Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 1 | /*- |
Elliott Hughes | c1e46b6 | 2023-07-19 14:06:31 -0700 | [diff] [blame] | 2 | * SPDX-License-Identifier: BSD-2-Clause |
Elliott Hughes | ab52807 | 2018-07-24 00:01:52 +0000 | [diff] [blame] | 3 | * |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 4 | * Copyright (c) 2007-2013 Bruce D. Evans |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * 1. Redistributions of source code must retain the above copyright |
| 11 | * notice unmodified, this list of conditions, and the following |
| 12 | * disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include <sys/cdefs.h> |
Elliott Hughes | bac0ebb | 2021-01-26 14:17:20 -0800 | [diff] [blame] | 30 | __FBSDID("$FreeBSD$"); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 31 | |
| 32 | /** |
| 33 | * Implementation of the natural logarithm of x for 128-bit format. |
| 34 | * |
| 35 | * First decompose x into its base 2 representation: |
| 36 | * |
| 37 | * log(x) = log(X * 2**k), where X is in [1, 2) |
| 38 | * = log(X) + k * log(2). |
| 39 | * |
| 40 | * Let X = X_i + e, where X_i is the center of one of the intervals |
| 41 | * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256) |
| 42 | * and X is in this interval. Then |
| 43 | * |
| 44 | * log(X) = log(X_i + e) |
| 45 | * = log(X_i * (1 + e / X_i)) |
| 46 | * = log(X_i) + log(1 + e / X_i). |
| 47 | * |
| 48 | * The values log(X_i) are tabulated below. Let d = e / X_i and use |
| 49 | * |
| 50 | * log(1 + d) = p(d) |
| 51 | * |
| 52 | * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of |
| 53 | * suitably high degree. |
| 54 | * |
| 55 | * To get sufficiently small roundoff errors, k * log(2), log(X_i), and |
| 56 | * sometimes (if |k| is not large) the first term in p(d) must be evaluated |
| 57 | * and added up in extra precision. Extra precision is not needed for the |
| 58 | * rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final |
| 59 | * error is controlled mainly by the error in the second term in p(d). The |
| 60 | * error in this term itself is at most 0.5 ulps from the d*d operation in |
| 61 | * it. The error in this term relative to the first term is thus at most |
| 62 | * 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of |
| 63 | * at most twice this at the point of the final rounding step. Thus the |
| 64 | * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive |
| 65 | * testing of a float variant of this function showed a maximum final error |
| 66 | * of 0.5008 ulps. Non-exhaustive testing of a double variant of this |
| 67 | * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256). |
| 68 | * |
| 69 | * We made the maximum of |d| (and thus the total relative error and the |
| 70 | * degree of p(d)) small by using a large number of intervals. Using |
| 71 | * centers of intervals instead of endpoints reduces this maximum by a |
| 72 | * factor of 2 for a given number of intervals. p(d) is special only |
| 73 | * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen |
| 74 | * naturally. The most accurate minimax polynomial of a given degree might |
| 75 | * be different, but then we wouldn't want it since we would have to do |
| 76 | * extra work to avoid roundoff error (especially for P0*d instead of d). |
| 77 | */ |
| 78 | |
| 79 | #ifdef DEBUG |
| 80 | #include <assert.h> |
| 81 | #include <fenv.h> |
| 82 | #endif |
| 83 | |
| 84 | #include "fpmath.h" |
| 85 | #include "math.h" |
| 86 | #ifndef NO_STRUCT_RETURN |
| 87 | #define STRUCT_RETURN |
| 88 | #endif |
| 89 | #include "math_private.h" |
| 90 | |
| 91 | #if !defined(NO_UTAB) && !defined(NO_UTABL) |
| 92 | #define USE_UTAB |
| 93 | #endif |
| 94 | |
| 95 | /* |
| 96 | * Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]: |
| 97 | * |log(1 + d)/d - p(d)| < 2**-122.7 |
| 98 | */ |
| 99 | static const long double |
| 100 | P2 = -0.5L, |
| 101 | P3 = 3.33333333333333333333333333333233795e-1L, /* 0x15555555555555555555555554d42.0p-114L */ |
| 102 | P4 = -2.49999999999999999999999999941139296e-1L, /* -0x1ffffffffffffffffffffffdab14e.0p-115L */ |
| 103 | P5 = 2.00000000000000000000000085468039943e-1L, /* 0x19999999999999999999a6d3567f4.0p-115L */ |
| 104 | P6 = -1.66666666666666666666696142372698408e-1L, /* -0x15555555555555555567267a58e13.0p-115L */ |
| 105 | P7 = 1.42857142857142857119522943477166120e-1L, /* 0x1249249249249248ed79a0ae434de.0p-115L */ |
| 106 | P8 = -1.24999999999999994863289015033581301e-1L; /* -0x1fffffffffffffa13e91765e46140.0p-116L */ |
| 107 | /* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */ |
| 108 | static const double |
| 109 | P9 = 1.1111111111111401e-1, /* 0x1c71c71c71c7ed.0p-56 */ |
| 110 | P10 = -1.0000000000040135e-1, /* -0x199999999a0a92.0p-56 */ |
| 111 | P11 = 9.0909090728136258e-2, /* 0x1745d173962111.0p-56 */ |
| 112 | P12 = -8.3333318851855284e-2, /* -0x1555551722c7a3.0p-56 */ |
| 113 | P13 = 7.6928634666404178e-2, /* 0x13b1985204a4ae.0p-56 */ |
| 114 | P14 = -7.1626810078462499e-2; /* -0x12562276cdc5d0.0p-56 */ |
| 115 | |
| 116 | static volatile const double zero = 0; |
| 117 | |
| 118 | #define INTERVALS 128 |
| 119 | #define LOG2_INTERVALS 7 |
| 120 | #define TSIZE (INTERVALS + 1) |
| 121 | #define G(i) (T[(i)].G) |
| 122 | #define F_hi(i) (T[(i)].F_hi) |
| 123 | #define F_lo(i) (T[(i)].F_lo) |
| 124 | #define ln2_hi F_hi(TSIZE - 1) |
| 125 | #define ln2_lo F_lo(TSIZE - 1) |
| 126 | #define E(i) (U[(i)].E) |
| 127 | #define H(i) (U[(i)].H) |
| 128 | |
| 129 | static const struct { |
| 130 | float G; /* 1/(1 + i/128) rounded to 8/9 bits */ |
| 131 | float F_hi; /* log(1 / G_i) rounded (see below) */ |
| 132 | /* The compiler will insert 8 bytes of padding here. */ |
| 133 | long double F_lo; /* next 113 bits for log(1 / G_i) */ |
| 134 | } T[TSIZE] = { |
| 135 | /* |
| 136 | * ln2_hi and each F_hi(i) are rounded to a number of bits that |
| 137 | * makes F_hi(i) + dk*ln2_hi exact for all i and all dk. |
| 138 | * |
| 139 | * The last entry (for X just below 2) is used to define ln2_hi |
| 140 | * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly |
| 141 | * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1. |
| 142 | * This is needed for accuracy when x is just below 1. (To avoid |
| 143 | * special cases, such x are "reduced" strangely to X just below |
| 144 | * 2 and dk = -1, and then the exact cancellation is needed |
| 145 | * because any the error from any non-exactness would be too |
| 146 | * large). |
| 147 | * |
| 148 | * The relevant range of dk is [-16445, 16383]. The maximum number |
| 149 | * of bits in F_hi(i) that works is very dependent on i but has |
| 150 | * a minimum of 93. We only need about 12 bits in F_hi(i) for |
| 151 | * it to provide enough extra precision. |
| 152 | * |
| 153 | * We round F_hi(i) to 24 bits so that it can have type float, |
| 154 | * mainly to minimize the size of the table. Using all 24 bits |
| 155 | * in a float for it automatically satisfies the above constraints. |
| 156 | */ |
| 157 | 0x800000.0p-23, 0, 0, |
| 158 | 0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L, |
| 159 | 0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L, |
| 160 | 0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173697cf302cc9476f561.0p-143L, |
| 161 | 0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e78eba9b1113bc1c18.0p-142L, |
| 162 | 0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L, |
| 163 | 0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L, |
| 164 | 0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L, |
| 165 | 0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c484993c549c4bf40.0p-151L, |
| 166 | 0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L, |
| 167 | 0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L, |
| 168 | 0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L, |
| 169 | 0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da99ded322fb08b8462.0p-141L, |
| 170 | 0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L, |
| 171 | 0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251aefe0ded34c8318f52.0p-145L, |
| 172 | 0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d56699c1799a244d4.0p-144L, |
| 173 | 0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e6766abceccab1d7174.0p-141L, |
| 174 | 0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L, |
| 175 | 0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6affd511b534b72a28e.0p-140L, |
| 176 | 0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L, |
| 177 | 0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L, |
| 178 | 0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L, |
| 179 | 0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L, |
| 180 | 0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e5697dc6a402a56fce1.0p-141L, |
| 181 | 0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba9367707ebfa540e45350c.0p-144L, |
| 182 | 0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d31ef0f4c9d43f79b2.0p-140L, |
| 183 | 0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b75e7d900b521c48d.0p-141L, |
| 184 | 0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L, |
| 185 | 0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L, |
| 186 | 0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d686581799fbce0b5f19.0p-141L, |
| 187 | 0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae54f550444ecf8b995.0p-140L, |
| 188 | 0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L, |
| 189 | 0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d3a85b5b43c0e727.0p-141L, |
| 190 | 0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L, |
| 191 | 0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L, |
| 192 | 0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa6911c7bafcb4d84fb.0p-141L, |
| 193 | 0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb328337cc050c6d83b22.0p-140L, |
| 194 | 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e5fcf1a212e2a91e.0p-139L, |
| 195 | 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L, |
| 196 | 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a0fe396f40f1dda9.0p-141L, |
| 197 | 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de945a049a962e66c6.0p-139L, |
| 198 | 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L, |
| 199 | 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba46bae9827221dc98.0p-139L, |
| 200 | 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L, |
| 201 | 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L, |
| 202 | 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L, |
| 203 | 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L, |
| 204 | 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb2438273918db7df5c.0p-141L, |
| 205 | 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698298adddd7f32686.0p-141L, |
| 206 | 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L, |
| 207 | 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b263acb4351104631.0p-140L, |
| 208 | 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L, |
| 209 | 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L, |
| 210 | 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770633947ffe651e7352f.0p-139L, |
| 211 | 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L, |
| 212 | 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f088b61a335f5b688c.0p-140L, |
| 213 | 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L, |
| 214 | 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L, |
| 215 | 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L, |
| 216 | 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L, |
| 217 | 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L, |
| 218 | 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L, |
| 219 | 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L, |
| 220 | 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a8717d5626e16acc7d.0p-141L, |
| 221 | 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L, |
| 222 | 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d79f51dcc73014c9.0p-141L, |
| 223 | 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L, |
| 224 | 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L, |
| 225 | 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b610665377f15625b6.0p-140L, |
| 226 | 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a2d1b2176010478be.0p-140L, |
| 227 | 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L, |
| 228 | 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L, |
| 229 | 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f56db28da4d629d00a.0p-140L, |
| 230 | 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L, |
| 231 | 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L, |
| 232 | 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd73692609040ccc2.0p-139L, |
| 233 | 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L, |
| 234 | 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L, |
| 235 | 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d42f78d3e65d3727.0p-141L, |
| 236 | 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af269647b783d88999.0p-139L, |
| 237 | 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L, |
| 238 | 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade02951686d5373aec.0p-139L, |
| 239 | 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1649349630531502.0p-139L, |
| 240 | 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c5320619fb9433d841.0p-139L, |
| 241 | 0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L, |
| 242 | 0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L, |
| 243 | 0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b7d7f47ddb45c5a3.0p-139L, |
| 244 | 0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb82873b04a9af1dd692c.0p-138L, |
| 245 | 0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9b9770d8cb6573540.0p-138L, |
| 246 | 0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f002e836dfd47bd41.0p-139L, |
| 247 | 0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd5cd7cc94306fb3ff.0p-140L, |
| 248 | 0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L, |
| 249 | 0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L, |
| 250 | 0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L, |
| 251 | 0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L, |
| 252 | 0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f76b87333891e0dec4.0p-138L, |
| 253 | 0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L, |
| 254 | 0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L, |
| 255 | 0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L, |
| 256 | 0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d21148c6002becd3.0p-139L, |
| 257 | 0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c336af90e00533323ba.0p-139L, |
| 258 | 0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf2f105a89060046aa.0p-138L, |
| 259 | 0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L, |
| 260 | 0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L, |
| 261 | 0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L, |
| 262 | 0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L, |
| 263 | 0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f9527e6aba8f2d783c1.0p-138L, |
| 264 | 0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe7ba81c664c107e0.0p-138L, |
| 265 | 0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L, |
| 266 | 0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a246726b304ccae56.0p-139L, |
| 267 | 0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L, |
| 268 | 0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f38b4619a2483399.0p-141L, |
| 269 | 0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L, |
| 270 | 0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L, |
| 271 | 0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c008d3602a7b41c6e8.0p-139L, |
| 272 | 0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541aca7d5844606b2421.0p-139L, |
| 273 | 0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4571acbcfb03f16daf4.0p-138L, |
| 274 | 0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c0a345ad743ae1ae.0p-140L, |
| 275 | 0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d749362382a7688479e24.0p-140L, |
| 276 | 0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce532661ea9643a3a2d378.0p-139L, |
| 277 | 0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d257530a682b80490.0p-139L, |
| 278 | 0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L, |
| 279 | 0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3303dd481779df69.0p-139L, |
| 280 | 0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L, |
| 281 | 0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L, |
| 282 | 0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a82ab19f77652d977a.0p-141L, |
| 283 | 0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b48d7b98c1cf7234.0p-138L, |
| 284 | 0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L, |
| 285 | 0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L, |
| 286 | }; |
| 287 | |
| 288 | #ifdef USE_UTAB |
| 289 | static const struct { |
| 290 | float H; /* 1 + i/INTERVALS (exact) */ |
| 291 | float E; /* H(i) * G(i) - 1 (exact) */ |
| 292 | } U[TSIZE] = { |
| 293 | 0x800000.0p-23, 0, |
| 294 | 0x810000.0p-23, -0x800000.0p-37, |
| 295 | 0x820000.0p-23, -0x800000.0p-35, |
| 296 | 0x830000.0p-23, -0x900000.0p-34, |
| 297 | 0x840000.0p-23, -0x800000.0p-33, |
| 298 | 0x850000.0p-23, -0xc80000.0p-33, |
| 299 | 0x860000.0p-23, -0xa00000.0p-36, |
| 300 | 0x870000.0p-23, 0x940000.0p-33, |
| 301 | 0x880000.0p-23, 0x800000.0p-35, |
| 302 | 0x890000.0p-23, -0xc80000.0p-34, |
| 303 | 0x8a0000.0p-23, 0xe00000.0p-36, |
| 304 | 0x8b0000.0p-23, 0x900000.0p-33, |
| 305 | 0x8c0000.0p-23, -0x800000.0p-35, |
| 306 | 0x8d0000.0p-23, -0xe00000.0p-33, |
| 307 | 0x8e0000.0p-23, 0x880000.0p-33, |
| 308 | 0x8f0000.0p-23, -0xa80000.0p-34, |
| 309 | 0x900000.0p-23, -0x800000.0p-35, |
| 310 | 0x910000.0p-23, 0x800000.0p-37, |
| 311 | 0x920000.0p-23, 0x900000.0p-35, |
| 312 | 0x930000.0p-23, 0xd00000.0p-35, |
| 313 | 0x940000.0p-23, 0xe00000.0p-35, |
| 314 | 0x950000.0p-23, 0xc00000.0p-35, |
| 315 | 0x960000.0p-23, 0xe00000.0p-36, |
| 316 | 0x970000.0p-23, -0x800000.0p-38, |
| 317 | 0x980000.0p-23, -0xc00000.0p-35, |
| 318 | 0x990000.0p-23, -0xd00000.0p-34, |
| 319 | 0x9a0000.0p-23, 0x880000.0p-33, |
| 320 | 0x9b0000.0p-23, 0xe80000.0p-35, |
| 321 | 0x9c0000.0p-23, -0x800000.0p-35, |
| 322 | 0x9d0000.0p-23, 0xb40000.0p-33, |
| 323 | 0x9e0000.0p-23, 0x880000.0p-34, |
| 324 | 0x9f0000.0p-23, -0xe00000.0p-35, |
| 325 | 0xa00000.0p-23, 0x800000.0p-33, |
| 326 | 0xa10000.0p-23, -0x900000.0p-36, |
| 327 | 0xa20000.0p-23, -0xb00000.0p-33, |
| 328 | 0xa30000.0p-23, -0xa00000.0p-36, |
| 329 | 0xa40000.0p-23, 0x800000.0p-33, |
| 330 | 0xa50000.0p-23, -0xf80000.0p-35, |
| 331 | 0xa60000.0p-23, 0x880000.0p-34, |
| 332 | 0xa70000.0p-23, -0x900000.0p-33, |
| 333 | 0xa80000.0p-23, -0x800000.0p-35, |
| 334 | 0xa90000.0p-23, 0x900000.0p-34, |
| 335 | 0xaa0000.0p-23, 0xa80000.0p-33, |
| 336 | 0xab0000.0p-23, -0xac0000.0p-34, |
| 337 | 0xac0000.0p-23, -0x800000.0p-37, |
| 338 | 0xad0000.0p-23, 0xf80000.0p-35, |
| 339 | 0xae0000.0p-23, 0xf80000.0p-34, |
| 340 | 0xaf0000.0p-23, -0xac0000.0p-33, |
| 341 | 0xb00000.0p-23, -0x800000.0p-33, |
| 342 | 0xb10000.0p-23, -0xb80000.0p-34, |
| 343 | 0xb20000.0p-23, -0x800000.0p-34, |
| 344 | 0xb30000.0p-23, -0xb00000.0p-35, |
| 345 | 0xb40000.0p-23, -0x800000.0p-35, |
| 346 | 0xb50000.0p-23, -0xe00000.0p-36, |
| 347 | 0xb60000.0p-23, -0x800000.0p-35, |
| 348 | 0xb70000.0p-23, -0xb00000.0p-35, |
| 349 | 0xb80000.0p-23, -0x800000.0p-34, |
| 350 | 0xb90000.0p-23, -0xb80000.0p-34, |
| 351 | 0xba0000.0p-23, -0x800000.0p-33, |
| 352 | 0xbb0000.0p-23, -0xac0000.0p-33, |
| 353 | 0xbc0000.0p-23, 0x980000.0p-33, |
| 354 | 0xbd0000.0p-23, 0xbc0000.0p-34, |
| 355 | 0xbe0000.0p-23, 0xe00000.0p-36, |
| 356 | 0xbf0000.0p-23, -0xb80000.0p-35, |
| 357 | 0xc00000.0p-23, -0x800000.0p-33, |
| 358 | 0xc10000.0p-23, 0xa80000.0p-33, |
| 359 | 0xc20000.0p-23, 0x900000.0p-34, |
| 360 | 0xc30000.0p-23, -0x800000.0p-35, |
| 361 | 0xc40000.0p-23, -0x900000.0p-33, |
| 362 | 0xc50000.0p-23, 0x820000.0p-33, |
| 363 | 0xc60000.0p-23, 0x800000.0p-38, |
| 364 | 0xc70000.0p-23, -0x820000.0p-33, |
| 365 | 0xc80000.0p-23, 0x800000.0p-33, |
| 366 | 0xc90000.0p-23, -0xa00000.0p-36, |
| 367 | 0xca0000.0p-23, -0xb00000.0p-33, |
| 368 | 0xcb0000.0p-23, 0x840000.0p-34, |
| 369 | 0xcc0000.0p-23, -0xd00000.0p-34, |
| 370 | 0xcd0000.0p-23, 0x800000.0p-33, |
| 371 | 0xce0000.0p-23, -0xe00000.0p-35, |
| 372 | 0xcf0000.0p-23, 0xa60000.0p-33, |
| 373 | 0xd00000.0p-23, -0x800000.0p-35, |
| 374 | 0xd10000.0p-23, 0xb40000.0p-33, |
| 375 | 0xd20000.0p-23, -0x800000.0p-35, |
| 376 | 0xd30000.0p-23, 0xaa0000.0p-33, |
| 377 | 0xd40000.0p-23, -0xe00000.0p-35, |
| 378 | 0xd50000.0p-23, 0x880000.0p-33, |
| 379 | 0xd60000.0p-23, -0xd00000.0p-34, |
| 380 | 0xd70000.0p-23, 0x9c0000.0p-34, |
| 381 | 0xd80000.0p-23, -0xb00000.0p-33, |
| 382 | 0xd90000.0p-23, -0x800000.0p-38, |
| 383 | 0xda0000.0p-23, 0xa40000.0p-33, |
| 384 | 0xdb0000.0p-23, -0xdc0000.0p-34, |
| 385 | 0xdc0000.0p-23, 0xc00000.0p-35, |
| 386 | 0xdd0000.0p-23, 0xca0000.0p-33, |
| 387 | 0xde0000.0p-23, -0xb80000.0p-34, |
| 388 | 0xdf0000.0p-23, 0xd00000.0p-35, |
| 389 | 0xe00000.0p-23, 0xc00000.0p-33, |
| 390 | 0xe10000.0p-23, -0xf40000.0p-34, |
| 391 | 0xe20000.0p-23, 0x800000.0p-37, |
| 392 | 0xe30000.0p-23, 0x860000.0p-33, |
| 393 | 0xe40000.0p-23, -0xc80000.0p-33, |
| 394 | 0xe50000.0p-23, -0xa80000.0p-34, |
| 395 | 0xe60000.0p-23, 0xe00000.0p-36, |
| 396 | 0xe70000.0p-23, 0x880000.0p-33, |
| 397 | 0xe80000.0p-23, -0xe00000.0p-33, |
| 398 | 0xe90000.0p-23, -0xfc0000.0p-34, |
| 399 | 0xea0000.0p-23, -0x800000.0p-35, |
| 400 | 0xeb0000.0p-23, 0xe80000.0p-35, |
| 401 | 0xec0000.0p-23, 0x900000.0p-33, |
| 402 | 0xed0000.0p-23, 0xe20000.0p-33, |
| 403 | 0xee0000.0p-23, -0xac0000.0p-33, |
| 404 | 0xef0000.0p-23, -0xc80000.0p-34, |
| 405 | 0xf00000.0p-23, -0x800000.0p-35, |
| 406 | 0xf10000.0p-23, 0x800000.0p-35, |
| 407 | 0xf20000.0p-23, 0xb80000.0p-34, |
| 408 | 0xf30000.0p-23, 0x940000.0p-33, |
| 409 | 0xf40000.0p-23, 0xc80000.0p-33, |
| 410 | 0xf50000.0p-23, -0xf20000.0p-33, |
| 411 | 0xf60000.0p-23, -0xc80000.0p-33, |
| 412 | 0xf70000.0p-23, -0xa20000.0p-33, |
| 413 | 0xf80000.0p-23, -0x800000.0p-33, |
| 414 | 0xf90000.0p-23, -0xc40000.0p-34, |
| 415 | 0xfa0000.0p-23, -0x900000.0p-34, |
| 416 | 0xfb0000.0p-23, -0xc80000.0p-35, |
| 417 | 0xfc0000.0p-23, -0x800000.0p-35, |
| 418 | 0xfd0000.0p-23, -0x900000.0p-36, |
| 419 | 0xfe0000.0p-23, -0x800000.0p-37, |
| 420 | 0xff0000.0p-23, -0x800000.0p-39, |
| 421 | 0x800000.0p-22, 0, |
| 422 | }; |
| 423 | #endif /* USE_UTAB */ |
| 424 | |
| 425 | #ifdef STRUCT_RETURN |
| 426 | #define RETURN1(rp, v) do { \ |
| 427 | (rp)->hi = (v); \ |
| 428 | (rp)->lo_set = 0; \ |
| 429 | return; \ |
| 430 | } while (0) |
| 431 | |
| 432 | #define RETURN2(rp, h, l) do { \ |
| 433 | (rp)->hi = (h); \ |
| 434 | (rp)->lo = (l); \ |
| 435 | (rp)->lo_set = 1; \ |
| 436 | return; \ |
| 437 | } while (0) |
| 438 | |
| 439 | struct ld { |
| 440 | long double hi; |
| 441 | long double lo; |
| 442 | int lo_set; |
| 443 | }; |
| 444 | #else |
| 445 | #define RETURN1(rp, v) RETURNF(v) |
| 446 | #define RETURN2(rp, h, l) RETURNI((h) + (l)) |
| 447 | #endif |
| 448 | |
| 449 | #ifdef STRUCT_RETURN |
| 450 | static inline __always_inline void |
| 451 | k_logl(long double x, struct ld *rp) |
| 452 | #else |
| 453 | long double |
| 454 | logl(long double x) |
| 455 | #endif |
| 456 | { |
| 457 | long double d, val_hi, val_lo; |
| 458 | double dd, dk; |
| 459 | uint64_t lx, llx; |
| 460 | int i, k; |
| 461 | uint16_t hx; |
| 462 | |
| 463 | EXTRACT_LDBL128_WORDS(hx, lx, llx, x); |
| 464 | k = -16383; |
| 465 | #if 0 /* Hard to do efficiently. Don't do it until we support all modes. */ |
| 466 | if (x == 1) |
| 467 | RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */ |
| 468 | #endif |
| 469 | if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */ |
| 470 | if (((hx & 0x7fff) | lx | llx) == 0) |
| 471 | RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */ |
| 472 | if (hx != 0) |
| 473 | /* log(neg or NaN) = qNaN: */ |
| 474 | RETURN1(rp, (x - x) / zero); |
| 475 | x *= 0x1.0p113; /* subnormal; scale up x */ |
| 476 | EXTRACT_LDBL128_WORDS(hx, lx, llx, x); |
| 477 | k = -16383 - 113; |
| 478 | } else if (hx >= 0x7fff) |
| 479 | RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */ |
| 480 | #ifndef STRUCT_RETURN |
| 481 | ENTERI(); |
| 482 | #endif |
| 483 | k += hx; |
| 484 | dk = k; |
| 485 | |
| 486 | /* Scale x to be in [1, 2). */ |
| 487 | SET_LDBL_EXPSIGN(x, 0x3fff); |
| 488 | |
| 489 | /* 0 <= i <= INTERVALS: */ |
| 490 | #define L2I (49 - LOG2_INTERVALS) |
| 491 | i = (lx + (1LL << (L2I - 2))) >> (L2I - 1); |
| 492 | |
| 493 | /* |
| 494 | * -0.005280 < d < 0.004838. In particular, the infinite- |
| 495 | * precision |d| is <= 2**-7. Rounding of G(i) to 8 bits |
| 496 | * ensures that d is representable without extra precision for |
| 497 | * this bound on |d| (since when this calculation is expressed |
| 498 | * as x*G(i)-1, the multiplication needs as many extra bits as |
| 499 | * G(i) has and the subtraction cancels 8 bits). But for |
| 500 | * most i (107 cases out of 129), the infinite-precision |d| |
| 501 | * is <= 2**-8. G(i) is rounded to 9 bits for such i to give |
| 502 | * better accuracy (this works by improving the bound on |d|, |
| 503 | * which in turn allows rounding to 9 bits in more cases). |
| 504 | * This is only important when the original x is near 1 -- it |
| 505 | * lets us avoid using a special method to give the desired |
| 506 | * accuracy for such x. |
| 507 | */ |
| 508 | if (0) |
| 509 | d = x * G(i) - 1; |
| 510 | else { |
| 511 | #ifdef USE_UTAB |
| 512 | d = (x - H(i)) * G(i) + E(i); |
| 513 | #else |
| 514 | long double x_hi; |
| 515 | double x_lo; |
| 516 | |
| 517 | /* |
| 518 | * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly. |
| 519 | * G(i) has at most 9 bits, so the splitting point is not |
| 520 | * critical. |
| 521 | */ |
| 522 | INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx, |
| 523 | llx & 0xffffffffff000000ULL); |
| 524 | x_lo = x - x_hi; |
| 525 | d = x_hi * G(i) - 1 + x_lo * G(i); |
| 526 | #endif |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * Our algorithm depends on exact cancellation of F_lo(i) and |
| 531 | * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is |
| 532 | * at the end of the table. This and other technical complications |
| 533 | * make it difficult to avoid the double scaling in (dk*ln2) * |
| 534 | * log(base) for base != e without losing more accuracy and/or |
| 535 | * efficiency than is gained. |
| 536 | */ |
| 537 | /* |
Elliott Hughes | bac0ebb | 2021-01-26 14:17:20 -0800 | [diff] [blame] | 538 | * Use double precision operations wherever possible, since |
| 539 | * long double operations are emulated and were very slow on |
| 540 | * the old sparc64 and unknown on the newer aarch64 and riscv |
| 541 | * machines. Also, don't try to improve parallelism by |
| 542 | * increasing the number of operations, since any parallelism |
| 543 | * on such machines is needed for the emulation. Horner's |
| 544 | * method is good for this, and is also good for accuracy. |
| 545 | * Horner's method doesn't handle the `lo' term well, either |
| 546 | * for efficiency or accuracy. However, for accuracy we |
| 547 | * evaluate d * d * P2 separately to take advantage of by P2 |
| 548 | * being exact, and this gives a good place to sum the 'lo' |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 549 | * term too. |
| 550 | */ |
| 551 | dd = (double)d; |
| 552 | val_lo = d * d * d * (P3 + |
| 553 | d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 + |
| 554 | dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 + |
| 555 | dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2; |
| 556 | val_hi = d; |
| 557 | #ifdef DEBUG |
| 558 | if (fetestexcept(FE_UNDERFLOW)) |
| 559 | breakpoint(); |
| 560 | #endif |
| 561 | |
| 562 | _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi); |
| 563 | RETURN2(rp, val_hi, val_lo); |
| 564 | } |
| 565 | |
| 566 | long double |
| 567 | log1pl(long double x) |
| 568 | { |
| 569 | long double d, d_hi, f_lo, val_hi, val_lo; |
| 570 | long double f_hi, twopminusk; |
| 571 | double d_lo, dd, dk; |
| 572 | uint64_t lx, llx; |
| 573 | int i, k; |
| 574 | int16_t ax, hx; |
| 575 | |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 576 | EXTRACT_LDBL128_WORDS(hx, lx, llx, x); |
| 577 | if (hx < 0x3fff) { /* x < 1, or x neg NaN */ |
| 578 | ax = hx & 0x7fff; |
| 579 | if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */ |
| 580 | if (ax == 0x3fff && (lx | llx) == 0) |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 581 | RETURNF(-1 / zero); /* log1p(-1) = -Inf */ |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 582 | /* log1p(x < 1, or x NaN) = qNaN: */ |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 583 | RETURNF((x - x) / (x - x)); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 584 | } |
| 585 | if (ax <= 0x3f8d) { /* |x| < 2**-113 */ |
| 586 | if ((int)x == 0) |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 587 | RETURNF(x); /* x with inexact if x != 0 */ |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 588 | } |
| 589 | f_hi = 1; |
| 590 | f_lo = x; |
| 591 | } else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */ |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 592 | RETURNF(x + x); /* log1p(Inf or NaN) = Inf or qNaN */ |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 593 | } else if (hx < 0x40e1) { /* 1 <= x < 2**226 */ |
| 594 | f_hi = x; |
| 595 | f_lo = 1; |
| 596 | } else { /* 2**226 <= x < +Inf */ |
| 597 | f_hi = x; |
| 598 | f_lo = 0; /* avoid underflow of the P3 term */ |
| 599 | } |
| 600 | ENTERI(); |
| 601 | x = f_hi + f_lo; |
| 602 | f_lo = (f_hi - x) + f_lo; |
| 603 | |
| 604 | EXTRACT_LDBL128_WORDS(hx, lx, llx, x); |
| 605 | k = -16383; |
| 606 | |
| 607 | k += hx; |
| 608 | dk = k; |
| 609 | |
| 610 | SET_LDBL_EXPSIGN(x, 0x3fff); |
| 611 | twopminusk = 1; |
| 612 | SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff)); |
| 613 | f_lo *= twopminusk; |
| 614 | |
| 615 | i = (lx + (1LL << (L2I - 2))) >> (L2I - 1); |
| 616 | |
| 617 | /* |
| 618 | * x*G(i)-1 (with a reduced x) can be represented exactly, as |
| 619 | * above, but now we need to evaluate the polynomial on d = |
| 620 | * (x+f_lo)*G(i)-1 and extra precision is needed for that. |
| 621 | * Since x+x_lo is a hi+lo decomposition and subtracting 1 |
| 622 | * doesn't lose too many bits, an inexact calculation for |
| 623 | * f_lo*G(i) is good enough. |
| 624 | */ |
| 625 | if (0) |
| 626 | d_hi = x * G(i) - 1; |
| 627 | else { |
| 628 | #ifdef USE_UTAB |
| 629 | d_hi = (x - H(i)) * G(i) + E(i); |
| 630 | #else |
| 631 | long double x_hi; |
| 632 | double x_lo; |
| 633 | |
| 634 | INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx, |
| 635 | llx & 0xffffffffff000000ULL); |
| 636 | x_lo = x - x_hi; |
| 637 | d_hi = x_hi * G(i) - 1 + x_lo * G(i); |
| 638 | #endif |
| 639 | } |
| 640 | d_lo = f_lo * G(i); |
| 641 | |
| 642 | /* |
| 643 | * This is _2sumF(d_hi, d_lo) inlined. The condition |
| 644 | * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not |
| 645 | * always satisifed, so it is not clear that this works, but |
| 646 | * it works in practice. It works even if it gives a wrong |
| 647 | * normalized d_lo, since |d_lo| > |d_hi| implies that i is |
| 648 | * nonzero and d is tiny, so the F(i) term dominates d_lo. |
| 649 | * In float precision: |
| 650 | * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25. |
| 651 | * And if d is only a little tinier than that, we would have |
| 652 | * another underflow problem for the P3 term; this is also ruled |
| 653 | * out by exhaustive testing.) |
| 654 | */ |
| 655 | d = d_hi + d_lo; |
| 656 | d_lo = d_hi - d + d_lo; |
| 657 | d_hi = d; |
| 658 | |
| 659 | dd = (double)d; |
| 660 | val_lo = d * d * d * (P3 + |
| 661 | d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 + |
| 662 | dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 + |
| 663 | dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2; |
| 664 | val_hi = d_hi; |
| 665 | #ifdef DEBUG |
| 666 | if (fetestexcept(FE_UNDERFLOW)) |
| 667 | breakpoint(); |
| 668 | #endif |
| 669 | |
| 670 | _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi); |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 671 | RETURNI(val_hi + val_lo); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 672 | } |
| 673 | |
| 674 | #ifdef STRUCT_RETURN |
| 675 | |
| 676 | long double |
| 677 | logl(long double x) |
| 678 | { |
| 679 | struct ld r; |
| 680 | |
| 681 | ENTERI(); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 682 | k_logl(x, &r); |
| 683 | RETURNSPI(&r); |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * 29+113 bit decompositions. The bits are distributed so that the products |
| 688 | * of the hi terms are exact in double precision. The types are chosen so |
| 689 | * that the products of the hi terms are done in at least double precision, |
| 690 | * without any explicit conversions. More natural choices would require a |
| 691 | * slow long double precision multiplication. |
| 692 | */ |
| 693 | static const double |
| 694 | invln10_hi = 4.3429448176175356e-1, /* 0x1bcb7b15000000.0p-54 */ |
| 695 | invln2_hi = 1.4426950402557850e0; /* 0x17154765000000.0p-52 */ |
| 696 | static const long double |
| 697 | invln10_lo = 1.41498268538580090791605082294397000e-10L, /* 0x137287195355baaafad33dc323ee3.0p-145L */ |
Elliott Hughes | 99ef447 | 2022-01-12 17:51:20 -0800 | [diff] [blame] | 698 | invln2_lo = 6.33178418956604368501892137426645911e-10L, /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */ |
| 699 | invln10_lo_plus_hi = invln10_lo + invln10_hi, |
| 700 | invln2_lo_plus_hi = invln2_lo + invln2_hi; |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 701 | |
| 702 | long double |
| 703 | log10l(long double x) |
| 704 | { |
| 705 | struct ld r; |
Elliott Hughes | 99ef447 | 2022-01-12 17:51:20 -0800 | [diff] [blame] | 706 | long double hi, lo; |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 707 | |
| 708 | ENTERI(); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 709 | k_logl(x, &r); |
| 710 | if (!r.lo_set) |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 711 | RETURNI(r.hi); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 712 | _2sumF(r.hi, r.lo); |
Elliott Hughes | 99ef447 | 2022-01-12 17:51:20 -0800 | [diff] [blame] | 713 | hi = (float)r.hi; |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 714 | lo = r.lo + (r.hi - hi); |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 715 | RETURNI(invln10_hi * hi + (invln10_lo_plus_hi * lo + invln10_lo * hi)); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 716 | } |
| 717 | |
| 718 | long double |
| 719 | log2l(long double x) |
| 720 | { |
| 721 | struct ld r; |
Elliott Hughes | 99ef447 | 2022-01-12 17:51:20 -0800 | [diff] [blame] | 722 | long double hi, lo; |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 723 | |
| 724 | ENTERI(); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 725 | k_logl(x, &r); |
| 726 | if (!r.lo_set) |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 727 | RETURNI(r.hi); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 728 | _2sumF(r.hi, r.lo); |
Elliott Hughes | 99ef447 | 2022-01-12 17:51:20 -0800 | [diff] [blame] | 729 | hi = (float)r.hi; |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 730 | lo = r.lo + (r.hi - hi); |
Elliott Hughes | 4088e3a | 2023-08-03 13:33:56 -0700 | [diff] [blame^] | 731 | RETURNI(invln2_hi * hi + (invln2_lo_plus_hi * lo + invln2_lo * hi)); |
Calin Juravle | 4d77c11 | 2014-03-14 17:56:46 +0000 | [diff] [blame] | 732 | } |
| 733 | |
| 734 | #endif /* STRUCT_RETURN */ |