Elliott Hughes | a0ee078 | 2013-01-30 19:06:37 -0800 | [diff] [blame] | 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | * from: @(#)fdlibm.h 5.1 93/09/24 |
| 14 | * $FreeBSD$ |
| 15 | */ |
| 16 | |
| 17 | #ifndef _MATH_PRIVATE_H_ |
| 18 | #define _MATH_PRIVATE_H_ |
| 19 | |
| 20 | #include <sys/types.h> |
| 21 | #include <machine/endian.h> |
| 22 | |
| 23 | /* |
| 24 | * The original fdlibm code used statements like: |
| 25 | * n0 = ((*(int*)&one)>>29)^1; * index of high word * |
| 26 | * ix0 = *(n0+(int*)&x); * high word of x * |
| 27 | * ix1 = *((1-n0)+(int*)&x); * low word of x * |
| 28 | * to dig two 32 bit words out of the 64 bit IEEE floating point |
| 29 | * value. That is non-ANSI, and, moreover, the gcc instruction |
| 30 | * scheduler gets it wrong. We instead use the following macros. |
| 31 | * Unlike the original code, we determine the endianness at compile |
| 32 | * time, not at run time; I don't see much benefit to selecting |
| 33 | * endianness at run time. |
| 34 | */ |
| 35 | |
| 36 | /* |
| 37 | * A union which permits us to convert between a double and two 32 bit |
| 38 | * ints. |
| 39 | */ |
| 40 | |
| 41 | #ifdef __arm__ |
| 42 | #if defined(__VFP_FP__) |
| 43 | #define IEEE_WORD_ORDER BYTE_ORDER |
| 44 | #else |
| 45 | #define IEEE_WORD_ORDER BIG_ENDIAN |
| 46 | #endif |
| 47 | #else /* __arm__ */ |
| 48 | #define IEEE_WORD_ORDER BYTE_ORDER |
| 49 | #endif |
| 50 | |
| 51 | #if IEEE_WORD_ORDER == BIG_ENDIAN |
| 52 | |
| 53 | typedef union |
| 54 | { |
| 55 | double value; |
| 56 | struct |
| 57 | { |
| 58 | u_int32_t msw; |
| 59 | u_int32_t lsw; |
| 60 | } parts; |
| 61 | struct |
| 62 | { |
| 63 | u_int64_t w; |
| 64 | } xparts; |
| 65 | } ieee_double_shape_type; |
| 66 | |
| 67 | #endif |
| 68 | |
| 69 | #if IEEE_WORD_ORDER == LITTLE_ENDIAN |
| 70 | |
| 71 | typedef union |
| 72 | { |
| 73 | double value; |
| 74 | struct |
| 75 | { |
| 76 | u_int32_t lsw; |
| 77 | u_int32_t msw; |
| 78 | } parts; |
| 79 | struct |
| 80 | { |
| 81 | u_int64_t w; |
| 82 | } xparts; |
| 83 | } ieee_double_shape_type; |
| 84 | |
| 85 | #endif |
| 86 | |
| 87 | /* Get two 32 bit ints from a double. */ |
| 88 | |
| 89 | #define EXTRACT_WORDS(ix0,ix1,d) \ |
| 90 | do { \ |
| 91 | ieee_double_shape_type ew_u; \ |
| 92 | ew_u.value = (d); \ |
| 93 | (ix0) = ew_u.parts.msw; \ |
| 94 | (ix1) = ew_u.parts.lsw; \ |
| 95 | } while (0) |
| 96 | |
| 97 | /* Get a 64-bit int from a double. */ |
| 98 | #define EXTRACT_WORD64(ix,d) \ |
| 99 | do { \ |
| 100 | ieee_double_shape_type ew_u; \ |
| 101 | ew_u.value = (d); \ |
| 102 | (ix) = ew_u.xparts.w; \ |
| 103 | } while (0) |
| 104 | |
| 105 | /* Get the more significant 32 bit int from a double. */ |
| 106 | |
| 107 | #define GET_HIGH_WORD(i,d) \ |
| 108 | do { \ |
| 109 | ieee_double_shape_type gh_u; \ |
| 110 | gh_u.value = (d); \ |
| 111 | (i) = gh_u.parts.msw; \ |
| 112 | } while (0) |
| 113 | |
| 114 | /* Get the less significant 32 bit int from a double. */ |
| 115 | |
| 116 | #define GET_LOW_WORD(i,d) \ |
| 117 | do { \ |
| 118 | ieee_double_shape_type gl_u; \ |
| 119 | gl_u.value = (d); \ |
| 120 | (i) = gl_u.parts.lsw; \ |
| 121 | } while (0) |
| 122 | |
| 123 | /* Set a double from two 32 bit ints. */ |
| 124 | |
| 125 | #define INSERT_WORDS(d,ix0,ix1) \ |
| 126 | do { \ |
| 127 | ieee_double_shape_type iw_u; \ |
| 128 | iw_u.parts.msw = (ix0); \ |
| 129 | iw_u.parts.lsw = (ix1); \ |
| 130 | (d) = iw_u.value; \ |
| 131 | } while (0) |
| 132 | |
| 133 | /* Set a double from a 64-bit int. */ |
| 134 | #define INSERT_WORD64(d,ix) \ |
| 135 | do { \ |
| 136 | ieee_double_shape_type iw_u; \ |
| 137 | iw_u.xparts.w = (ix); \ |
| 138 | (d) = iw_u.value; \ |
| 139 | } while (0) |
| 140 | |
| 141 | /* Set the more significant 32 bits of a double from an int. */ |
| 142 | |
| 143 | #define SET_HIGH_WORD(d,v) \ |
| 144 | do { \ |
| 145 | ieee_double_shape_type sh_u; \ |
| 146 | sh_u.value = (d); \ |
| 147 | sh_u.parts.msw = (v); \ |
| 148 | (d) = sh_u.value; \ |
| 149 | } while (0) |
| 150 | |
| 151 | /* Set the less significant 32 bits of a double from an int. */ |
| 152 | |
| 153 | #define SET_LOW_WORD(d,v) \ |
| 154 | do { \ |
| 155 | ieee_double_shape_type sl_u; \ |
| 156 | sl_u.value = (d); \ |
| 157 | sl_u.parts.lsw = (v); \ |
| 158 | (d) = sl_u.value; \ |
| 159 | } while (0) |
| 160 | |
| 161 | /* |
| 162 | * A union which permits us to convert between a float and a 32 bit |
| 163 | * int. |
| 164 | */ |
| 165 | |
| 166 | typedef union |
| 167 | { |
| 168 | float value; |
| 169 | /* FIXME: Assumes 32 bit int. */ |
| 170 | unsigned int word; |
| 171 | } ieee_float_shape_type; |
| 172 | |
| 173 | /* Get a 32 bit int from a float. */ |
| 174 | |
| 175 | #define GET_FLOAT_WORD(i,d) \ |
| 176 | do { \ |
| 177 | ieee_float_shape_type gf_u; \ |
| 178 | gf_u.value = (d); \ |
| 179 | (i) = gf_u.word; \ |
| 180 | } while (0) |
| 181 | |
| 182 | /* Set a float from a 32 bit int. */ |
| 183 | |
| 184 | #define SET_FLOAT_WORD(d,i) \ |
| 185 | do { \ |
| 186 | ieee_float_shape_type sf_u; \ |
| 187 | sf_u.word = (i); \ |
| 188 | (d) = sf_u.value; \ |
| 189 | } while (0) |
| 190 | |
| 191 | /* Get expsign as a 16 bit int from a long double. */ |
| 192 | |
| 193 | #define GET_LDBL_EXPSIGN(i,d) \ |
| 194 | do { \ |
| 195 | union IEEEl2bits ge_u; \ |
| 196 | ge_u.e = (d); \ |
| 197 | (i) = ge_u.xbits.expsign; \ |
| 198 | } while (0) |
| 199 | |
| 200 | /* Set expsign of a long double from a 16 bit int. */ |
| 201 | |
| 202 | #define SET_LDBL_EXPSIGN(d,v) \ |
| 203 | do { \ |
| 204 | union IEEEl2bits se_u; \ |
| 205 | se_u.e = (d); \ |
| 206 | se_u.xbits.expsign = (v); \ |
| 207 | (d) = se_u.e; \ |
| 208 | } while (0) |
| 209 | |
| 210 | #ifdef __i386__ |
| 211 | /* Long double constants are broken on i386. */ |
| 212 | #define LD80C(m, ex, v) { \ |
| 213 | .xbits.man = __CONCAT(m, ULL), \ |
| 214 | .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \ |
| 215 | } |
| 216 | #else |
| 217 | /* The above works on non-i386 too, but we use this to check v. */ |
| 218 | #define LD80C(m, ex, v) { .e = (v), } |
| 219 | #endif |
| 220 | |
| 221 | #ifdef FLT_EVAL_METHOD |
| 222 | /* |
| 223 | * Attempt to get strict C99 semantics for assignment with non-C99 compilers. |
| 224 | */ |
| 225 | #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0 |
| 226 | #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) |
| 227 | #else |
| 228 | #define STRICT_ASSIGN(type, lval, rval) do { \ |
| 229 | volatile type __lval; \ |
| 230 | \ |
| 231 | if (sizeof(type) >= sizeof(long double)) \ |
| 232 | (lval) = (rval); \ |
| 233 | else { \ |
| 234 | __lval = (rval); \ |
| 235 | (lval) = __lval; \ |
| 236 | } \ |
| 237 | } while (0) |
| 238 | #endif |
| 239 | #endif /* FLT_EVAL_METHOD */ |
| 240 | |
| 241 | /* Support switching the mode to FP_PE if necessary. */ |
| 242 | #if defined(__i386__) && !defined(NO_FPSETPREC) |
| 243 | #define ENTERI() \ |
| 244 | long double __retval; \ |
| 245 | fp_prec_t __oprec; \ |
| 246 | \ |
| 247 | if ((__oprec = fpgetprec()) != FP_PE) \ |
| 248 | fpsetprec(FP_PE) |
| 249 | #define RETURNI(x) do { \ |
| 250 | __retval = (x); \ |
| 251 | if (__oprec != FP_PE) \ |
| 252 | fpsetprec(__oprec); \ |
| 253 | RETURNF(__retval); \ |
| 254 | } while (0) |
| 255 | #else |
| 256 | #define ENTERI(x) |
| 257 | #define RETURNI(x) RETURNF(x) |
| 258 | #endif |
| 259 | |
| 260 | /* Default return statement if hack*_t() is not used. */ |
| 261 | #define RETURNF(v) return (v) |
| 262 | |
| 263 | /* |
| 264 | * Common routine to process the arguments to nan(), nanf(), and nanl(). |
| 265 | */ |
| 266 | void _scan_nan(uint32_t *__words, int __num_words, const char *__s); |
| 267 | |
| 268 | #ifdef _COMPLEX_H |
| 269 | |
| 270 | /* |
| 271 | * C99 specifies that complex numbers have the same representation as |
| 272 | * an array of two elements, where the first element is the real part |
| 273 | * and the second element is the imaginary part. |
| 274 | */ |
| 275 | typedef union { |
| 276 | float complex f; |
| 277 | float a[2]; |
| 278 | } float_complex; |
| 279 | typedef union { |
| 280 | double complex f; |
| 281 | double a[2]; |
| 282 | } double_complex; |
| 283 | typedef union { |
| 284 | long double complex f; |
| 285 | long double a[2]; |
| 286 | } long_double_complex; |
| 287 | #define REALPART(z) ((z).a[0]) |
| 288 | #define IMAGPART(z) ((z).a[1]) |
| 289 | |
| 290 | /* |
| 291 | * Inline functions that can be used to construct complex values. |
| 292 | * |
| 293 | * The C99 standard intends x+I*y to be used for this, but x+I*y is |
| 294 | * currently unusable in general since gcc introduces many overflow, |
| 295 | * underflow, sign and efficiency bugs by rewriting I*y as |
| 296 | * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product. |
| 297 | * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted |
| 298 | * to -0.0+I*0.0. |
| 299 | */ |
| 300 | static __inline float complex |
| 301 | cpackf(float x, float y) |
| 302 | { |
| 303 | float_complex z; |
| 304 | |
| 305 | REALPART(z) = x; |
| 306 | IMAGPART(z) = y; |
| 307 | return (z.f); |
| 308 | } |
| 309 | |
| 310 | static __inline double complex |
| 311 | cpack(double x, double y) |
| 312 | { |
| 313 | double_complex z; |
| 314 | |
| 315 | REALPART(z) = x; |
| 316 | IMAGPART(z) = y; |
| 317 | return (z.f); |
| 318 | } |
| 319 | |
| 320 | static __inline long double complex |
| 321 | cpackl(long double x, long double y) |
| 322 | { |
| 323 | long_double_complex z; |
| 324 | |
| 325 | REALPART(z) = x; |
| 326 | IMAGPART(z) = y; |
| 327 | return (z.f); |
| 328 | } |
| 329 | #endif /* _COMPLEX_H */ |
| 330 | |
| 331 | #ifdef __GNUCLIKE_ASM |
| 332 | |
| 333 | /* Asm versions of some functions. */ |
| 334 | |
| 335 | #ifdef __amd64__ |
| 336 | static __inline int |
| 337 | irint(double x) |
| 338 | { |
| 339 | int n; |
| 340 | |
| 341 | asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x)); |
| 342 | return (n); |
| 343 | } |
| 344 | #define HAVE_EFFICIENT_IRINT |
| 345 | #endif |
| 346 | |
| 347 | #ifdef __i386__ |
| 348 | static __inline int |
| 349 | irint(double x) |
| 350 | { |
| 351 | int n; |
| 352 | |
| 353 | asm("fistl %0" : "=m" (n) : "t" (x)); |
| 354 | return (n); |
| 355 | } |
| 356 | #define HAVE_EFFICIENT_IRINT |
| 357 | #endif |
| 358 | |
| 359 | #if defined(__amd64__) || defined(__i386__) |
| 360 | static __inline int |
| 361 | irintl(long double x) |
| 362 | { |
| 363 | int n; |
| 364 | |
| 365 | asm("fistl %0" : "=m" (n) : "t" (x)); |
| 366 | return (n); |
| 367 | } |
| 368 | #define HAVE_EFFICIENT_IRINTL |
| 369 | #endif |
| 370 | |
| 371 | #endif /* __GNUCLIKE_ASM */ |
| 372 | |
| 373 | /* |
| 374 | * ieee style elementary functions |
| 375 | * |
| 376 | * We rename functions here to improve other sources' diffability |
| 377 | * against fdlibm. |
| 378 | */ |
| 379 | #define __ieee754_sqrt sqrt |
| 380 | #define __ieee754_acos acos |
| 381 | #define __ieee754_acosh acosh |
| 382 | #define __ieee754_log log |
| 383 | #define __ieee754_log2 log2 |
| 384 | #define __ieee754_atanh atanh |
| 385 | #define __ieee754_asin asin |
| 386 | #define __ieee754_atan2 atan2 |
| 387 | #define __ieee754_exp exp |
| 388 | #define __ieee754_cosh cosh |
| 389 | #define __ieee754_fmod fmod |
| 390 | #define __ieee754_pow pow |
| 391 | #define __ieee754_lgamma lgamma |
| 392 | #define __ieee754_gamma gamma |
| 393 | #define __ieee754_lgamma_r lgamma_r |
| 394 | #define __ieee754_gamma_r gamma_r |
| 395 | #define __ieee754_log10 log10 |
| 396 | #define __ieee754_sinh sinh |
| 397 | #define __ieee754_hypot hypot |
| 398 | #define __ieee754_j0 j0 |
| 399 | #define __ieee754_j1 j1 |
| 400 | #define __ieee754_y0 y0 |
| 401 | #define __ieee754_y1 y1 |
| 402 | #define __ieee754_jn jn |
| 403 | #define __ieee754_yn yn |
| 404 | #define __ieee754_remainder remainder |
| 405 | #define __ieee754_scalb scalb |
| 406 | #define __ieee754_sqrtf sqrtf |
| 407 | #define __ieee754_acosf acosf |
| 408 | #define __ieee754_acoshf acoshf |
| 409 | #define __ieee754_logf logf |
| 410 | #define __ieee754_atanhf atanhf |
| 411 | #define __ieee754_asinf asinf |
| 412 | #define __ieee754_atan2f atan2f |
| 413 | #define __ieee754_expf expf |
| 414 | #define __ieee754_coshf coshf |
| 415 | #define __ieee754_fmodf fmodf |
| 416 | #define __ieee754_powf powf |
| 417 | #define __ieee754_lgammaf lgammaf |
| 418 | #define __ieee754_gammaf gammaf |
| 419 | #define __ieee754_lgammaf_r lgammaf_r |
| 420 | #define __ieee754_gammaf_r gammaf_r |
| 421 | #define __ieee754_log10f log10f |
| 422 | #define __ieee754_log2f log2f |
| 423 | #define __ieee754_sinhf sinhf |
| 424 | #define __ieee754_hypotf hypotf |
| 425 | #define __ieee754_j0f j0f |
| 426 | #define __ieee754_j1f j1f |
| 427 | #define __ieee754_y0f y0f |
| 428 | #define __ieee754_y1f y1f |
| 429 | #define __ieee754_jnf jnf |
| 430 | #define __ieee754_ynf ynf |
| 431 | #define __ieee754_remainderf remainderf |
| 432 | #define __ieee754_scalbf scalbf |
| 433 | |
| 434 | /* fdlibm kernel function */ |
| 435 | int __kernel_rem_pio2(double*,double*,int,int,int); |
| 436 | |
| 437 | /* double precision kernel functions */ |
| 438 | #ifndef INLINE_REM_PIO2 |
| 439 | int __ieee754_rem_pio2(double,double*); |
| 440 | #endif |
| 441 | double __kernel_sin(double,double,int); |
| 442 | double __kernel_cos(double,double); |
| 443 | double __kernel_tan(double,double,int); |
| 444 | double __ldexp_exp(double,int); |
| 445 | #ifdef _COMPLEX_H |
| 446 | double complex __ldexp_cexp(double complex,int); |
| 447 | #endif |
| 448 | |
| 449 | /* float precision kernel functions */ |
| 450 | #ifndef INLINE_REM_PIO2F |
| 451 | int __ieee754_rem_pio2f(float,double*); |
| 452 | #endif |
| 453 | #ifndef INLINE_KERNEL_SINDF |
| 454 | float __kernel_sindf(double); |
| 455 | #endif |
| 456 | #ifndef INLINE_KERNEL_COSDF |
| 457 | float __kernel_cosdf(double); |
| 458 | #endif |
| 459 | #ifndef INLINE_KERNEL_TANDF |
| 460 | float __kernel_tandf(double,int); |
| 461 | #endif |
| 462 | float __ldexp_expf(float,int); |
| 463 | #ifdef _COMPLEX_H |
| 464 | float complex __ldexp_cexpf(float complex,int); |
| 465 | #endif |
| 466 | |
| 467 | /* long double precision kernel functions */ |
| 468 | long double __kernel_sinl(long double, long double, int); |
| 469 | long double __kernel_cosl(long double, long double); |
| 470 | long double __kernel_tanl(long double, long double, int); |
| 471 | |
| 472 | #endif /* !_MATH_PRIVATE_H_ */ |