blob: 5662df01aaaecb4fc49b626161306d3ab853d605 [file] [log] [blame]
Elliott Hughesa0ee0782013-01-30 19:06:37 -08001/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
13 * from: @(#)fdlibm.h 5.1 93/09/24
14 * $FreeBSD$
15 */
16
17#ifndef _MATH_PRIVATE_H_
18#define _MATH_PRIVATE_H_
19
20#include <sys/types.h>
21#include <machine/endian.h>
22
23/*
24 * The original fdlibm code used statements like:
25 * n0 = ((*(int*)&one)>>29)^1; * index of high word *
26 * ix0 = *(n0+(int*)&x); * high word of x *
27 * ix1 = *((1-n0)+(int*)&x); * low word of x *
28 * to dig two 32 bit words out of the 64 bit IEEE floating point
29 * value. That is non-ANSI, and, moreover, the gcc instruction
30 * scheduler gets it wrong. We instead use the following macros.
31 * Unlike the original code, we determine the endianness at compile
32 * time, not at run time; I don't see much benefit to selecting
33 * endianness at run time.
34 */
35
36/*
37 * A union which permits us to convert between a double and two 32 bit
38 * ints.
39 */
40
41#ifdef __arm__
42#if defined(__VFP_FP__)
43#define IEEE_WORD_ORDER BYTE_ORDER
44#else
45#define IEEE_WORD_ORDER BIG_ENDIAN
46#endif
47#else /* __arm__ */
48#define IEEE_WORD_ORDER BYTE_ORDER
49#endif
50
51#if IEEE_WORD_ORDER == BIG_ENDIAN
52
53typedef union
54{
55 double value;
56 struct
57 {
58 u_int32_t msw;
59 u_int32_t lsw;
60 } parts;
61 struct
62 {
63 u_int64_t w;
64 } xparts;
65} ieee_double_shape_type;
66
67#endif
68
69#if IEEE_WORD_ORDER == LITTLE_ENDIAN
70
71typedef union
72{
73 double value;
74 struct
75 {
76 u_int32_t lsw;
77 u_int32_t msw;
78 } parts;
79 struct
80 {
81 u_int64_t w;
82 } xparts;
83} ieee_double_shape_type;
84
85#endif
86
87/* Get two 32 bit ints from a double. */
88
89#define EXTRACT_WORDS(ix0,ix1,d) \
90do { \
91 ieee_double_shape_type ew_u; \
92 ew_u.value = (d); \
93 (ix0) = ew_u.parts.msw; \
94 (ix1) = ew_u.parts.lsw; \
95} while (0)
96
97/* Get a 64-bit int from a double. */
98#define EXTRACT_WORD64(ix,d) \
99do { \
100 ieee_double_shape_type ew_u; \
101 ew_u.value = (d); \
102 (ix) = ew_u.xparts.w; \
103} while (0)
104
105/* Get the more significant 32 bit int from a double. */
106
107#define GET_HIGH_WORD(i,d) \
108do { \
109 ieee_double_shape_type gh_u; \
110 gh_u.value = (d); \
111 (i) = gh_u.parts.msw; \
112} while (0)
113
114/* Get the less significant 32 bit int from a double. */
115
116#define GET_LOW_WORD(i,d) \
117do { \
118 ieee_double_shape_type gl_u; \
119 gl_u.value = (d); \
120 (i) = gl_u.parts.lsw; \
121} while (0)
122
123/* Set a double from two 32 bit ints. */
124
125#define INSERT_WORDS(d,ix0,ix1) \
126do { \
127 ieee_double_shape_type iw_u; \
128 iw_u.parts.msw = (ix0); \
129 iw_u.parts.lsw = (ix1); \
130 (d) = iw_u.value; \
131} while (0)
132
133/* Set a double from a 64-bit int. */
134#define INSERT_WORD64(d,ix) \
135do { \
136 ieee_double_shape_type iw_u; \
137 iw_u.xparts.w = (ix); \
138 (d) = iw_u.value; \
139} while (0)
140
141/* Set the more significant 32 bits of a double from an int. */
142
143#define SET_HIGH_WORD(d,v) \
144do { \
145 ieee_double_shape_type sh_u; \
146 sh_u.value = (d); \
147 sh_u.parts.msw = (v); \
148 (d) = sh_u.value; \
149} while (0)
150
151/* Set the less significant 32 bits of a double from an int. */
152
153#define SET_LOW_WORD(d,v) \
154do { \
155 ieee_double_shape_type sl_u; \
156 sl_u.value = (d); \
157 sl_u.parts.lsw = (v); \
158 (d) = sl_u.value; \
159} while (0)
160
161/*
162 * A union which permits us to convert between a float and a 32 bit
163 * int.
164 */
165
166typedef union
167{
168 float value;
169 /* FIXME: Assumes 32 bit int. */
170 unsigned int word;
171} ieee_float_shape_type;
172
173/* Get a 32 bit int from a float. */
174
175#define GET_FLOAT_WORD(i,d) \
176do { \
177 ieee_float_shape_type gf_u; \
178 gf_u.value = (d); \
179 (i) = gf_u.word; \
180} while (0)
181
182/* Set a float from a 32 bit int. */
183
184#define SET_FLOAT_WORD(d,i) \
185do { \
186 ieee_float_shape_type sf_u; \
187 sf_u.word = (i); \
188 (d) = sf_u.value; \
189} while (0)
190
191/* Get expsign as a 16 bit int from a long double. */
192
193#define GET_LDBL_EXPSIGN(i,d) \
194do { \
195 union IEEEl2bits ge_u; \
196 ge_u.e = (d); \
197 (i) = ge_u.xbits.expsign; \
198} while (0)
199
200/* Set expsign of a long double from a 16 bit int. */
201
202#define SET_LDBL_EXPSIGN(d,v) \
203do { \
204 union IEEEl2bits se_u; \
205 se_u.e = (d); \
206 se_u.xbits.expsign = (v); \
207 (d) = se_u.e; \
208} while (0)
209
210#ifdef __i386__
211/* Long double constants are broken on i386. */
212#define LD80C(m, ex, v) { \
213 .xbits.man = __CONCAT(m, ULL), \
214 .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
215}
216#else
217/* The above works on non-i386 too, but we use this to check v. */
218#define LD80C(m, ex, v) { .e = (v), }
219#endif
220
221#ifdef FLT_EVAL_METHOD
222/*
223 * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
224 */
225#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
226#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
227#else
228#define STRICT_ASSIGN(type, lval, rval) do { \
229 volatile type __lval; \
230 \
231 if (sizeof(type) >= sizeof(long double)) \
232 (lval) = (rval); \
233 else { \
234 __lval = (rval); \
235 (lval) = __lval; \
236 } \
237} while (0)
238#endif
239#endif /* FLT_EVAL_METHOD */
240
241/* Support switching the mode to FP_PE if necessary. */
242#if defined(__i386__) && !defined(NO_FPSETPREC)
243#define ENTERI() \
244 long double __retval; \
245 fp_prec_t __oprec; \
246 \
247 if ((__oprec = fpgetprec()) != FP_PE) \
248 fpsetprec(FP_PE)
249#define RETURNI(x) do { \
250 __retval = (x); \
251 if (__oprec != FP_PE) \
252 fpsetprec(__oprec); \
253 RETURNF(__retval); \
254} while (0)
255#else
256#define ENTERI(x)
257#define RETURNI(x) RETURNF(x)
258#endif
259
260/* Default return statement if hack*_t() is not used. */
261#define RETURNF(v) return (v)
262
263/*
264 * Common routine to process the arguments to nan(), nanf(), and nanl().
265 */
266void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
267
268#ifdef _COMPLEX_H
269
270/*
271 * C99 specifies that complex numbers have the same representation as
272 * an array of two elements, where the first element is the real part
273 * and the second element is the imaginary part.
274 */
275typedef union {
276 float complex f;
277 float a[2];
278} float_complex;
279typedef union {
280 double complex f;
281 double a[2];
282} double_complex;
283typedef union {
284 long double complex f;
285 long double a[2];
286} long_double_complex;
287#define REALPART(z) ((z).a[0])
288#define IMAGPART(z) ((z).a[1])
289
290/*
291 * Inline functions that can be used to construct complex values.
292 *
293 * The C99 standard intends x+I*y to be used for this, but x+I*y is
294 * currently unusable in general since gcc introduces many overflow,
295 * underflow, sign and efficiency bugs by rewriting I*y as
296 * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
297 * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
298 * to -0.0+I*0.0.
299 */
300static __inline float complex
301cpackf(float x, float y)
302{
303 float_complex z;
304
305 REALPART(z) = x;
306 IMAGPART(z) = y;
307 return (z.f);
308}
309
310static __inline double complex
311cpack(double x, double y)
312{
313 double_complex z;
314
315 REALPART(z) = x;
316 IMAGPART(z) = y;
317 return (z.f);
318}
319
320static __inline long double complex
321cpackl(long double x, long double y)
322{
323 long_double_complex z;
324
325 REALPART(z) = x;
326 IMAGPART(z) = y;
327 return (z.f);
328}
329#endif /* _COMPLEX_H */
330
331#ifdef __GNUCLIKE_ASM
332
333/* Asm versions of some functions. */
334
335#ifdef __amd64__
336static __inline int
337irint(double x)
338{
339 int n;
340
341 asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
342 return (n);
343}
344#define HAVE_EFFICIENT_IRINT
345#endif
346
347#ifdef __i386__
348static __inline int
349irint(double x)
350{
351 int n;
352
353 asm("fistl %0" : "=m" (n) : "t" (x));
354 return (n);
355}
356#define HAVE_EFFICIENT_IRINT
357#endif
358
359#if defined(__amd64__) || defined(__i386__)
360static __inline int
361irintl(long double x)
362{
363 int n;
364
365 asm("fistl %0" : "=m" (n) : "t" (x));
366 return (n);
367}
368#define HAVE_EFFICIENT_IRINTL
369#endif
370
371#endif /* __GNUCLIKE_ASM */
372
373/*
374 * ieee style elementary functions
375 *
376 * We rename functions here to improve other sources' diffability
377 * against fdlibm.
378 */
379#define __ieee754_sqrt sqrt
380#define __ieee754_acos acos
381#define __ieee754_acosh acosh
382#define __ieee754_log log
383#define __ieee754_log2 log2
384#define __ieee754_atanh atanh
385#define __ieee754_asin asin
386#define __ieee754_atan2 atan2
387#define __ieee754_exp exp
388#define __ieee754_cosh cosh
389#define __ieee754_fmod fmod
390#define __ieee754_pow pow
391#define __ieee754_lgamma lgamma
392#define __ieee754_gamma gamma
393#define __ieee754_lgamma_r lgamma_r
394#define __ieee754_gamma_r gamma_r
395#define __ieee754_log10 log10
396#define __ieee754_sinh sinh
397#define __ieee754_hypot hypot
398#define __ieee754_j0 j0
399#define __ieee754_j1 j1
400#define __ieee754_y0 y0
401#define __ieee754_y1 y1
402#define __ieee754_jn jn
403#define __ieee754_yn yn
404#define __ieee754_remainder remainder
405#define __ieee754_scalb scalb
406#define __ieee754_sqrtf sqrtf
407#define __ieee754_acosf acosf
408#define __ieee754_acoshf acoshf
409#define __ieee754_logf logf
410#define __ieee754_atanhf atanhf
411#define __ieee754_asinf asinf
412#define __ieee754_atan2f atan2f
413#define __ieee754_expf expf
414#define __ieee754_coshf coshf
415#define __ieee754_fmodf fmodf
416#define __ieee754_powf powf
417#define __ieee754_lgammaf lgammaf
418#define __ieee754_gammaf gammaf
419#define __ieee754_lgammaf_r lgammaf_r
420#define __ieee754_gammaf_r gammaf_r
421#define __ieee754_log10f log10f
422#define __ieee754_log2f log2f
423#define __ieee754_sinhf sinhf
424#define __ieee754_hypotf hypotf
425#define __ieee754_j0f j0f
426#define __ieee754_j1f j1f
427#define __ieee754_y0f y0f
428#define __ieee754_y1f y1f
429#define __ieee754_jnf jnf
430#define __ieee754_ynf ynf
431#define __ieee754_remainderf remainderf
432#define __ieee754_scalbf scalbf
433
434/* fdlibm kernel function */
435int __kernel_rem_pio2(double*,double*,int,int,int);
436
437/* double precision kernel functions */
438#ifndef INLINE_REM_PIO2
439int __ieee754_rem_pio2(double,double*);
440#endif
441double __kernel_sin(double,double,int);
442double __kernel_cos(double,double);
443double __kernel_tan(double,double,int);
444double __ldexp_exp(double,int);
445#ifdef _COMPLEX_H
446double complex __ldexp_cexp(double complex,int);
447#endif
448
449/* float precision kernel functions */
450#ifndef INLINE_REM_PIO2F
451int __ieee754_rem_pio2f(float,double*);
452#endif
453#ifndef INLINE_KERNEL_SINDF
454float __kernel_sindf(double);
455#endif
456#ifndef INLINE_KERNEL_COSDF
457float __kernel_cosdf(double);
458#endif
459#ifndef INLINE_KERNEL_TANDF
460float __kernel_tandf(double,int);
461#endif
462float __ldexp_expf(float,int);
463#ifdef _COMPLEX_H
464float complex __ldexp_cexpf(float complex,int);
465#endif
466
467/* long double precision kernel functions */
468long double __kernel_sinl(long double, long double, int);
469long double __kernel_cosl(long double, long double);
470long double __kernel_tanl(long double, long double, int);
471
472#endif /* !_MATH_PRIVATE_H_ */