blob: 383616d64d55191476f775cb8bf79c9577036ca3 [file] [log] [blame]
Elliott Hughesa0ee0782013-01-30 19:06:37 -08001/*-
Elliott Hughesc1e46b62023-07-19 14:06:31 -07002 * SPDX-License-Identifier: BSD-2-Clause
Elliott Hughes8da8ca42018-05-08 13:35:33 -07003 *
Elliott Hughesa0ee0782013-01-30 19:06:37 -08004 * Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
Elliott Hughesa0ee0782013-01-30 19:06:37 -080029#include <complex.h>
30
31#include "math.h"
32#include "math_private.h"
33
34static const uint32_t k = 1799; /* constant for reduction */
35static const double kln2 = 1246.97177782734161156; /* k * ln2 */
36
37/*
38 * Compute exp(x), scaled to avoid spurious overflow. An exponent is
39 * returned separately in 'expt'.
40 *
41 * Input: ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
42 * Output: 2**1023 <= y < 2**1024
43 */
44static double
45__frexp_exp(double x, int *expt)
46{
47 double exp_x;
48 uint32_t hx;
49
50 /*
51 * We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
52 * minimize |exp(kln2) - 2**k|. We also scale the exponent of
53 * exp_x to MAX_EXP so that the result can be multiplied by
54 * a tiny number without losing accuracy due to denormalization.
55 */
56 exp_x = exp(x - kln2);
57 GET_HIGH_WORD(hx, exp_x);
58 *expt = (hx >> 20) - (0x3ff + 1023) + k;
59 SET_HIGH_WORD(exp_x, (hx & 0xfffff) | ((0x3ff + 1023) << 20));
60 return (exp_x);
61}
62
63/*
64 * __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
65 * They are intended for large arguments (real part >= ln(DBL_MAX))
66 * where care is needed to avoid overflow.
67 *
68 * The present implementation is narrowly tailored for our hyperbolic and
69 * exponential functions. We assume expt is small (0 or -1), and the caller
70 * has filtered out very large x, for which overflow would be inevitable.
71 */
72
73double
74__ldexp_exp(double x, int expt)
75{
76 double exp_x, scale;
77 int ex_expt;
78
79 exp_x = __frexp_exp(x, &ex_expt);
80 expt += ex_expt;
81 INSERT_WORDS(scale, (0x3ff + expt) << 20, 0);
82 return (exp_x * scale);
83}
84
85double complex
86__ldexp_cexp(double complex z, int expt)
87{
Elliott Hughesbac0ebb2021-01-26 14:17:20 -080088 double c, exp_x, s, scale1, scale2, x, y;
Elliott Hughesa0ee0782013-01-30 19:06:37 -080089 int ex_expt, half_expt;
90
91 x = creal(z);
92 y = cimag(z);
93 exp_x = __frexp_exp(x, &ex_expt);
94 expt += ex_expt;
95
96 /*
97 * Arrange so that scale1 * scale2 == 2**expt. We use this to
98 * compensate for scalbn being horrendously slow.
99 */
100 half_expt = expt / 2;
101 INSERT_WORDS(scale1, (0x3ff + half_expt) << 20, 0);
102 half_expt = expt - half_expt;
103 INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
104
Elliott Hughesbac0ebb2021-01-26 14:17:20 -0800105 sincos(y, &s, &c);
106 return (CMPLX(c * exp_x * scale1 * scale2,
107 s * exp_x * scale1 * scale2));
Elliott Hughesa0ee0782013-01-30 19:06:37 -0800108}