us up to date with FreeBSD HEAD, fixes various bugs, unifies
the set of functions we support on ARM, MIPS, and x86, fixes "long double",
adds ISO C99 support, and adds basic unit tests.

It turns out that our "long double" functions have always been broken
for non-normal numbers. This patch fixes that by not using the upstream
implementations and just forwarding to the regular "double" implementation
instead (since "long double" on Android is just "double" anyway, which is
what BSD doesn't support).

All the tests pass on ARM, MIPS, and x86, plus glibc on x86-64.

Bug: 3169850
Bug: 8012787
Bug: https://code.google.com/p/android/issues/detail?id=6697
Change-Id: If0c343030959c24bfc50d4d21c9530052c581837
diff --git a/libm/upstream-freebsd/lib/msun/src/s_expm1.c b/libm/upstream-freebsd/lib/msun/src/s_expm1.c
new file mode 100644
index 0000000..5aa1917
--- /dev/null
+++ b/libm/upstream-freebsd/lib/msun/src/s_expm1.c
@@ -0,0 +1,217 @@
+/* @(#)s_expm1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/* expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ *   1. Argument reduction:
+ *	Given x, find r and integer k such that
+ *
+ *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
+ *
+ *      Here a correction term c will be computed to compensate
+ *	the error in r when rounded to a floating-point number.
+ *
+ *   2. Approximating expm1(r) by a special rational function on
+ *	the interval [0,0.34658]:
+ *	Since
+ *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ *	we define R1(r*r) by
+ *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ *	That is,
+ *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ *      We use a special Reme algorithm on [0,0.347] to generate
+ * 	a polynomial of degree 5 in r*r to approximate R1. The
+ *	maximum error of this polynomial approximation is bounded
+ *	by 2**-61. In other words,
+ *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ *	where 	Q1  =  -1.6666666666666567384E-2,
+ * 		Q2  =   3.9682539681370365873E-4,
+ * 		Q3  =  -9.9206344733435987357E-6,
+ * 		Q4  =   2.5051361420808517002E-7,
+ * 		Q5  =  -6.2843505682382617102E-9;
+ *		z   =  r*r,
+ *	with error bounded by
+ *	    |                  5           |     -61
+ *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
+ *	    |                              |
+ *
+ *	expm1(r) = exp(r)-1 is then computed by the following
+ * 	specific way which minimize the accumulation rounding error:
+ *			       2     3
+ *			      r     r    [ 3 - (R1 + R1*r/2)  ]
+ *	      expm1(r) = r + --- + --- * [--------------------]
+ *		              2     2    [ 6 - r*(3 - R1*r/2) ]
+ *
+ *	To compensate the error in the argument reduction, we use
+ *		expm1(r+c) = expm1(r) + c + expm1(r)*c
+ *			   ~ expm1(r) + c + r*c
+ *	Thus c+r*c will be added in as the correction terms for
+ *	expm1(r+c). Now rearrange the term to avoid optimization
+ * 	screw up:
+ *		        (      2                                    2 )
+ *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
+ *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
+ *                      (                                             )
+ *
+ *		   = r - E
+ *   3. Scale back to obtain expm1(x):
+ *	From step 1, we have
+ *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
+ *		    = or     2^k*[expm1(r) + (1-2^-k)]
+ *   4. Implementation notes:
+ *	(A). To save one multiplication, we scale the coefficient Qi
+ *	     to Qi*2^i, and replace z by (x^2)/2.
+ *	(B). To achieve maximum accuracy, we compute expm1(x) by
+ *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ *	  (ii)  if k=0, return r-E
+ *	  (iii) if k=-1, return 0.5*(r-E)-0.5
+ *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ *	       	       else	     return  1.0+2.0*(r-E);
+ *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ *	  (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ *	expm1(INF) is INF, expm1(NaN) is NaN;
+ *	expm1(-INF) is -1, and
+ *	for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ *	according to an error analysis, the error is always less than
+ *	1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ *	For IEEE double
+ *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <float.h>
+
+#include "math.h"
+#include "math_private.h"
+
+static const double
+one		= 1.0,
+huge		= 1.0e+300,
+tiny		= 1.0e-300,
+o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
+ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
+ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
+invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
+/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
+Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+
+double
+expm1(double x)
+{
+	double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
+	int32_t k,xsb;
+	u_int32_t hx;
+
+	GET_HIGH_WORD(hx,x);
+	xsb = hx&0x80000000;		/* sign bit of x */
+	hx &= 0x7fffffff;		/* high word of |x| */
+
+    /* filter out huge and non-finite argument */
+	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
+	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
+                if(hx>=0x7ff00000) {
+		    u_int32_t low;
+		    GET_LOW_WORD(low,x);
+		    if(((hx&0xfffff)|low)!=0)
+		         return x+x; 	 /* NaN */
+		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+	        }
+	        if(x > o_threshold) return huge*huge; /* overflow */
+	    }
+	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
+		if(x+tiny<0.0)		/* raise inexact */
+		return tiny-one;	/* return -1 */
+	    }
+	}
+
+    /* argument reduction */
+	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
+	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
+		if(xsb==0)
+		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
+		else
+		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
+	    } else {
+		k  = invln2*x+((xsb==0)?0.5:-0.5);
+		t  = k;
+		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
+		lo = t*ln2_lo;
+	    }
+	    STRICT_ASSIGN(double, x, hi - lo);
+	    c  = (hi-x)-lo;
+	}
+	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
+	    t = huge+x;	/* return x with inexact flags when x!=0 */
+	    return x - (t-(huge+x));
+	}
+	else k = 0;
+
+    /* x is now in primary range */
+	hfx = 0.5*x;
+	hxs = x*hfx;
+	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+	t  = 3.0-r1*hfx;
+	e  = hxs*((r1-t)/(6.0 - x*t));
+	if(k==0) return x - (x*e-hxs);		/* c is 0 */
+	else {
+	    INSERT_WORDS(twopk,0x3ff00000+(k<<20),0);	/* 2^k */
+	    e  = (x*(e-c)-c);
+	    e -= hxs;
+	    if(k== -1) return 0.5*(x-e)-0.5;
+	    if(k==1) {
+	       	if(x < -0.25) return -2.0*(e-(x+0.5));
+	       	else 	      return  one+2.0*(x-e);
+	    }
+	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
+	        y = one-(e-x);
+		if (k == 1024) y = y*2.0*0x1p1023;
+		else y = y*twopk;
+	        return y-one;
+	    }
+	    t = one;
+	    if(k<20) {
+	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
+	       	y = t-(e-x);
+		y = y*twopk;
+	   } else {
+		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
+	       	y = x-(e+t);
+	       	y += one;
+		y = y*twopk;
+	    }
+	}
+	return y;
+}