Elliott Hughes | 0364a4b | 2018-05-08 14:36:59 -0700 | [diff] [blame] | 1 | /*- |
| 2 | * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG> |
| 3 | * Copyright (c) 2017 Mahdi Mokhtari <mmokhi@FreeBSD.org> |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in the |
| 13 | * documentation and/or other materials provided with the distribution. |
| 14 | * |
| 15 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 16 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 19 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 20 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 21 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 22 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 23 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 24 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 25 | * SUCH DAMAGE. |
| 26 | */ |
| 27 | |
| 28 | /* |
| 29 | * The algorithm is very close to that in "Implementing the complex arcsine |
| 30 | * and arccosine functions using exception handling" by T. E. Hull, Thomas F. |
| 31 | * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on |
| 32 | * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, |
| 33 | * http://dl.acm.org/citation.cfm?id=275324. |
| 34 | * |
| 35 | * See catrig.c for complete comments. |
| 36 | * |
| 37 | * XXX comments were removed automatically, and even short ones on the right |
| 38 | * of statements were removed (all of them), contrary to normal style. Only |
| 39 | * a few comments on the right of declarations remain. |
| 40 | */ |
| 41 | |
| 42 | #include <sys/cdefs.h> |
Elliott Hughes | bac0ebb | 2021-01-26 14:17:20 -0800 | [diff] [blame] | 43 | __FBSDID("$FreeBSD$"); |
Elliott Hughes | 0364a4b | 2018-05-08 14:36:59 -0700 | [diff] [blame] | 44 | |
| 45 | #include <complex.h> |
| 46 | #include <float.h> |
| 47 | |
| 48 | #include "invtrig.h" |
| 49 | #include "math.h" |
| 50 | #include "math_private.h" |
| 51 | |
| 52 | #undef isinf |
| 53 | #define isinf(x) (fabsl(x) == INFINITY) |
| 54 | #undef isnan |
| 55 | #define isnan(x) ((x) != (x)) |
| 56 | #define raise_inexact() do { volatile float junk __unused = 1 + tiny; } while(0) |
| 57 | #undef signbit |
| 58 | #define signbit(x) (__builtin_signbitl(x)) |
| 59 | |
| 60 | #if LDBL_MAX_EXP != 0x4000 |
| 61 | #error "Unsupported long double format" |
| 62 | #endif |
| 63 | |
| 64 | static const long double |
| 65 | A_crossover = 10, |
| 66 | B_crossover = 0.6417, |
| 67 | FOUR_SQRT_MIN = 0x1p-8189L, |
| 68 | HALF_MAX = 0x1p16383L, |
| 69 | QUARTER_SQRT_MAX = 0x1p8189L, |
| 70 | RECIP_EPSILON = 1 / LDBL_EPSILON, |
| 71 | SQRT_MIN = 0x1p-8191L; |
| 72 | |
| 73 | #if LDBL_MANT_DIG == 64 |
| 74 | static const union IEEEl2bits |
| 75 | um_e = LD80C(0xadf85458a2bb4a9b, 1, 2.71828182845904523536e+0L), |
| 76 | um_ln2 = LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309417e-1L); |
| 77 | #define m_e um_e.e |
| 78 | #define m_ln2 um_ln2.e |
| 79 | static const long double |
| 80 | /* The next 2 literals for non-i386. Misrounding them on i386 is harmless. */ |
| 81 | SQRT_3_EPSILON = 5.70316273435758915310e-10, /* 0x9cc470a0490973e8.0p-94 */ |
| 82 | SQRT_6_EPSILON = 8.06549008734932771664e-10; /* 0xddb3d742c265539e.0p-94 */ |
| 83 | #elif LDBL_MANT_DIG == 113 |
| 84 | static const long double |
| 85 | m_e = 2.71828182845904523536028747135266250e0L, /* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */ |
| 86 | m_ln2 = 6.93147180559945309417232121458176568e-1L, /* 0x162e42fefa39ef35793c7673007e6.0p-113 */ |
| 87 | SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17, /* 0x1bb67ae8584caa73b25742d7078b8.0p-168 */ |
| 88 | SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17; /* 0x13988e1409212e7d0321914321a55.0p-167 */ |
| 89 | #else |
| 90 | #error "Unsupported long double format" |
| 91 | #endif |
| 92 | |
| 93 | static const volatile float |
| 94 | tiny = 0x1p-100; |
| 95 | |
| 96 | static long double complex clog_for_large_values(long double complex z); |
| 97 | |
| 98 | static inline long double |
| 99 | f(long double a, long double b, long double hypot_a_b) |
| 100 | { |
| 101 | if (b < 0) |
| 102 | return ((hypot_a_b - b) / 2); |
| 103 | if (b == 0) |
| 104 | return (a / 2); |
| 105 | return (a * a / (hypot_a_b + b) / 2); |
| 106 | } |
| 107 | |
| 108 | static inline void |
| 109 | do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, |
| 110 | long double *B, long double *sqrt_A2my2, long double *new_y) |
| 111 | { |
| 112 | long double R, S, A; |
| 113 | long double Am1, Amy; |
| 114 | |
| 115 | R = hypotl(x, y + 1); |
| 116 | S = hypotl(x, y - 1); |
| 117 | |
| 118 | A = (R + S) / 2; |
| 119 | if (A < 1) |
| 120 | A = 1; |
| 121 | |
| 122 | if (A < A_crossover) { |
| 123 | if (y == 1 && x < LDBL_EPSILON * LDBL_EPSILON / 128) { |
| 124 | *rx = sqrtl(x); |
| 125 | } else if (x >= LDBL_EPSILON * fabsl(y - 1)) { |
| 126 | Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); |
| 127 | *rx = log1pl(Am1 + sqrtl(Am1 * (A + 1))); |
| 128 | } else if (y < 1) { |
| 129 | *rx = x / sqrtl((1 - y) * (1 + y)); |
| 130 | } else { |
| 131 | *rx = log1pl((y - 1) + sqrtl((y - 1) * (y + 1))); |
| 132 | } |
| 133 | } else { |
| 134 | *rx = logl(A + sqrtl(A * A - 1)); |
| 135 | } |
| 136 | |
| 137 | *new_y = y; |
| 138 | |
| 139 | if (y < FOUR_SQRT_MIN) { |
| 140 | *B_is_usable = 0; |
| 141 | *sqrt_A2my2 = A * (2 / LDBL_EPSILON); |
| 142 | *new_y = y * (2 / LDBL_EPSILON); |
| 143 | return; |
| 144 | } |
| 145 | |
| 146 | *B = y / A; |
| 147 | *B_is_usable = 1; |
| 148 | |
| 149 | if (*B > B_crossover) { |
| 150 | *B_is_usable = 0; |
| 151 | if (y == 1 && x < LDBL_EPSILON / 128) { |
| 152 | *sqrt_A2my2 = sqrtl(x) * sqrtl((A + y) / 2); |
| 153 | } else if (x >= LDBL_EPSILON * fabsl(y - 1)) { |
| 154 | Amy = f(x, y + 1, R) + f(x, y - 1, S); |
| 155 | *sqrt_A2my2 = sqrtl(Amy * (A + y)); |
| 156 | } else if (y > 1) { |
| 157 | *sqrt_A2my2 = x * (4 / LDBL_EPSILON / LDBL_EPSILON) * y / |
| 158 | sqrtl((y + 1) * (y - 1)); |
| 159 | *new_y = y * (4 / LDBL_EPSILON / LDBL_EPSILON); |
| 160 | } else { |
| 161 | *sqrt_A2my2 = sqrtl((1 - y) * (1 + y)); |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | long double complex |
| 167 | casinhl(long double complex z) |
| 168 | { |
| 169 | long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; |
| 170 | int B_is_usable; |
| 171 | long double complex w; |
| 172 | |
| 173 | x = creall(z); |
| 174 | y = cimagl(z); |
| 175 | ax = fabsl(x); |
| 176 | ay = fabsl(y); |
| 177 | |
| 178 | if (isnan(x) || isnan(y)) { |
| 179 | if (isinf(x)) |
| 180 | return (CMPLXL(x, y + y)); |
| 181 | if (isinf(y)) |
| 182 | return (CMPLXL(y, x + x)); |
| 183 | if (y == 0) |
| 184 | return (CMPLXL(x + x, y)); |
Elliott Hughes | ab52807 | 2018-07-24 00:01:52 +0000 | [diff] [blame] | 185 | return (CMPLXL(nan_mix(x, y), nan_mix(x, y))); |
Elliott Hughes | 0364a4b | 2018-05-08 14:36:59 -0700 | [diff] [blame] | 186 | } |
| 187 | |
| 188 | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { |
| 189 | if (signbit(x) == 0) |
| 190 | w = clog_for_large_values(z) + m_ln2; |
| 191 | else |
| 192 | w = clog_for_large_values(-z) + m_ln2; |
| 193 | return (CMPLXL(copysignl(creall(w), x), |
| 194 | copysignl(cimagl(w), y))); |
| 195 | } |
| 196 | |
| 197 | if (x == 0 && y == 0) |
| 198 | return (z); |
| 199 | |
| 200 | raise_inexact(); |
| 201 | |
| 202 | if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) |
| 203 | return (z); |
| 204 | |
| 205 | do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); |
| 206 | if (B_is_usable) |
| 207 | ry = asinl(B); |
| 208 | else |
| 209 | ry = atan2l(new_y, sqrt_A2my2); |
| 210 | return (CMPLXL(copysignl(rx, x), copysignl(ry, y))); |
| 211 | } |
| 212 | |
| 213 | long double complex |
| 214 | casinl(long double complex z) |
| 215 | { |
| 216 | long double complex w; |
| 217 | |
| 218 | w = casinhl(CMPLXL(cimagl(z), creall(z))); |
| 219 | return (CMPLXL(cimagl(w), creall(w))); |
| 220 | } |
| 221 | |
| 222 | long double complex |
| 223 | cacosl(long double complex z) |
| 224 | { |
| 225 | long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; |
| 226 | int sx, sy; |
| 227 | int B_is_usable; |
| 228 | long double complex w; |
| 229 | |
| 230 | x = creall(z); |
| 231 | y = cimagl(z); |
| 232 | sx = signbit(x); |
| 233 | sy = signbit(y); |
| 234 | ax = fabsl(x); |
| 235 | ay = fabsl(y); |
| 236 | |
| 237 | if (isnan(x) || isnan(y)) { |
| 238 | if (isinf(x)) |
| 239 | return (CMPLXL(y + y, -INFINITY)); |
| 240 | if (isinf(y)) |
| 241 | return (CMPLXL(x + x, -y)); |
| 242 | if (x == 0) |
| 243 | return (CMPLXL(pio2_hi + pio2_lo, y + y)); |
Elliott Hughes | ab52807 | 2018-07-24 00:01:52 +0000 | [diff] [blame] | 244 | return (CMPLXL(nan_mix(x, y), nan_mix(x, y))); |
Elliott Hughes | 0364a4b | 2018-05-08 14:36:59 -0700 | [diff] [blame] | 245 | } |
| 246 | |
| 247 | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { |
| 248 | w = clog_for_large_values(z); |
| 249 | rx = fabsl(cimagl(w)); |
| 250 | ry = creall(w) + m_ln2; |
| 251 | if (sy == 0) |
| 252 | ry = -ry; |
| 253 | return (CMPLXL(rx, ry)); |
| 254 | } |
| 255 | |
| 256 | if (x == 1 && y == 0) |
| 257 | return (CMPLXL(0, -y)); |
| 258 | |
| 259 | raise_inexact(); |
| 260 | |
| 261 | if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) |
| 262 | return (CMPLXL(pio2_hi - (x - pio2_lo), -y)); |
| 263 | |
| 264 | do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); |
| 265 | if (B_is_usable) { |
| 266 | if (sx == 0) |
| 267 | rx = acosl(B); |
| 268 | else |
| 269 | rx = acosl(-B); |
| 270 | } else { |
| 271 | if (sx == 0) |
| 272 | rx = atan2l(sqrt_A2mx2, new_x); |
| 273 | else |
| 274 | rx = atan2l(sqrt_A2mx2, -new_x); |
| 275 | } |
| 276 | if (sy == 0) |
| 277 | ry = -ry; |
| 278 | return (CMPLXL(rx, ry)); |
| 279 | } |
| 280 | |
| 281 | long double complex |
| 282 | cacoshl(long double complex z) |
| 283 | { |
| 284 | long double complex w; |
| 285 | long double rx, ry; |
| 286 | |
| 287 | w = cacosl(z); |
| 288 | rx = creall(w); |
| 289 | ry = cimagl(w); |
| 290 | if (isnan(rx) && isnan(ry)) |
| 291 | return (CMPLXL(ry, rx)); |
| 292 | if (isnan(rx)) |
| 293 | return (CMPLXL(fabsl(ry), rx)); |
| 294 | if (isnan(ry)) |
| 295 | return (CMPLXL(ry, ry)); |
| 296 | return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z)))); |
| 297 | } |
| 298 | |
| 299 | static long double complex |
| 300 | clog_for_large_values(long double complex z) |
| 301 | { |
| 302 | long double x, y; |
| 303 | long double ax, ay, t; |
| 304 | |
| 305 | x = creall(z); |
| 306 | y = cimagl(z); |
| 307 | ax = fabsl(x); |
| 308 | ay = fabsl(y); |
| 309 | if (ax < ay) { |
| 310 | t = ax; |
| 311 | ax = ay; |
| 312 | ay = t; |
| 313 | } |
| 314 | |
| 315 | if (ax > HALF_MAX) |
| 316 | return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, |
| 317 | atan2l(y, x))); |
| 318 | |
| 319 | if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) |
| 320 | return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x))); |
| 321 | |
| 322 | return (CMPLXL(logl(ax * ax + ay * ay) / 2, atan2l(y, x))); |
| 323 | } |
| 324 | |
| 325 | static inline long double |
| 326 | sum_squares(long double x, long double y) |
| 327 | { |
| 328 | |
| 329 | if (y < SQRT_MIN) |
| 330 | return (x * x); |
| 331 | |
| 332 | return (x * x + y * y); |
| 333 | } |
| 334 | |
| 335 | static inline long double |
| 336 | real_part_reciprocal(long double x, long double y) |
| 337 | { |
| 338 | long double scale; |
| 339 | uint16_t hx, hy; |
| 340 | int16_t ix, iy; |
| 341 | |
| 342 | GET_LDBL_EXPSIGN(hx, x); |
| 343 | ix = hx & 0x7fff; |
| 344 | GET_LDBL_EXPSIGN(hy, y); |
| 345 | iy = hy & 0x7fff; |
| 346 | #define BIAS (LDBL_MAX_EXP - 1) |
| 347 | #define CUTOFF (LDBL_MANT_DIG / 2 + 1) |
| 348 | if (ix - iy >= CUTOFF || isinf(x)) |
| 349 | return (1 / x); |
| 350 | if (iy - ix >= CUTOFF) |
| 351 | return (x / y / y); |
| 352 | if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF) |
| 353 | return (x / (x * x + y * y)); |
| 354 | scale = 1; |
| 355 | SET_LDBL_EXPSIGN(scale, 0x7fff - ix); |
| 356 | x *= scale; |
| 357 | y *= scale; |
| 358 | return (x / (x * x + y * y) * scale); |
| 359 | } |
| 360 | |
| 361 | long double complex |
| 362 | catanhl(long double complex z) |
| 363 | { |
| 364 | long double x, y, ax, ay, rx, ry; |
| 365 | |
| 366 | x = creall(z); |
| 367 | y = cimagl(z); |
| 368 | ax = fabsl(x); |
| 369 | ay = fabsl(y); |
| 370 | |
| 371 | if (y == 0 && ax <= 1) |
| 372 | return (CMPLXL(atanhl(x), y)); |
| 373 | |
| 374 | if (x == 0) |
| 375 | return (CMPLXL(x, atanl(y))); |
| 376 | |
| 377 | if (isnan(x) || isnan(y)) { |
| 378 | if (isinf(x)) |
| 379 | return (CMPLXL(copysignl(0, x), y + y)); |
| 380 | if (isinf(y)) |
| 381 | return (CMPLXL(copysignl(0, x), |
| 382 | copysignl(pio2_hi + pio2_lo, y))); |
Elliott Hughes | ab52807 | 2018-07-24 00:01:52 +0000 | [diff] [blame] | 383 | return (CMPLXL(nan_mix(x, y), nan_mix(x, y))); |
Elliott Hughes | 0364a4b | 2018-05-08 14:36:59 -0700 | [diff] [blame] | 384 | } |
| 385 | |
| 386 | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) |
| 387 | return (CMPLXL(real_part_reciprocal(x, y), |
| 388 | copysignl(pio2_hi + pio2_lo, y))); |
| 389 | |
| 390 | if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { |
| 391 | raise_inexact(); |
| 392 | return (z); |
| 393 | } |
| 394 | |
| 395 | if (ax == 1 && ay < LDBL_EPSILON) |
| 396 | rx = (m_ln2 - logl(ay)) / 2; |
| 397 | else |
| 398 | rx = log1pl(4 * ax / sum_squares(ax - 1, ay)) / 4; |
| 399 | |
| 400 | if (ax == 1) |
| 401 | ry = atan2l(2, -ay) / 2; |
| 402 | else if (ay < LDBL_EPSILON) |
| 403 | ry = atan2l(2 * ay, (1 - ax) * (1 + ax)) / 2; |
| 404 | else |
| 405 | ry = atan2l(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; |
| 406 | |
| 407 | return (CMPLXL(copysignl(rx, x), copysignl(ry, y))); |
| 408 | } |
| 409 | |
| 410 | long double complex |
| 411 | catanl(long double complex z) |
| 412 | { |
| 413 | long double complex w; |
| 414 | |
| 415 | w = catanhl(CMPLXL(cimagl(z), creall(z))); |
| 416 | return (CMPLXL(cimagl(w), creall(w))); |
| 417 | } |