Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2019 The Android Open Source Project |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in |
| 12 | * the documentation and/or other materials provided with the |
| 13 | * distribution. |
| 14 | * |
| 15 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 16 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 17 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 18 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 19 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 21 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| 22 | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| 23 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 24 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| 25 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 26 | * SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "private/bionic_elf_tls.h" |
| 30 | |
Ryan Prichard | 4809755 | 2019-01-06 18:24:10 -0800 | [diff] [blame] | 31 | #include <async_safe/log.h> |
Ryan Prichard | 361c1b4 | 2019-01-15 13:45:27 -0800 | [diff] [blame] | 32 | #include <string.h> |
Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 33 | #include <sys/param.h> |
Ryan Prichard | 4809755 | 2019-01-06 18:24:10 -0800 | [diff] [blame] | 34 | #include <unistd.h> |
Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 35 | |
Ryan Prichard | 361c1b4 | 2019-01-15 13:45:27 -0800 | [diff] [blame] | 36 | #include "private/ScopedRWLock.h" |
Ryan Prichard | 16455b5 | 2019-01-18 01:00:59 -0800 | [diff] [blame^] | 37 | #include "private/ScopedSignalBlocker.h" |
Ryan Prichard | 361c1b4 | 2019-01-15 13:45:27 -0800 | [diff] [blame] | 38 | #include "private/bionic_globals.h" |
Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 39 | #include "private/bionic_macros.h" |
| 40 | #include "private/bionic_tls.h" |
Ryan Prichard | 16455b5 | 2019-01-18 01:00:59 -0800 | [diff] [blame^] | 41 | #include "pthread_internal.h" |
| 42 | |
| 43 | // Every call to __tls_get_addr needs to check the generation counter, so |
| 44 | // accesses to the counter need to be as fast as possible. Keep a copy of it in |
| 45 | // a hidden variable, which can be accessed without using the GOT. The linker |
| 46 | // will update this variable when it updates its counter. |
| 47 | // |
| 48 | // To allow the linker to update this variable, libc.so's constructor passes its |
| 49 | // address to the linker. To accommodate a possible __tls_get_addr call before |
| 50 | // libc.so's constructor, this local copy is initialized to SIZE_MAX, forcing |
| 51 | // __tls_get_addr to initially use the slow path. |
| 52 | __LIBC_HIDDEN__ _Atomic(size_t) __libc_tls_generation_copy = SIZE_MAX; |
Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 53 | |
Ryan Prichard | 4809755 | 2019-01-06 18:24:10 -0800 | [diff] [blame] | 54 | // Search for a TLS segment in the given phdr table. Returns true if it has a |
| 55 | // TLS segment and false otherwise. |
| 56 | bool __bionic_get_tls_segment(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
Ryan Prichard | 1988350 | 2019-01-16 23:13:38 -0800 | [diff] [blame] | 57 | ElfW(Addr) load_bias, TlsSegment* out) { |
Ryan Prichard | 4809755 | 2019-01-06 18:24:10 -0800 | [diff] [blame] | 58 | for (size_t i = 0; i < phdr_count; ++i) { |
| 59 | const ElfW(Phdr)& phdr = phdr_table[i]; |
| 60 | if (phdr.p_type == PT_TLS) { |
Ryan Prichard | 4809755 | 2019-01-06 18:24:10 -0800 | [diff] [blame] | 61 | *out = TlsSegment { |
| 62 | phdr.p_memsz, |
Ryan Prichard | 1988350 | 2019-01-16 23:13:38 -0800 | [diff] [blame] | 63 | phdr.p_align, |
Ryan Prichard | 4809755 | 2019-01-06 18:24:10 -0800 | [diff] [blame] | 64 | reinterpret_cast<void*>(load_bias + phdr.p_vaddr), |
| 65 | phdr.p_filesz, |
| 66 | }; |
| 67 | return true; |
| 68 | } |
| 69 | } |
| 70 | return false; |
| 71 | } |
| 72 | |
Ryan Prichard | 1988350 | 2019-01-16 23:13:38 -0800 | [diff] [blame] | 73 | // Return true if the alignment of a TLS segment is a valid power-of-two. Also |
| 74 | // cap the alignment if it's too high. |
| 75 | bool __bionic_check_tls_alignment(size_t* alignment) { |
| 76 | // N.B. The size does not need to be a multiple of the alignment. With |
| 77 | // ld.bfd (or after using binutils' strip), the TLS segment's size isn't |
| 78 | // rounded up. |
| 79 | if (*alignment == 0 || !powerof2(*alignment)) { |
| 80 | return false; |
| 81 | } |
| 82 | // Bionic only respects TLS alignment up to one page. |
| 83 | *alignment = MIN(*alignment, PAGE_SIZE); |
| 84 | return true; |
| 85 | } |
| 86 | |
Ryan Prichard | fb8730d | 2019-01-15 00:11:37 -0800 | [diff] [blame] | 87 | size_t StaticTlsLayout::offset_thread_pointer() const { |
| 88 | return offset_bionic_tcb_ + (-MIN_TLS_SLOT * sizeof(void*)); |
| 89 | } |
| 90 | |
Ryan Prichard | 977e47d | 2019-01-14 21:52:14 -0800 | [diff] [blame] | 91 | // Reserves space for the Bionic TCB and the executable's TLS segment. Returns |
| 92 | // the offset of the executable's TLS segment. |
| 93 | size_t StaticTlsLayout::reserve_exe_segment_and_tcb(const TlsSegment* exe_segment, |
| 94 | const char* progname __attribute__((unused))) { |
| 95 | // Special case: if the executable has no TLS segment, then just allocate a |
| 96 | // TCB and skip the minimum alignment check on ARM. |
| 97 | if (exe_segment == nullptr) { |
| 98 | offset_bionic_tcb_ = reserve_type<bionic_tcb>(); |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | #if defined(__arm__) || defined(__aarch64__) |
| 103 | |
| 104 | // First reserve enough space for the TCB before the executable segment. |
| 105 | reserve(sizeof(bionic_tcb), 1); |
| 106 | |
| 107 | // Then reserve the segment itself. |
| 108 | const size_t result = reserve(exe_segment->size, exe_segment->alignment); |
| 109 | |
| 110 | // The variant 1 ABI that ARM linkers follow specifies a 2-word TCB between |
| 111 | // the thread pointer and the start of the executable's TLS segment, but both |
| 112 | // the thread pointer and the TLS segment are aligned appropriately for the |
| 113 | // TLS segment. Calculate the distance between the thread pointer and the |
| 114 | // EXE's segment. |
| 115 | const size_t exe_tpoff = __BIONIC_ALIGN(sizeof(void*) * 2, exe_segment->alignment); |
| 116 | |
| 117 | const size_t min_bionic_alignment = BIONIC_ROUND_UP_POWER_OF_2(MAX_TLS_SLOT) * sizeof(void*); |
| 118 | if (exe_tpoff < min_bionic_alignment) { |
| 119 | async_safe_fatal("error: \"%s\": executable's TLS segment is underaligned: " |
| 120 | "alignment is %zu, needs to be at least %zu for %s Bionic", |
| 121 | progname, exe_segment->alignment, min_bionic_alignment, |
| 122 | (sizeof(void*) == 4 ? "ARM" : "ARM64")); |
| 123 | } |
| 124 | |
| 125 | offset_bionic_tcb_ = result - exe_tpoff - (-MIN_TLS_SLOT * sizeof(void*)); |
| 126 | return result; |
| 127 | |
| 128 | #elif defined(__i386__) || defined(__x86_64__) |
| 129 | |
| 130 | // x86 uses variant 2 TLS layout. The executable's segment is located just |
| 131 | // before the TCB. |
| 132 | static_assert(MIN_TLS_SLOT == 0, "First slot of bionic_tcb must be slot #0 on x86"); |
| 133 | const size_t exe_size = round_up_with_overflow_check(exe_segment->size, exe_segment->alignment); |
| 134 | reserve(exe_size, 1); |
| 135 | const size_t max_align = MAX(alignof(bionic_tcb), exe_segment->alignment); |
| 136 | offset_bionic_tcb_ = reserve(sizeof(bionic_tcb), max_align); |
| 137 | return offset_bionic_tcb_ - exe_size; |
| 138 | |
| 139 | #else |
| 140 | #error "Unrecognized architecture" |
| 141 | #endif |
Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 142 | } |
| 143 | |
| 144 | void StaticTlsLayout::reserve_bionic_tls() { |
| 145 | offset_bionic_tls_ = reserve_type<bionic_tls>(); |
| 146 | } |
| 147 | |
| 148 | void StaticTlsLayout::finish_layout() { |
| 149 | // Round the offset up to the alignment. |
| 150 | offset_ = round_up_with_overflow_check(offset_, alignment_); |
Ryan Prichard | 977e47d | 2019-01-14 21:52:14 -0800 | [diff] [blame] | 151 | |
| 152 | if (overflowed_) { |
| 153 | async_safe_fatal("error: TLS segments in static TLS overflowed"); |
| 154 | } |
Ryan Prichard | 45d1349 | 2019-01-03 02:51:30 -0800 | [diff] [blame] | 155 | } |
| 156 | |
| 157 | // The size is not required to be a multiple of the alignment. The alignment |
| 158 | // must be a positive power-of-two. |
| 159 | size_t StaticTlsLayout::reserve(size_t size, size_t alignment) { |
| 160 | offset_ = round_up_with_overflow_check(offset_, alignment); |
| 161 | const size_t result = offset_; |
| 162 | if (__builtin_add_overflow(offset_, size, &offset_)) overflowed_ = true; |
| 163 | alignment_ = MAX(alignment_, alignment); |
| 164 | return result; |
| 165 | } |
| 166 | |
| 167 | size_t StaticTlsLayout::round_up_with_overflow_check(size_t value, size_t alignment) { |
| 168 | const size_t old_value = value; |
| 169 | value = __BIONIC_ALIGN(value, alignment); |
| 170 | if (value < old_value) overflowed_ = true; |
| 171 | return value; |
| 172 | } |
Ryan Prichard | 361c1b4 | 2019-01-15 13:45:27 -0800 | [diff] [blame] | 173 | |
| 174 | // Copy each TLS module's initialization image into a newly-allocated block of |
| 175 | // static TLS memory. To reduce dirty pages, this function only writes to pages |
| 176 | // within the static TLS that need initialization. The memory should already be |
| 177 | // zero-initialized on entry. |
| 178 | void __init_static_tls(void* static_tls) { |
| 179 | // The part of the table we care about (i.e. static TLS modules) never changes |
| 180 | // after startup, but we still need the mutex because the table could grow, |
| 181 | // moving the initial part. If this locking is too slow, we can duplicate the |
| 182 | // static part of the table. |
| 183 | TlsModules& modules = __libc_shared_globals()->tls_modules; |
Ryan Prichard | 16455b5 | 2019-01-18 01:00:59 -0800 | [diff] [blame^] | 184 | ScopedSignalBlocker ssb; |
Ryan Prichard | 361c1b4 | 2019-01-15 13:45:27 -0800 | [diff] [blame] | 185 | ScopedReadLock locker(&modules.rwlock); |
| 186 | |
| 187 | for (size_t i = 0; i < modules.module_count; ++i) { |
| 188 | TlsModule& module = modules.module_table[i]; |
| 189 | if (module.static_offset == SIZE_MAX) { |
| 190 | // All of the static modules come before all of the dynamic modules, so |
| 191 | // once we see the first dynamic module, we're done. |
| 192 | break; |
| 193 | } |
| 194 | if (module.segment.init_size == 0) { |
| 195 | // Skip the memcpy call for TLS segments with no initializer, which is |
| 196 | // common. |
| 197 | continue; |
| 198 | } |
| 199 | memcpy(static_cast<char*>(static_tls) + module.static_offset, |
| 200 | module.segment.init_ptr, |
| 201 | module.segment.init_size); |
| 202 | } |
| 203 | } |
Ryan Prichard | 16455b5 | 2019-01-18 01:00:59 -0800 | [diff] [blame^] | 204 | |
| 205 | static inline size_t dtv_size_in_bytes(size_t module_count) { |
| 206 | return sizeof(TlsDtv) + module_count * sizeof(void*); |
| 207 | } |
| 208 | |
| 209 | // Calculates the number of module slots to allocate in a new DTV. For small |
| 210 | // objects (up to 1KiB), the TLS allocator allocates memory in power-of-2 sizes, |
| 211 | // so for better space usage, ensure that the DTV size (header + slots) is a |
| 212 | // power of 2. |
| 213 | // |
| 214 | // The lock on TlsModules must be held. |
| 215 | static size_t calculate_new_dtv_count() { |
| 216 | size_t loaded_cnt = __libc_shared_globals()->tls_modules.module_count; |
| 217 | size_t bytes = dtv_size_in_bytes(MAX(1, loaded_cnt)); |
| 218 | if (!powerof2(bytes)) { |
| 219 | bytes = BIONIC_ROUND_UP_POWER_OF_2(bytes); |
| 220 | } |
| 221 | return (bytes - sizeof(TlsDtv)) / sizeof(void*); |
| 222 | } |
| 223 | |
| 224 | // This function must be called with signals blocked and a write lock on |
| 225 | // TlsModules held. |
| 226 | static void update_tls_dtv(bionic_tcb* tcb) { |
| 227 | const TlsModules& modules = __libc_shared_globals()->tls_modules; |
| 228 | BionicAllocator& allocator = __libc_shared_globals()->tls_allocator; |
| 229 | |
| 230 | // Use the generation counter from the shared globals instead of the local |
| 231 | // copy, which won't be initialized yet if __tls_get_addr is called before |
| 232 | // libc.so's constructor. |
| 233 | if (__get_tcb_dtv(tcb)->generation == atomic_load(&modules.generation)) { |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | const size_t old_cnt = __get_tcb_dtv(tcb)->count; |
| 238 | |
| 239 | // If the DTV isn't large enough, allocate a larger one. Because a signal |
| 240 | // handler could interrupt the fast path of __tls_get_addr, we don't free the |
| 241 | // old DTV. Instead, we add the old DTV to a list, then free all of a thread's |
| 242 | // DTVs at thread-exit. Each time the DTV is reallocated, its size at least |
| 243 | // doubles. |
| 244 | if (modules.module_count > old_cnt) { |
| 245 | size_t new_cnt = calculate_new_dtv_count(); |
| 246 | TlsDtv* const old_dtv = __get_tcb_dtv(tcb); |
| 247 | TlsDtv* const new_dtv = static_cast<TlsDtv*>(allocator.alloc(dtv_size_in_bytes(new_cnt))); |
| 248 | memcpy(new_dtv, old_dtv, dtv_size_in_bytes(old_cnt)); |
| 249 | new_dtv->count = new_cnt; |
| 250 | new_dtv->next = old_dtv; |
| 251 | __set_tcb_dtv(tcb, new_dtv); |
| 252 | } |
| 253 | |
| 254 | TlsDtv* const dtv = __get_tcb_dtv(tcb); |
| 255 | |
| 256 | const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout; |
| 257 | char* static_tls = reinterpret_cast<char*>(tcb) - layout.offset_bionic_tcb(); |
| 258 | |
| 259 | // Initialize static TLS modules and free unloaded modules. |
| 260 | for (size_t i = 0; i < dtv->count; ++i) { |
| 261 | if (i < modules.module_count) { |
| 262 | const TlsModule& mod = modules.module_table[i]; |
| 263 | if (mod.static_offset != SIZE_MAX) { |
| 264 | dtv->modules[i] = static_tls + mod.static_offset; |
| 265 | continue; |
| 266 | } |
| 267 | if (mod.first_generation != kTlsGenerationNone && |
| 268 | mod.first_generation <= dtv->generation) { |
| 269 | continue; |
| 270 | } |
| 271 | } |
| 272 | allocator.free(dtv->modules[i]); |
| 273 | dtv->modules[i] = nullptr; |
| 274 | } |
| 275 | |
| 276 | dtv->generation = atomic_load(&modules.generation); |
| 277 | } |
| 278 | |
| 279 | __attribute__((noinline)) static void* tls_get_addr_slow_path(const TlsIndex* ti) { |
| 280 | TlsModules& modules = __libc_shared_globals()->tls_modules; |
| 281 | bionic_tcb* tcb = __get_bionic_tcb(); |
| 282 | |
| 283 | // Block signals and lock TlsModules. We may need the allocator, so take |
| 284 | // a write lock. |
| 285 | ScopedSignalBlocker ssb; |
| 286 | ScopedWriteLock locker(&modules.rwlock); |
| 287 | |
| 288 | update_tls_dtv(tcb); |
| 289 | |
| 290 | TlsDtv* dtv = __get_tcb_dtv(tcb); |
| 291 | const size_t module_idx = __tls_module_id_to_idx(ti->module_id); |
| 292 | void* mod_ptr = dtv->modules[module_idx]; |
| 293 | if (mod_ptr == nullptr) { |
| 294 | const TlsSegment& segment = modules.module_table[module_idx].segment; |
| 295 | mod_ptr = __libc_shared_globals()->tls_allocator.memalign(segment.alignment, segment.size); |
| 296 | if (segment.init_size > 0) { |
| 297 | memcpy(mod_ptr, segment.init_ptr, segment.init_size); |
| 298 | } |
| 299 | dtv->modules[module_idx] = mod_ptr; |
| 300 | } |
| 301 | |
| 302 | return static_cast<char*>(mod_ptr) + ti->offset; |
| 303 | } |
| 304 | |
| 305 | // Returns the address of a thread's TLS memory given a module ID and an offset |
| 306 | // into that module's TLS segment. This function is called on every access to a |
| 307 | // dynamic TLS variable on targets that don't use TLSDESC. arm64 uses TLSDESC, |
| 308 | // so it only calls this function on a thread's first access to a module's TLS |
| 309 | // segment. |
| 310 | // |
| 311 | // On most targets, this accessor function is __tls_get_addr and |
| 312 | // TLS_GET_ADDR_CCONV is unset. 32-bit x86 uses ___tls_get_addr instead and a |
| 313 | // regparm() calling convention. |
| 314 | extern "C" void* TLS_GET_ADDR(const TlsIndex* ti) TLS_GET_ADDR_CCONV { |
| 315 | TlsDtv* dtv = __get_tcb_dtv(__get_bionic_tcb()); |
| 316 | |
| 317 | // TODO: See if we can use a relaxed memory ordering here instead. |
| 318 | size_t generation = atomic_load(&__libc_tls_generation_copy); |
| 319 | if (__predict_true(generation == dtv->generation)) { |
| 320 | void* mod_ptr = dtv->modules[__tls_module_id_to_idx(ti->module_id)]; |
| 321 | if (__predict_true(mod_ptr != nullptr)) { |
| 322 | return static_cast<char*>(mod_ptr) + ti->offset; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | return tls_get_addr_slow_path(ti); |
| 327 | } |
| 328 | |
| 329 | // This function frees: |
| 330 | // - TLS modules referenced by the current DTV. |
| 331 | // - The list of DTV objects associated with the current thread. |
| 332 | // |
| 333 | // The caller must have already blocked signals. |
| 334 | void __free_dynamic_tls(bionic_tcb* tcb) { |
| 335 | TlsModules& modules = __libc_shared_globals()->tls_modules; |
| 336 | BionicAllocator& allocator = __libc_shared_globals()->tls_allocator; |
| 337 | |
| 338 | // If we didn't allocate any dynamic memory, skip out early without taking |
| 339 | // the lock. |
| 340 | TlsDtv* dtv = __get_tcb_dtv(tcb); |
| 341 | if (dtv->generation == kTlsGenerationNone) { |
| 342 | return; |
| 343 | } |
| 344 | |
| 345 | // We need the write lock to use the allocator. |
| 346 | ScopedWriteLock locker(&modules.rwlock); |
| 347 | |
| 348 | // First free everything in the current DTV. |
| 349 | for (size_t i = 0; i < dtv->count; ++i) { |
| 350 | if (i < modules.module_count && modules.module_table[i].static_offset != SIZE_MAX) { |
| 351 | // This module's TLS memory is allocated statically, so don't free it here. |
| 352 | continue; |
| 353 | } |
| 354 | allocator.free(dtv->modules[i]); |
| 355 | } |
| 356 | |
| 357 | // Now free the thread's list of DTVs. |
| 358 | while (dtv->generation != kTlsGenerationNone) { |
| 359 | TlsDtv* next = dtv->next; |
| 360 | allocator.free(dtv); |
| 361 | dtv = next; |
| 362 | } |
| 363 | |
| 364 | // Clear the DTV slot. The DTV must not be used again with this thread. |
| 365 | tcb->tls_slot(TLS_SLOT_DTV) = nullptr; |
| 366 | } |