| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <malloc.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdio.h> |
| #include <sys/cdefs.h> |
| #include <sys/mman.h> |
| #include <sys/param.h> |
| #include <sys/prctl.h> |
| #include <sys/resource.h> |
| #include <sys/syscall.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <unwind.h> |
| |
| #include <atomic> |
| #include <future> |
| #include <vector> |
| |
| #include <android-base/macros.h> |
| #include <android-base/parseint.h> |
| #include <android-base/scopeguard.h> |
| #include <android-base/silent_death_test.h> |
| #include <android-base/strings.h> |
| #include <android-base/test_utils.h> |
| |
| #include "private/bionic_constants.h" |
| #include "private/bionic_time_conversions.h" |
| #include "SignalUtils.h" |
| #include "utils.h" |
| |
| using pthread_DeathTest = SilentDeathTest; |
| |
| TEST(pthread, pthread_key_create) { |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, nullptr)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| // Can't delete a key that's already been deleted. |
| ASSERT_EQ(EINVAL, pthread_key_delete(key)); |
| } |
| |
| TEST(pthread, pthread_keys_max) { |
| // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX. |
| ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX); |
| } |
| |
| TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) { |
| int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX); |
| ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX); |
| } |
| |
| TEST(pthread, pthread_key_many_distinct) { |
| // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX |
| // pthread keys, but We should be able to allocate at least this many keys. |
| int nkeys = PTHREAD_KEYS_MAX / 2; |
| std::vector<pthread_key_t> keys; |
| |
| auto scope_guard = android::base::make_scope_guard([&keys] { |
| for (const auto& key : keys) { |
| EXPECT_EQ(0, pthread_key_delete(key)); |
| } |
| }); |
| |
| for (int i = 0; i < nkeys; ++i) { |
| pthread_key_t key; |
| // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong. |
| ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys; |
| keys.push_back(key); |
| ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i))); |
| } |
| |
| for (int i = keys.size() - 1; i >= 0; --i) { |
| ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back())); |
| pthread_key_t key = keys.back(); |
| keys.pop_back(); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| } |
| } |
| |
| TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) { |
| std::vector<pthread_key_t> keys; |
| int rv = 0; |
| |
| // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should |
| // be more than we are allowed to allocate now. |
| for (int i = 0; i < PTHREAD_KEYS_MAX; i++) { |
| pthread_key_t key; |
| rv = pthread_key_create(&key, nullptr); |
| if (rv == EAGAIN) { |
| break; |
| } |
| EXPECT_EQ(0, rv); |
| keys.push_back(key); |
| } |
| |
| // Don't leak keys. |
| for (const auto& key : keys) { |
| EXPECT_EQ(0, pthread_key_delete(key)); |
| } |
| keys.clear(); |
| |
| // We should have eventually reached the maximum number of keys and received |
| // EAGAIN. |
| ASSERT_EQ(EAGAIN, rv); |
| } |
| |
| TEST(pthread, pthread_key_delete) { |
| void* expected = reinterpret_cast<void*>(1234); |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, nullptr)); |
| ASSERT_EQ(0, pthread_setspecific(key, expected)); |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| // After deletion, pthread_getspecific returns nullptr. |
| ASSERT_EQ(nullptr, pthread_getspecific(key)); |
| // And you can't use pthread_setspecific with the deleted key. |
| ASSERT_EQ(EINVAL, pthread_setspecific(key, expected)); |
| } |
| |
| TEST(pthread, pthread_key_fork) { |
| void* expected = reinterpret_cast<void*>(1234); |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, nullptr)); |
| ASSERT_EQ(0, pthread_setspecific(key, expected)); |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| |
| pid_t pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| if (pid == 0) { |
| // The surviving thread inherits all the forking thread's TLS values... |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| _exit(99); |
| } |
| |
| AssertChildExited(pid, 99); |
| |
| ASSERT_EQ(expected, pthread_getspecific(key)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| } |
| |
| static void* DirtyKeyFn(void* key) { |
| return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key)); |
| } |
| |
| TEST(pthread, pthread_key_dirty) { |
| pthread_key_t key; |
| ASSERT_EQ(0, pthread_key_create(&key, nullptr)); |
| |
| size_t stack_size = 640 * 1024; |
| void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| ASSERT_NE(MAP_FAILED, stack); |
| memset(stack, 0xff, stack_size); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size)); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key)); |
| |
| void* result; |
| ASSERT_EQ(0, pthread_join(t, &result)); |
| ASSERT_EQ(nullptr, result); // Not ~0! |
| |
| ASSERT_EQ(0, munmap(stack, stack_size)); |
| ASSERT_EQ(0, pthread_key_delete(key)); |
| } |
| |
| static void* FnWithStackFrame(void*) { |
| int x; |
| *const_cast<volatile int*>(&x) = 1; |
| return nullptr; |
| } |
| |
| TEST(pthread, pthread_heap_allocated_stack) { |
| SKIP_WITH_HWASAN; // TODO(b/148982147): Re-enable when fixed. |
| |
| size_t stack_size = 640 * 1024; |
| std::unique_ptr<char[]> stack(new (std::align_val_t(getpagesize())) char[stack_size]); |
| memset(stack.get(), '\xff', stack_size); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setstack(&attr, stack.get(), stack_size)); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, FnWithStackFrame, nullptr)); |
| |
| void* result; |
| ASSERT_EQ(0, pthread_join(t, &result)); |
| } |
| |
| TEST(pthread, static_pthread_key_used_before_creation) { |
| #if defined(__BIONIC__) |
| // See http://b/19625804. The bug is about a static/global pthread key being used before creation. |
| // So here tests if the static/global default value 0 can be detected as invalid key. |
| static pthread_key_t key; |
| ASSERT_EQ(nullptr, pthread_getspecific(key)); |
| ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr)); |
| ASSERT_EQ(EINVAL, pthread_key_delete(key)); |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| static void* IdFn(void* arg) { |
| return arg; |
| } |
| |
| class SpinFunctionHelper { |
| public: |
| SpinFunctionHelper() { |
| SpinFunctionHelper::spin_flag_ = true; |
| } |
| |
| ~SpinFunctionHelper() { |
| UnSpin(); |
| } |
| |
| auto GetFunction() -> void* (*)(void*) { |
| return SpinFunctionHelper::SpinFn; |
| } |
| |
| void UnSpin() { |
| SpinFunctionHelper::spin_flag_ = false; |
| } |
| |
| private: |
| static void* SpinFn(void*) { |
| while (spin_flag_) {} |
| return nullptr; |
| } |
| static std::atomic<bool> spin_flag_; |
| }; |
| |
| // It doesn't matter if spin_flag_ is used in several tests, |
| // because it is always set to false after each test. Each thread |
| // loops on spin_flag_ can find it becomes false at some time. |
| std::atomic<bool> SpinFunctionHelper::spin_flag_; |
| |
| static void* JoinFn(void* arg) { |
| return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr)); |
| } |
| |
| static void AssertDetached(pthread_t t, bool is_detached) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_getattr_np(t, &attr)); |
| int detach_state; |
| ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state)); |
| pthread_attr_destroy(&attr); |
| ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED)); |
| } |
| |
| static void MakeDeadThread(pthread_t& t) { |
| ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr)); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| TEST(pthread, pthread_create) { |
| void* expected_result = reinterpret_cast<void*>(123); |
| // Can we create a thread? |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result)); |
| // If we join, do we get the expected value back? |
| void* result; |
| ASSERT_EQ(0, pthread_join(t, &result)); |
| ASSERT_EQ(expected_result, result); |
| } |
| |
| TEST(pthread, pthread_create_EAGAIN) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1))); |
| |
| pthread_t t; |
| ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr)); |
| } |
| |
| TEST(pthread, pthread_no_join_after_detach) { |
| SpinFunctionHelper spin_helper; |
| |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); |
| |
| // After a pthread_detach... |
| ASSERT_EQ(0, pthread_detach(t1)); |
| AssertDetached(t1, true); |
| |
| // ...pthread_join should fail. |
| ASSERT_EQ(EINVAL, pthread_join(t1, nullptr)); |
| } |
| |
| TEST(pthread, pthread_no_op_detach_after_join) { |
| SpinFunctionHelper spin_helper; |
| |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); |
| |
| // If thread 2 is already waiting to join thread 1... |
| pthread_t t2; |
| ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1))); |
| |
| sleep(1); // (Give t2 a chance to call pthread_join.) |
| |
| #if defined(__BIONIC__) |
| ASSERT_EQ(EINVAL, pthread_detach(t1)); |
| #else |
| ASSERT_EQ(0, pthread_detach(t1)); |
| #endif |
| AssertDetached(t1, false); |
| |
| spin_helper.UnSpin(); |
| |
| // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(t2, &join_result)); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| } |
| |
| TEST(pthread, pthread_join_self) { |
| ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr)); |
| } |
| |
| struct TestBug37410 { |
| pthread_t main_thread; |
| pthread_mutex_t mutex; |
| |
| static void main() { |
| TestBug37410 data; |
| data.main_thread = pthread_self(); |
| ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr)); |
| ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data))); |
| |
| // Wait for the thread to be running... |
| ASSERT_EQ(0, pthread_mutex_lock(&data.mutex)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex)); |
| |
| // ...and exit. |
| pthread_exit(nullptr); |
| } |
| |
| private: |
| static void* thread_fn(void* arg) { |
| TestBug37410* data = reinterpret_cast<TestBug37410*>(arg); |
| |
| // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle. |
| pthread_t main_thread = data->main_thread; |
| |
| // Let the main thread know we're running. |
| pthread_mutex_unlock(&data->mutex); |
| |
| // And wait for the main thread to exit. |
| pthread_join(main_thread, nullptr); |
| |
| return nullptr; |
| } |
| }; |
| |
| // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to |
| // run this test (which exits normally) in its own process. |
| TEST_F(pthread_DeathTest, pthread_bug_37410) { |
| // http://code.google.com/p/android/issues/detail?id=37410 |
| ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), ""); |
| } |
| |
| static void* SignalHandlerFn(void* arg) { |
| sigset64_t wait_set; |
| sigfillset64(&wait_set); |
| return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg))); |
| } |
| |
| TEST(pthread, pthread_sigmask) { |
| // Check that SIGUSR1 isn't blocked. |
| sigset_t original_set; |
| sigemptyset(&original_set); |
| ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set)); |
| ASSERT_FALSE(sigismember(&original_set, SIGUSR1)); |
| |
| // Block SIGUSR1. |
| sigset_t set; |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR1); |
| ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr)); |
| |
| // Check that SIGUSR1 is blocked. |
| sigset_t final_set; |
| sigemptyset(&final_set); |
| ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set)); |
| ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); |
| // ...and that sigprocmask agrees with pthread_sigmask. |
| sigemptyset(&final_set); |
| ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set)); |
| ASSERT_TRUE(sigismember(&final_set, SIGUSR1)); |
| |
| // Spawn a thread that calls sigwait and tells us what it received. |
| pthread_t signal_thread; |
| int received_signal = -1; |
| ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal)); |
| |
| // Send that thread SIGUSR1. |
| pthread_kill(signal_thread, SIGUSR1); |
| |
| // See what it got. |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); |
| ASSERT_EQ(SIGUSR1, received_signal); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| |
| // Restore the original signal mask. |
| ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr)); |
| } |
| |
| TEST(pthread, pthread_sigmask64_SIGTRMIN) { |
| // Check that SIGRTMIN isn't blocked. |
| sigset64_t original_set; |
| sigemptyset64(&original_set); |
| ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set)); |
| ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN)); |
| |
| // Block SIGRTMIN. |
| sigset64_t set; |
| sigemptyset64(&set); |
| sigaddset64(&set, SIGRTMIN); |
| ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr)); |
| |
| // Check that SIGRTMIN is blocked. |
| sigset64_t final_set; |
| sigemptyset64(&final_set); |
| ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set)); |
| ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN)); |
| // ...and that sigprocmask64 agrees with pthread_sigmask64. |
| sigemptyset64(&final_set); |
| ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set)); |
| ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN)); |
| |
| // Spawn a thread that calls sigwait64 and tells us what it received. |
| pthread_t signal_thread; |
| int received_signal = -1; |
| ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal)); |
| |
| // Send that thread SIGRTMIN. |
| pthread_kill(signal_thread, SIGRTMIN); |
| |
| // See what it got. |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(signal_thread, &join_result)); |
| ASSERT_EQ(SIGRTMIN, received_signal); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| |
| // Restore the original signal mask. |
| ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr)); |
| } |
| |
| static void test_pthread_setname_np__pthread_getname_np(pthread_t t) { |
| ASSERT_EQ(0, pthread_setname_np(t, "short")); |
| char name[32]; |
| ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name))); |
| ASSERT_STREQ("short", name); |
| |
| // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL. |
| ASSERT_EQ(0, pthread_setname_np(t, "123456789012345")); |
| ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name))); |
| ASSERT_STREQ("123456789012345", name); |
| |
| ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456")); |
| |
| // The passed-in buffer should be at least 16 bytes. |
| ASSERT_EQ(0, pthread_getname_np(t, name, 16)); |
| ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15)); |
| } |
| |
| TEST(pthread, pthread_setname_np__pthread_getname_np__self) { |
| test_pthread_setname_np__pthread_getname_np(pthread_self()); |
| } |
| |
| TEST(pthread, pthread_setname_np__pthread_getname_np__other) { |
| SpinFunctionHelper spin_helper; |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); |
| test_pthread_setname_np__pthread_getname_np(t); |
| spin_helper.UnSpin(); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| // http://b/28051133: a kernel misfeature means that you can't change the |
| // name of another thread if you've set PR_SET_DUMPABLE to 0. |
| TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) { |
| ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno); |
| |
| SpinFunctionHelper spin_helper; |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); |
| test_pthread_setname_np__pthread_getname_np(t); |
| spin_helper.UnSpin(); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"), |
| "invalid pthread_t (.*) passed to pthread_setname_np"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) { |
| pthread_t null_thread = 0; |
| EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3")); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| char name[64]; |
| EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)), |
| "invalid pthread_t (.*) passed to pthread_getname_np"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) { |
| pthread_t null_thread = 0; |
| |
| char name[64]; |
| EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name))); |
| } |
| |
| TEST(pthread, pthread_kill__0) { |
| // Signal 0 just tests that the thread exists, so it's safe to call on ourselves. |
| ASSERT_EQ(0, pthread_kill(pthread_self(), 0)); |
| } |
| |
| TEST(pthread, pthread_kill__invalid_signal) { |
| ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1)); |
| } |
| |
| static void pthread_kill__in_signal_handler_helper(int signal_number) { |
| static int count = 0; |
| ASSERT_EQ(SIGALRM, signal_number); |
| if (++count == 1) { |
| // Can we call pthread_kill from a signal handler? |
| ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); |
| } |
| } |
| |
| TEST(pthread, pthread_kill__in_signal_handler) { |
| ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper); |
| ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM)); |
| } |
| |
| TEST(pthread, pthread_kill__exited_thread) { |
| static std::promise<pid_t> tid_promise; |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| [](void*) -> void* { |
| tid_promise.set_value(gettid()); |
| return nullptr; |
| }, |
| nullptr)); |
| |
| pid_t tid = tid_promise.get_future().get(); |
| while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) { |
| continue; |
| } |
| ASSERT_ERRNO(ESRCH); |
| |
| ASSERT_EQ(ESRCH, pthread_kill(thread, 0)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| EXPECT_DEATH(pthread_detach(dead_thread), |
| "invalid pthread_t (.*) passed to pthread_detach"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_detach__null_thread) { |
| pthread_t null_thread = 0; |
| EXPECT_EQ(ESRCH, pthread_detach(null_thread)); |
| } |
| |
| TEST(pthread, pthread_getcpuclockid__clock_gettime) { |
| SpinFunctionHelper spin_helper; |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr)); |
| |
| clockid_t c; |
| ASSERT_EQ(0, pthread_getcpuclockid(t, &c)); |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(c, &ts)); |
| spin_helper.UnSpin(); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| clockid_t c; |
| EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c), |
| "invalid pthread_t (.*) passed to pthread_getcpuclockid"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) { |
| pthread_t null_thread = 0; |
| clockid_t c; |
| EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| int policy; |
| sched_param param; |
| EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m), |
| "invalid pthread_t (.*) passed to pthread_getschedparam"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) { |
| pthread_t null_thread = 0; |
| int policy; |
| sched_param param; |
| EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| int policy = 0; |
| sched_param param; |
| EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m), |
| "invalid pthread_t (.*) passed to pthread_setschedparam"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) { |
| pthread_t null_thread = 0; |
| int policy = 0; |
| sched_param param; |
| EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| EXPECT_DEATH(pthread_setschedprio(dead_thread, 123), |
| "invalid pthread_t (.*) passed to pthread_setschedprio"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) { |
| pthread_t null_thread = 0; |
| EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_join__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| EXPECT_DEATH(pthread_join(dead_thread, nullptr), |
| "invalid pthread_t (.*) passed to pthread_join"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_join__null_thread) { |
| pthread_t null_thread = 0; |
| EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr)); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) { |
| pthread_t dead_thread; |
| MakeDeadThread(dead_thread); |
| |
| EXPECT_DEATH(pthread_kill(dead_thread, 0), |
| "invalid pthread_t (.*) passed to pthread_kill"); |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_kill__null_thread) { |
| pthread_t null_thread = 0; |
| EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0)); |
| } |
| |
| TEST(pthread, pthread_join__multijoin) { |
| SpinFunctionHelper spin_helper; |
| |
| pthread_t t1; |
| ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr)); |
| |
| pthread_t t2; |
| ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1))); |
| |
| sleep(1); // (Give t2 a chance to call pthread_join.) |
| |
| // Multiple joins to the same thread should fail. |
| ASSERT_EQ(EINVAL, pthread_join(t1, nullptr)); |
| |
| spin_helper.UnSpin(); |
| |
| // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes). |
| void* join_result; |
| ASSERT_EQ(0, pthread_join(t2, &join_result)); |
| ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result)); |
| } |
| |
| TEST(pthread, pthread_join__race) { |
| // http://b/11693195 --- pthread_join could return before the thread had actually exited. |
| // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread. |
| for (size_t i = 0; i < 1024; ++i) { |
| size_t stack_size = 640*1024; |
| void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); |
| |
| pthread_attr_t a; |
| pthread_attr_init(&a); |
| pthread_attr_setstack(&a, stack, stack_size); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr)); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| ASSERT_EQ(0, munmap(stack, stack_size)); |
| } |
| } |
| |
| static void* GetActualGuardSizeFn(void* arg) { |
| pthread_attr_t attributes; |
| pthread_getattr_np(pthread_self(), &attributes); |
| pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg)); |
| return nullptr; |
| } |
| |
| static size_t GetActualGuardSize(const pthread_attr_t& attributes) { |
| size_t result; |
| pthread_t t; |
| pthread_create(&t, &attributes, GetActualGuardSizeFn, &result); |
| pthread_join(t, nullptr); |
| return result; |
| } |
| |
| static void* GetActualStackSizeFn(void* arg) { |
| pthread_attr_t attributes; |
| pthread_getattr_np(pthread_self(), &attributes); |
| pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg)); |
| return nullptr; |
| } |
| |
| static size_t GetActualStackSize(const pthread_attr_t& attributes) { |
| size_t result; |
| pthread_t t; |
| pthread_create(&t, &attributes, GetActualStackSizeFn, &result); |
| pthread_join(t, nullptr); |
| return result; |
| } |
| |
| TEST(pthread, pthread_attr_setguardsize_tiny) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // No such thing as too small: will be rounded up to one page by pthread_create. |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128)); |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(128U, guard_size); |
| ASSERT_EQ(static_cast<unsigned long>(getpagesize()), GetActualGuardSize(attributes)); |
| } |
| |
| TEST(pthread, pthread_attr_setguardsize_reasonable) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // Large enough and a multiple of the page size. |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024)); |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(32*1024U, guard_size); |
| ASSERT_EQ(32*1024U, GetActualGuardSize(attributes)); |
| } |
| |
| TEST(pthread, pthread_attr_setguardsize_needs_rounding) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // Large enough but not a multiple of the page size. |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1)); |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(32*1024U + 1, guard_size); |
| ASSERT_EQ(roundup(32 * 1024U + 1, getpagesize()), GetActualGuardSize(attributes)); |
| } |
| |
| TEST(pthread, pthread_attr_setguardsize_enormous) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // Larger than the stack itself. (Historically we mistakenly carved |
| // the guard out of the stack itself, rather than adding it after the |
| // end.) |
| ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024)); |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(32*1024*1024U, guard_size); |
| ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes)); |
| } |
| |
| TEST(pthread, pthread_attr_setstacksize) { |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_attr_init(&attributes)); |
| |
| // Get the default stack size. |
| size_t default_stack_size; |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size)); |
| |
| // Too small. |
| ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128)); |
| size_t stack_size; |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); |
| ASSERT_EQ(default_stack_size, stack_size); |
| ASSERT_GE(GetActualStackSize(attributes), default_stack_size); |
| |
| // Large enough and a multiple of the page size; may be rounded up by pthread_create. |
| ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); |
| ASSERT_EQ(32*1024U, stack_size); |
| ASSERT_GE(GetActualStackSize(attributes), 32*1024U); |
| |
| // Large enough but not aligned; will be rounded up by pthread_create. |
| ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size)); |
| ASSERT_EQ(32*1024U + 1, stack_size); |
| #if defined(__BIONIC__) |
| ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1); |
| #else // __BIONIC__ |
| // glibc rounds down, in violation of POSIX. They document this in their BUGS section. |
| ASSERT_EQ(GetActualStackSize(attributes), 32*1024U); |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlockattr_smoke) { |
| pthread_rwlockattr_t attr; |
| ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); |
| |
| int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED}; |
| for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) { |
| ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i])); |
| int pshared; |
| ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(pshared_value_array[i], pshared); |
| } |
| |
| #if !defined(ANDROID_HOST_MUSL) |
| // musl doesn't have pthread_rwlockattr_setkind_np |
| int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP, |
| PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP}; |
| for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) { |
| ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i])); |
| int kind; |
| ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind)); |
| ASSERT_EQ(kind_array[i], kind); |
| } |
| #endif |
| |
| ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); |
| } |
| |
| TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) { |
| pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER; |
| pthread_rwlock_t lock2; |
| ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr)); |
| ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1))); |
| } |
| |
| TEST(pthread, pthread_rwlock_smoke) { |
| pthread_rwlock_t l; |
| ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr)); |
| |
| // Single read lock |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Multiple read lock |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Write lock |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Try writer lock |
| ASSERT_EQ(0, pthread_rwlock_trywrlock(&l)); |
| ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); |
| ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Try reader lock |
| ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l)); |
| ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // Try writer lock after unlock |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // EDEADLK in "read after write" |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| // EDEADLK in "write after write" |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&l)); |
| |
| ASSERT_EQ(0, pthread_rwlock_destroy(&l)); |
| } |
| |
| struct RwlockWakeupHelperArg { |
| pthread_rwlock_t lock; |
| enum Progress { |
| LOCK_INITIALIZED, |
| LOCK_WAITING, |
| LOCK_RELEASED, |
| LOCK_ACCESSED, |
| LOCK_TIMEDOUT, |
| }; |
| std::atomic<Progress> progress; |
| std::atomic<pid_t> tid; |
| std::function<int (pthread_rwlock_t*)> trylock_function; |
| std::function<int (pthread_rwlock_t*)> lock_function; |
| std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function; |
| clockid_t clock; |
| }; |
| |
| static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) { |
| arg->tid = gettid(); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); |
| arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; |
| |
| ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); |
| ASSERT_EQ(0, arg->lock_function(&arg->lock)); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock)); |
| |
| arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED; |
| } |
| |
| static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) { |
| RwlockWakeupHelperArg wakeup_arg; |
| ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); |
| wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; |
| wakeup_arg.tid = 0; |
| wakeup_arg.trylock_function = &pthread_rwlock_trywrlock; |
| wakeup_arg.lock_function = lock_function; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); |
| WaitUntilThreadSleep(wakeup_arg.tid); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); |
| |
| wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; |
| ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); |
| |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); |
| ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); |
| } |
| |
| TEST(pthread, pthread_rwlock_reader_wakeup_writer) { |
| test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock); |
| } |
| |
| TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) { |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) { |
| return pthread_rwlock_timedwrlock(lock, &ts); |
| }); |
| } |
| |
| TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) { |
| #if defined(__BIONIC__) |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_reader_wakeup_writer( |
| [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_reader_wakeup_writer_clockwait) { |
| #if defined(__BIONIC__) |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) { |
| return pthread_rwlock_clockwrlock(lock, CLOCK_MONOTONIC, &ts); |
| }); |
| |
| ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) { |
| return pthread_rwlock_clockwrlock(lock, CLOCK_REALTIME, &ts); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockwrlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) { |
| RwlockWakeupHelperArg wakeup_arg; |
| ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); |
| wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; |
| wakeup_arg.tid = 0; |
| wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock; |
| wakeup_arg.lock_function = lock_function; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg)); |
| WaitUntilThreadSleep(wakeup_arg.tid); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); |
| |
| wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED; |
| ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); |
| |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress); |
| ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); |
| } |
| |
| TEST(pthread, pthread_rwlock_writer_wakeup_reader) { |
| test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock); |
| } |
| |
| TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) { |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) { |
| return pthread_rwlock_timedrdlock(lock, &ts); |
| }); |
| } |
| |
| TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) { |
| #if defined(__BIONIC__) |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_writer_wakeup_reader( |
| [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_writer_wakeup_reader_clockwait) { |
| #if defined(__BIONIC__) |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) { |
| return pthread_rwlock_clockrdlock(lock, CLOCK_MONOTONIC, &ts); |
| }); |
| |
| ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); |
| ts.tv_sec += 1; |
| test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) { |
| return pthread_rwlock_clockrdlock(lock, CLOCK_REALTIME, &ts); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockrdlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) { |
| arg->tid = gettid(); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress); |
| arg->progress = RwlockWakeupHelperArg::LOCK_WAITING; |
| |
| ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock)); |
| |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(arg->clock, &ts)); |
| ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); |
| ts.tv_nsec = -1; |
| ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); |
| ts.tv_nsec = NS_PER_S; |
| ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts)); |
| ts.tv_nsec = NS_PER_S - 1; |
| ts.tv_sec = -1; |
| ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); |
| ASSERT_EQ(0, clock_gettime(arg->clock, &ts)); |
| ts.tv_sec += 1; |
| ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts)); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress); |
| arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT; |
| } |
| |
| static void pthread_rwlock_timedrdlock_timeout_helper( |
| clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) { |
| RwlockWakeupHelperArg wakeup_arg; |
| ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock)); |
| wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; |
| wakeup_arg.tid = 0; |
| wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock; |
| wakeup_arg.timed_lock_function = lock_function; |
| wakeup_arg.clock = clock; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); |
| WaitUntilThreadSleep(wakeup_arg.tid); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); |
| |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); |
| ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); |
| } |
| |
| TEST(pthread, pthread_rwlock_timedrdlock_timeout) { |
| pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock); |
| } |
| |
| TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC, |
| pthread_rwlock_timedrdlock_monotonic_np); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_clockrdlock_monotonic_timeout) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_timedrdlock_timeout_helper( |
| CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) { |
| return pthread_rwlock_clockrdlock(__rwlock, CLOCK_MONOTONIC, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockrdlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_clockrdlock_realtime_timeout) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_timedrdlock_timeout_helper( |
| CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) { |
| return pthread_rwlock_clockrdlock(__rwlock, CLOCK_REALTIME, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockrdlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_clockrdlock_invalid) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER; |
| timespec ts; |
| EXPECT_EQ(EINVAL, pthread_rwlock_clockrdlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts)); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockrdlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| static void pthread_rwlock_timedwrlock_timeout_helper( |
| clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) { |
| RwlockWakeupHelperArg wakeup_arg; |
| ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr)); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock)); |
| wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED; |
| wakeup_arg.tid = 0; |
| wakeup_arg.trylock_function = &pthread_rwlock_trywrlock; |
| wakeup_arg.timed_lock_function = lock_function; |
| wakeup_arg.clock = clock; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg)); |
| WaitUntilThreadSleep(wakeup_arg.tid); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress); |
| |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock)); |
| ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock)); |
| } |
| |
| TEST(pthread, pthread_rwlock_timedwrlock_timeout) { |
| pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock); |
| } |
| |
| TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC, |
| pthread_rwlock_timedwrlock_monotonic_np); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_clockwrlock_monotonic_timeout) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_timedwrlock_timeout_helper( |
| CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) { |
| return pthread_rwlock_clockwrlock(__rwlock, CLOCK_MONOTONIC, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockwrlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_clockwrlock_realtime_timeout) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_timedwrlock_timeout_helper( |
| CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) { |
| return pthread_rwlock_clockwrlock(__rwlock, CLOCK_REALTIME, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockwrlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_rwlock_clockwrlock_invalid) { |
| #if defined(__BIONIC__) |
| pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER; |
| timespec ts; |
| EXPECT_EQ(EINVAL, pthread_rwlock_clockwrlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts)); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_rwlock_clockrwlock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| #if !defined(ANDROID_HOST_MUSL) |
| // musl doesn't have pthread_rwlockattr_setkind_np |
| class RwlockKindTestHelper { |
| private: |
| struct ThreadArg { |
| RwlockKindTestHelper* helper; |
| std::atomic<pid_t>& tid; |
| |
| ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid) |
| : helper(helper), tid(tid) { } |
| }; |
| |
| public: |
| pthread_rwlock_t lock; |
| |
| public: |
| explicit RwlockKindTestHelper(int kind_type) { |
| InitRwlock(kind_type); |
| } |
| |
| ~RwlockKindTestHelper() { |
| DestroyRwlock(); |
| } |
| |
| void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) { |
| tid = 0; |
| ThreadArg* arg = new ThreadArg(this, tid); |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg)); |
| } |
| |
| void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) { |
| tid = 0; |
| ThreadArg* arg = new ThreadArg(this, tid); |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg)); |
| } |
| |
| private: |
| void InitRwlock(int kind_type) { |
| pthread_rwlockattr_t attr; |
| ASSERT_EQ(0, pthread_rwlockattr_init(&attr)); |
| ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type)); |
| ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr)); |
| ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr)); |
| } |
| |
| void DestroyRwlock() { |
| ASSERT_EQ(0, pthread_rwlock_destroy(&lock)); |
| } |
| |
| static void WriterThreadFn(ThreadArg* arg) { |
| arg->tid = gettid(); |
| |
| RwlockKindTestHelper* helper = arg->helper; |
| ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); |
| delete arg; |
| } |
| |
| static void ReaderThreadFn(ThreadArg* arg) { |
| arg->tid = gettid(); |
| |
| RwlockKindTestHelper* helper = arg->helper; |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock)); |
| delete arg; |
| } |
| }; |
| #endif |
| |
| TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) { |
| #if !defined(ANDROID_HOST_MUSL) |
| RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); |
| |
| pthread_t writer_thread; |
| std::atomic<pid_t> writer_tid; |
| helper.CreateWriterThread(writer_thread, writer_tid); |
| WaitUntilThreadSleep(writer_tid); |
| |
| pthread_t reader_thread; |
| std::atomic<pid_t> reader_tid; |
| helper.CreateReaderThread(reader_thread, reader_tid); |
| ASSERT_EQ(0, pthread_join(reader_thread, nullptr)); |
| |
| ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); |
| ASSERT_EQ(0, pthread_join(writer_thread, nullptr)); |
| #else |
| GTEST_SKIP() << "musl doesn't have pthread_rwlockattr_setkind_np"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) { |
| #if !defined(ANDROID_HOST_MUSL) |
| RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock)); |
| |
| pthread_t writer_thread; |
| std::atomic<pid_t> writer_tid; |
| helper.CreateWriterThread(writer_thread, writer_tid); |
| WaitUntilThreadSleep(writer_tid); |
| |
| pthread_t reader_thread; |
| std::atomic<pid_t> reader_tid; |
| helper.CreateReaderThread(reader_thread, reader_tid); |
| WaitUntilThreadSleep(reader_tid); |
| |
| ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock)); |
| ASSERT_EQ(0, pthread_join(writer_thread, nullptr)); |
| ASSERT_EQ(0, pthread_join(reader_thread, nullptr)); |
| #else |
| GTEST_SKIP() << "musl doesn't have pthread_rwlockattr_setkind_np"; |
| #endif |
| } |
| |
| static int g_once_fn_call_count = 0; |
| static void OnceFn() { |
| ++g_once_fn_call_count; |
| } |
| |
| TEST(pthread, pthread_once_smoke) { |
| pthread_once_t once_control = PTHREAD_ONCE_INIT; |
| ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); |
| ASSERT_EQ(0, pthread_once(&once_control, OnceFn)); |
| ASSERT_EQ(1, g_once_fn_call_count); |
| } |
| |
| static std::string pthread_once_1934122_result = ""; |
| |
| static void Routine2() { |
| pthread_once_1934122_result += "2"; |
| } |
| |
| static void Routine1() { |
| pthread_once_t once_control_2 = PTHREAD_ONCE_INIT; |
| pthread_once_1934122_result += "1"; |
| pthread_once(&once_control_2, &Routine2); |
| } |
| |
| TEST(pthread, pthread_once_1934122) { |
| // Very old versions of Android couldn't call pthread_once from a |
| // pthread_once init routine. http://b/1934122. |
| pthread_once_t once_control_1 = PTHREAD_ONCE_INIT; |
| ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1)); |
| ASSERT_EQ("12", pthread_once_1934122_result); |
| } |
| |
| static int g_atfork_prepare_calls = 0; |
| static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; } |
| static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; } |
| static int g_atfork_parent_calls = 0; |
| static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; } |
| static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; } |
| static int g_atfork_child_calls = 0; |
| static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; } |
| static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; } |
| |
| TEST(pthread, pthread_atfork_smoke_fork) { |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); |
| |
| g_atfork_prepare_calls = g_atfork_parent_calls = g_atfork_child_calls = 0; |
| pid_t pid = fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| // Child and parent calls are made in the order they were registered. |
| if (pid == 0) { |
| ASSERT_EQ(12, g_atfork_child_calls); |
| _exit(0); |
| } |
| ASSERT_EQ(12, g_atfork_parent_calls); |
| |
| // Prepare calls are made in the reverse order. |
| ASSERT_EQ(21, g_atfork_prepare_calls); |
| AssertChildExited(pid, 0); |
| } |
| |
| TEST(pthread, pthread_atfork_smoke_vfork) { |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); |
| |
| g_atfork_prepare_calls = g_atfork_parent_calls = g_atfork_child_calls = 0; |
| pid_t pid = vfork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| // atfork handlers are not called. |
| if (pid == 0) { |
| ASSERT_EQ(0, g_atfork_child_calls); |
| _exit(0); |
| } |
| ASSERT_EQ(0, g_atfork_parent_calls); |
| ASSERT_EQ(0, g_atfork_prepare_calls); |
| AssertChildExited(pid, 0); |
| } |
| |
| TEST(pthread, pthread_atfork_smoke__Fork) { |
| #if defined(__BIONIC__) |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1)); |
| ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2)); |
| |
| g_atfork_prepare_calls = g_atfork_parent_calls = g_atfork_child_calls = 0; |
| pid_t pid = _Fork(); |
| ASSERT_NE(-1, pid) << strerror(errno); |
| |
| // atfork handlers are not called. |
| if (pid == 0) { |
| ASSERT_EQ(0, g_atfork_child_calls); |
| _exit(0); |
| } |
| ASSERT_EQ(0, g_atfork_parent_calls); |
| ASSERT_EQ(0, g_atfork_prepare_calls); |
| AssertChildExited(pid, 0); |
| #endif |
| } |
| |
| TEST(pthread, pthread_attr_getscope) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| |
| int scope; |
| ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope)); |
| ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope); |
| } |
| |
| TEST(pthread, pthread_condattr_init) { |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_REALTIME, clock); |
| |
| int pshared; |
| ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); |
| } |
| |
| TEST(pthread, pthread_condattr_setclock) { |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME)); |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_REALTIME, clock); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_MONOTONIC, clock); |
| |
| ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID)); |
| } |
| |
| TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) { |
| #if defined(__BIONIC__) |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); |
| ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); |
| |
| pthread_cond_t cond_var; |
| ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr)); |
| |
| ASSERT_EQ(0, pthread_cond_signal(&cond_var)); |
| ASSERT_EQ(0, pthread_cond_broadcast(&cond_var)); |
| |
| attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private)); |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_MONOTONIC, clock); |
| int pshared; |
| ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); |
| #else // !defined(__BIONIC__) |
| GTEST_SKIP() << "bionic-only test"; |
| #endif // !defined(__BIONIC__) |
| } |
| |
| class pthread_CondWakeupTest : public ::testing::Test { |
| protected: |
| pthread_mutex_t mutex; |
| pthread_cond_t cond; |
| |
| enum Progress { |
| INITIALIZED, |
| WAITING, |
| SIGNALED, |
| FINISHED, |
| }; |
| std::atomic<Progress> progress; |
| pthread_t thread; |
| timespec ts; |
| std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function; |
| |
| protected: |
| void SetUp() override { |
| ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); |
| } |
| |
| void InitCond(clockid_t clock=CLOCK_REALTIME) { |
| pthread_condattr_t attr; |
| ASSERT_EQ(0, pthread_condattr_init(&attr)); |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock)); |
| ASSERT_EQ(0, pthread_cond_init(&cond, &attr)); |
| ASSERT_EQ(0, pthread_condattr_destroy(&attr)); |
| } |
| |
| void StartWaitingThread( |
| std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) { |
| progress = INITIALIZED; |
| this->wait_function = wait_function; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), |
| this)); |
| while (progress != WAITING) { |
| usleep(5000); |
| } |
| usleep(5000); |
| } |
| |
| void RunTimedTest( |
| clockid_t clock, |
| std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* timeout)> |
| wait_function) { |
| ASSERT_EQ(0, clock_gettime(clock, &ts)); |
| ts.tv_sec += 1; |
| |
| StartWaitingThread([&wait_function, this](pthread_cond_t* cond, pthread_mutex_t* mutex) { |
| return wait_function(cond, mutex, &ts); |
| }); |
| |
| progress = SIGNALED; |
| ASSERT_EQ(0, pthread_cond_signal(&cond)); |
| } |
| |
| void RunTimedTest(clockid_t clock, std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex, |
| clockid_t clock, const timespec* timeout)> |
| wait_function) { |
| RunTimedTest(clock, [clock, &wait_function](pthread_cond_t* cond, pthread_mutex_t* mutex, |
| const timespec* timeout) { |
| return wait_function(cond, mutex, clock, timeout); |
| }); |
| } |
| |
| void TearDown() override { |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| ASSERT_EQ(FINISHED, progress); |
| ASSERT_EQ(0, pthread_cond_destroy(&cond)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&mutex)); |
| } |
| |
| private: |
| static void WaitThreadFn(pthread_CondWakeupTest* test) { |
| ASSERT_EQ(0, pthread_mutex_lock(&test->mutex)); |
| test->progress = WAITING; |
| while (test->progress == WAITING) { |
| ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex)); |
| } |
| ASSERT_EQ(SIGNALED, test->progress); |
| test->progress = FINISHED; |
| ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex)); |
| } |
| }; |
| |
| TEST_F(pthread_CondWakeupTest, signal_wait) { |
| InitCond(); |
| StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { |
| return pthread_cond_wait(cond, mutex); |
| }); |
| progress = SIGNALED; |
| ASSERT_EQ(0, pthread_cond_signal(&cond)); |
| } |
| |
| TEST_F(pthread_CondWakeupTest, broadcast_wait) { |
| InitCond(); |
| StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) { |
| return pthread_cond_wait(cond, mutex); |
| }); |
| progress = SIGNALED; |
| ASSERT_EQ(0, pthread_cond_broadcast(&cond)); |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) { |
| InitCond(CLOCK_REALTIME); |
| RunTimedTest(CLOCK_REALTIME, pthread_cond_timedwait); |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) { |
| InitCond(CLOCK_MONOTONIC); |
| RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait); |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) { |
| #if defined(__BIONIC__) |
| InitCond(CLOCK_REALTIME); |
| RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_monotonic) { |
| #if defined(__BIONIC__) |
| InitCond(CLOCK_MONOTONIC); |
| RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_clockwait not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_realtime) { |
| #if defined(__BIONIC__) |
| InitCond(CLOCK_MONOTONIC); |
| RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_clockwait not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_monotonic) { |
| #if defined(__BIONIC__) |
| InitCond(CLOCK_REALTIME); |
| RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_clockwait not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_realtime) { |
| #if defined(__BIONIC__) |
| InitCond(CLOCK_REALTIME); |
| RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_clockwait not available"; |
| #endif // __BIONIC__ |
| } |
| |
| static void pthread_cond_timedwait_timeout_helper(bool init_monotonic, clockid_t clock, |
| int (*wait_function)(pthread_cond_t* __cond, |
| pthread_mutex_t* __mutex, |
| const timespec* __timeout)) { |
| pthread_mutex_t mutex; |
| ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr)); |
| pthread_cond_t cond; |
| |
| if (init_monotonic) { |
| pthread_condattr_t attr; |
| pthread_condattr_init(&attr); |
| |
| ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC)); |
| clockid_t clock; |
| ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock)); |
| ASSERT_EQ(CLOCK_MONOTONIC, clock); |
| |
| ASSERT_EQ(0, pthread_cond_init(&cond, &attr)); |
| } else { |
| ASSERT_EQ(0, pthread_cond_init(&cond, nullptr)); |
| } |
| ASSERT_EQ(0, pthread_mutex_lock(&mutex)); |
| |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(clock, &ts)); |
| ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts)); |
| ts.tv_nsec = -1; |
| ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts)); |
| ts.tv_nsec = NS_PER_S; |
| ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts)); |
| ts.tv_nsec = NS_PER_S - 1; |
| ts.tv_sec = -1; |
| ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&mutex)); |
| } |
| |
| TEST(pthread, pthread_cond_timedwait_timeout) { |
| pthread_cond_timedwait_timeout_helper(false, CLOCK_REALTIME, pthread_cond_timedwait); |
| } |
| |
| TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) { |
| #if defined(__BIONIC__) |
| pthread_cond_timedwait_timeout_helper(false, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np); |
| pthread_cond_timedwait_timeout_helper(true, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_cond_clockwait_timeout) { |
| #if defined(__BIONIC__) |
| pthread_cond_timedwait_timeout_helper( |
| false, CLOCK_MONOTONIC, |
| [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout); |
| }); |
| pthread_cond_timedwait_timeout_helper( |
| true, CLOCK_MONOTONIC, |
| [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout); |
| }); |
| pthread_cond_timedwait_timeout_helper( |
| false, CLOCK_REALTIME, |
| [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout); |
| }); |
| pthread_cond_timedwait_timeout_helper( |
| true, CLOCK_REALTIME, |
| [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_clockwait not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_cond_clockwait_invalid) { |
| #if defined(__BIONIC__) |
| pthread_cond_t cond = PTHREAD_COND_INITIALIZER; |
| pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
| timespec ts; |
| EXPECT_EQ(EINVAL, pthread_cond_clockwait(&cond, &mutex, CLOCK_PROCESS_CPUTIME_ID, &ts)); |
| |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_cond_clockwait not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_attr_getstack__main_thread) { |
| // This test is only meaningful for the main thread, so make sure we're running on it! |
| ASSERT_EQ(getpid(), syscall(__NR_gettid)); |
| |
| // Get the main thread's attributes. |
| pthread_attr_t attributes; |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); |
| |
| // Check that we correctly report that the main thread has no guard page. |
| size_t guard_size; |
| ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size)); |
| ASSERT_EQ(0U, guard_size); // The main thread has no guard page. |
| |
| // Get the stack base and the stack size (both ways). |
| void* stack_base; |
| size_t stack_size; |
| ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); |
| size_t stack_size2; |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); |
| |
| // The two methods of asking for the stack size should agree. |
| EXPECT_EQ(stack_size, stack_size2); |
| |
| #if defined(__BIONIC__) |
| // Find stack in /proc/self/maps using a pointer to the stack. |
| // |
| // We do not use "[stack]" label because in native-bridge environment it is not |
| // guaranteed to point to the right stack. A native bridge implementation may |
| // keep separate stack for the guest code. |
| void* maps_stack_hi = nullptr; |
| std::vector<map_record> maps; |
| ASSERT_TRUE(Maps::parse_maps(&maps)); |
| uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi)); |
| for (const auto& map : maps) { |
| if (map.addr_start <= stack_address && map.addr_end > stack_address){ |
| maps_stack_hi = reinterpret_cast<void*>(map.addr_end); |
| break; |
| } |
| } |
| |
| // The high address of the /proc/self/maps stack region should equal stack_base + stack_size. |
| // Remember that the stack grows down (and is mapped in on demand), so the low address of the |
| // region isn't very interesting. |
| EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size); |
| |
| // The stack size should correspond to RLIMIT_STACK. |
| rlimit rl; |
| ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl)); |
| uint64_t original_rlim_cur = rl.rlim_cur; |
| if (rl.rlim_cur == RLIM_INFINITY) { |
| rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB. |
| } |
| EXPECT_EQ(rl.rlim_cur, stack_size); |
| |
| auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() { |
| rl.rlim_cur = original_rlim_cur; |
| ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); |
| }); |
| |
| // |
| // What if RLIMIT_STACK is smaller than the stack's current extent? |
| // |
| rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already. |
| rl.rlim_max = RLIM_INFINITY; |
| ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); |
| |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); |
| ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); |
| |
| EXPECT_EQ(stack_size, stack_size2); |
| ASSERT_EQ(1024U, stack_size); |
| |
| // |
| // What if RLIMIT_STACK isn't a whole number of pages? |
| // |
| rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages. |
| rl.rlim_max = RLIM_INFINITY; |
| ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl)); |
| |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes)); |
| ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size)); |
| ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2)); |
| |
| EXPECT_EQ(stack_size, stack_size2); |
| ASSERT_EQ(6666U, stack_size); |
| #endif |
| } |
| |
| struct GetStackSignalHandlerArg { |
| volatile bool done; |
| void* signal_stack_base; |
| size_t signal_stack_size; |
| void* main_stack_base; |
| size_t main_stack_size; |
| }; |
| |
| static GetStackSignalHandlerArg getstack_signal_handler_arg; |
| |
| static void getstack_signal_handler(int sig) { |
| ASSERT_EQ(SIGUSR1, sig); |
| // Use sleep() to make current thread be switched out by the kernel to provoke the error. |
| sleep(1); |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); |
| void* stack_base; |
| size_t stack_size; |
| ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size)); |
| |
| // Verify if the stack used by the signal handler is the alternate stack just registered. |
| ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr); |
| ASSERT_LT(static_cast<void*>(untag_address(&attr)), |
| static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) + |
| getstack_signal_handler_arg.signal_stack_size); |
| |
| // Verify if the main thread's stack got in the signal handler is correct. |
| ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base); |
| ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size); |
| |
| getstack_signal_handler_arg.done = true; |
| } |
| |
| // The previous code obtained the main thread's stack by reading the entry in |
| // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel |
| // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel |
| // switches a process while the main thread is in an alternate stack, then the kernel will label |
| // the wrong map with [stack]. This test verifies that when the above situation happens, the main |
| // thread's stack is found correctly. |
| TEST(pthread, pthread_attr_getstack_in_signal_handler) { |
| // This test is only meaningful for the main thread, so make sure we're running on it! |
| ASSERT_EQ(getpid(), syscall(__NR_gettid)); |
| |
| const size_t sig_stack_size = 16 * 1024; |
| void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, |
| -1, 0); |
| ASSERT_NE(MAP_FAILED, sig_stack); |
| stack_t ss; |
| ss.ss_sp = sig_stack; |
| ss.ss_size = sig_stack_size; |
| ss.ss_flags = 0; |
| stack_t oss; |
| ASSERT_EQ(0, sigaltstack(&ss, &oss)); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr)); |
| void* main_stack_base; |
| size_t main_stack_size; |
| ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size)); |
| |
| ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK); |
| getstack_signal_handler_arg.done = false; |
| getstack_signal_handler_arg.signal_stack_base = sig_stack; |
| getstack_signal_handler_arg.signal_stack_size = sig_stack_size; |
| getstack_signal_handler_arg.main_stack_base = main_stack_base; |
| getstack_signal_handler_arg.main_stack_size = main_stack_size; |
| kill(getpid(), SIGUSR1); |
| ASSERT_EQ(true, getstack_signal_handler_arg.done); |
| |
| ASSERT_EQ(0, sigaltstack(&oss, nullptr)); |
| ASSERT_EQ(0, munmap(sig_stack, sig_stack_size)); |
| } |
| |
| static void pthread_attr_getstack_18908062_helper(void*) { |
| char local_variable; |
| pthread_attr_t attributes; |
| pthread_getattr_np(pthread_self(), &attributes); |
| void* stack_base; |
| size_t stack_size; |
| pthread_attr_getstack(&attributes, &stack_base, &stack_size); |
| |
| // Test whether &local_variable is in [stack_base, stack_base + stack_size). |
| ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable); |
| ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size); |
| } |
| |
| // Check whether something on stack is in the range of |
| // [stack_base, stack_base + stack_size). see b/18908062. |
| TEST(pthread, pthread_attr_getstack_18908062) { |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, |
| reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper), |
| nullptr)); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| #if defined(__BIONIC__) |
| static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER; |
| |
| static void* pthread_gettid_np_helper(void* arg) { |
| *reinterpret_cast<pid_t*>(arg) = gettid(); |
| |
| // Wait for our parent to call pthread_gettid_np on us before exiting. |
| pthread_mutex_lock(&pthread_gettid_np_mutex); |
| pthread_mutex_unlock(&pthread_gettid_np_mutex); |
| return nullptr; |
| } |
| #endif |
| |
| TEST(pthread, pthread_gettid_np) { |
| #if defined(__BIONIC__) |
| ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self())); |
| |
| // Ensure the other thread doesn't exit until after we've called |
| // pthread_gettid_np on it. |
| pthread_mutex_lock(&pthread_gettid_np_mutex); |
| |
| pid_t t_gettid_result; |
| pthread_t t; |
| pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result); |
| |
| pid_t t_pthread_gettid_np_result = pthread_gettid_np(t); |
| |
| // Release the other thread and wait for it to exit. |
| pthread_mutex_unlock(&pthread_gettid_np_mutex); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| |
| ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result); |
| #else |
| GTEST_SKIP() << "pthread_gettid_np not available"; |
| #endif |
| } |
| |
| static size_t cleanup_counter = 0; |
| |
| static void AbortCleanupRoutine(void*) { |
| abort(); |
| } |
| |
| static void CountCleanupRoutine(void*) { |
| ++cleanup_counter; |
| } |
| |
| static void PthreadCleanupTester() { |
| pthread_cleanup_push(CountCleanupRoutine, nullptr); |
| pthread_cleanup_push(CountCleanupRoutine, nullptr); |
| pthread_cleanup_push(AbortCleanupRoutine, nullptr); |
| |
| pthread_cleanup_pop(0); // Pop the abort without executing it. |
| pthread_cleanup_pop(1); // Pop one count while executing it. |
| ASSERT_EQ(1U, cleanup_counter); |
| // Exit while the other count is still on the cleanup stack. |
| pthread_exit(nullptr); |
| |
| // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced. |
| pthread_cleanup_pop(0); |
| } |
| |
| static void* PthreadCleanupStartRoutine(void*) { |
| PthreadCleanupTester(); |
| return nullptr; |
| } |
| |
| TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) { |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr)); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| ASSERT_EQ(2U, cleanup_counter); |
| } |
| |
| TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) { |
| ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT); |
| } |
| |
| TEST(pthread, pthread_mutexattr_gettype) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| |
| int attr_type; |
| |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); |
| ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); |
| ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type); |
| |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)); |
| ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); |
| ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type); |
| |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)); |
| ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type)); |
| ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type); |
| |
| ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); |
| } |
| |
| TEST(pthread, pthread_mutexattr_protocol) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| |
| int protocol; |
| ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol)); |
| ASSERT_EQ(PTHREAD_PRIO_NONE, protocol); |
| for (size_t repeat = 0; repeat < 2; ++repeat) { |
| for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) { |
| ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol)); |
| ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol)); |
| ASSERT_EQ(protocol, set_protocol); |
| } |
| } |
| } |
| |
| struct PthreadMutex { |
| pthread_mutex_t lock; |
| |
| explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) { |
| init(mutex_type, protocol); |
| } |
| |
| ~PthreadMutex() { |
| destroy(); |
| } |
| |
| private: |
| void init(int mutex_type, int protocol) { |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type)); |
| ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol)); |
| ASSERT_EQ(0, pthread_mutex_init(&lock, &attr)); |
| ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); |
| } |
| |
| void destroy() { |
| ASSERT_EQ(0, pthread_mutex_destroy(&lock)); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(PthreadMutex); |
| }; |
| |
| static int UnlockFromAnotherThread(pthread_mutex_t* mutex) { |
| pthread_t thread; |
| pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* { |
| pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp); |
| intptr_t result = pthread_mutex_unlock(mutex); |
| return reinterpret_cast<void*>(result); |
| }, mutex); |
| void* result; |
| EXPECT_EQ(0, pthread_join(thread, &result)); |
| return reinterpret_cast<intptr_t>(result); |
| }; |
| |
| static void TestPthreadMutexLockNormal(int protocol) { |
| PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol); |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); |
| if (protocol == PTHREAD_PRIO_INHERIT) { |
| ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); |
| } |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); |
| ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| } |
| |
| static void TestPthreadMutexLockErrorCheck(int protocol) { |
| PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol); |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); |
| ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); |
| ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); |
| if (protocol == PTHREAD_PRIO_NONE) { |
| ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock)); |
| } else { |
| ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock)); |
| } |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); |
| } |
| |
| static void TestPthreadMutexLockRecursive(int protocol) { |
| PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol); |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); |
| ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); |
| ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_trylock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock)); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_NORMAL) { |
| TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_ERRORCHECK) { |
| TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_RECURSIVE) { |
| TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE); |
| } |
| |
| TEST(pthread, pthread_mutex_lock_pi) { |
| TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT); |
| TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT); |
| TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT); |
| } |
| |
| TEST(pthread, pthread_mutex_pi_count_limit) { |
| #if defined(__BIONIC__) && !defined(__LP64__) |
| // Bionic only supports 65536 pi mutexes in 32-bit programs. |
| pthread_mutexattr_t attr; |
| ASSERT_EQ(0, pthread_mutexattr_init(&attr)); |
| ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)); |
| std::vector<pthread_mutex_t> mutexes(65536); |
| // Test if we can use 65536 pi mutexes at the same time. |
| // Run 2 times to check if freed pi mutexes can be recycled. |
| for (int repeat = 0; repeat < 2; ++repeat) { |
| for (auto& m : mutexes) { |
| ASSERT_EQ(0, pthread_mutex_init(&m, &attr)); |
| } |
| pthread_mutex_t m; |
| ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr)); |
| for (auto& m : mutexes) { |
| ASSERT_EQ(0, pthread_mutex_lock(&m)); |
| } |
| for (auto& m : mutexes) { |
| ASSERT_EQ(0, pthread_mutex_unlock(&m)); |
| } |
| for (auto& m : mutexes) { |
| ASSERT_EQ(0, pthread_mutex_destroy(&m)); |
| } |
| } |
| ASSERT_EQ(0, pthread_mutexattr_destroy(&attr)); |
| #else |
| GTEST_SKIP() << "pi mutex count not limited to 64Ki"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_mutex_init_same_as_static_initializers) { |
| pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER; |
| PthreadMutex m1(PTHREAD_MUTEX_NORMAL); |
| ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t))); |
| pthread_mutex_destroy(&lock_normal); |
| |
| #if !defined(ANDROID_HOST_MUSL) |
| // musl doesn't support PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP or |
| // PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP. |
| pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; |
| PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK); |
| ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t))); |
| pthread_mutex_destroy(&lock_errorcheck); |
| |
| pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; |
| PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE); |
| ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t))); |
| ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive)); |
| #endif |
| } |
| |
| class MutexWakeupHelper { |
| private: |
| PthreadMutex m; |
| enum Progress { |
| LOCK_INITIALIZED, |
| LOCK_WAITING, |
| LOCK_RELEASED, |
| LOCK_ACCESSED |
| }; |
| std::atomic<Progress> progress; |
| std::atomic<pid_t> tid; |
| |
| static void thread_fn(MutexWakeupHelper* helper) { |
| helper->tid = gettid(); |
| ASSERT_EQ(LOCK_INITIALIZED, helper->progress); |
| helper->progress = LOCK_WAITING; |
| |
| ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); |
| ASSERT_EQ(LOCK_RELEASED, helper->progress); |
| ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); |
| |
| helper->progress = LOCK_ACCESSED; |
| } |
| |
| public: |
| explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) { |
| } |
| |
| void test() { |
| ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); |
| progress = LOCK_INITIALIZED; |
| tid = 0; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this)); |
| |
| WaitUntilThreadSleep(tid); |
| ASSERT_EQ(LOCK_WAITING, progress); |
| |
| progress = LOCK_RELEASED; |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| ASSERT_EQ(LOCK_ACCESSED, progress); |
| } |
| }; |
| |
| TEST(pthread, pthread_mutex_NORMAL_wakeup) { |
| MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL); |
| helper.test(); |
| } |
| |
| TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) { |
| MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK); |
| helper.test(); |
| } |
| |
| TEST(pthread, pthread_mutex_RECURSIVE_wakeup) { |
| MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE); |
| helper.test(); |
| } |
| |
| static int GetThreadPriority(pid_t tid) { |
| // sched_getparam() returns the static priority of a thread, which can't reflect a thread's |
| // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority. |
| std::string filename = android::base::StringPrintf("/proc/%d/stat", tid); |
| std::string content; |
| int result = INT_MAX; |
| if (!android::base::ReadFileToString(filename, &content)) { |
| return result; |
| } |
| std::vector<std::string> strs = android::base::Split(content, " "); |
| if (strs.size() < 18) { |
| return result; |
| } |
| if (!android::base::ParseInt(strs[17], &result)) { |
| return INT_MAX; |
| } |
| return result; |
| } |
| |
| class PIMutexWakeupHelper { |
| private: |
| PthreadMutex m; |
| int protocol; |
| enum Progress { |
| LOCK_INITIALIZED, |
| LOCK_CHILD_READY, |
| LOCK_WAITING, |
| LOCK_RELEASED, |
| }; |
| std::atomic<Progress> progress; |
| std::atomic<pid_t> main_tid; |
| std::atomic<pid_t> child_tid; |
| PthreadMutex start_thread_m; |
| |
| static void thread_fn(PIMutexWakeupHelper* helper) { |
| helper->child_tid = gettid(); |
| ASSERT_EQ(LOCK_INITIALIZED, helper->progress); |
| ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1)); |
| ASSERT_EQ(21, GetThreadPriority(gettid())); |
| ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock)); |
| helper->progress = LOCK_CHILD_READY; |
| ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock)); |
| |
| ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock)); |
| WaitUntilThreadSleep(helper->main_tid); |
| ASSERT_EQ(LOCK_WAITING, helper->progress); |
| |
| if (helper->protocol == PTHREAD_PRIO_INHERIT) { |
| ASSERT_EQ(20, GetThreadPriority(gettid())); |
| } else { |
| ASSERT_EQ(21, GetThreadPriority(gettid())); |
| } |
| helper->progress = LOCK_RELEASED; |
| ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock)); |
| } |
| |
| public: |
| explicit PIMutexWakeupHelper(int mutex_type, int protocol) |
| : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) { |
| } |
| |
| void test() { |
| ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock)); |
| main_tid = gettid(); |
| ASSERT_EQ(20, GetThreadPriority(main_tid)); |
| progress = LOCK_INITIALIZED; |
| child_tid = 0; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this)); |
| |
| WaitUntilThreadSleep(child_tid); |
| ASSERT_EQ(LOCK_CHILD_READY, progress); |
| ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock)); |
| progress = LOCK_WAITING; |
| ASSERT_EQ(0, pthread_mutex_lock(&m.lock)); |
| |
| ASSERT_EQ(LOCK_RELEASED, progress); |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| } |
| }; |
| |
| TEST(pthread, pthread_mutex_pi_wakeup) { |
| for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) { |
| for (int protocol : {PTHREAD_PRIO_INHERIT}) { |
| PIMutexWakeupHelper helper(type, protocol); |
| helper.test(); |
| } |
| } |
| } |
| |
| TEST(pthread, pthread_mutex_owner_tid_limit) { |
| #if defined(__BIONIC__) && !defined(__LP64__) |
| FILE* fp = fopen("/proc/sys/kernel/pid_max", "r"); |
| ASSERT_TRUE(fp != nullptr); |
| long pid_max; |
| ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max)); |
| fclose(fp); |
| // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid. |
| ASSERT_LE(pid_max, 65536); |
| #else |
| GTEST_SKIP() << "pthread_mutex supports 32-bit tid"; |
| #endif |
| } |
| |
| static void pthread_mutex_timedlock_helper(clockid_t clock, |
| int (*lock_function)(pthread_mutex_t* __mutex, |
| const timespec* __timeout)) { |
| pthread_mutex_t m; |
| ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); |
| |
| // If the mutex is already locked, pthread_mutex_timedlock should time out. |
| ASSERT_EQ(0, pthread_mutex_lock(&m)); |
| |
| timespec ts; |
| ASSERT_EQ(0, clock_gettime(clock, &ts)); |
| ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); |
| ts.tv_nsec = -1; |
| ASSERT_EQ(EINVAL, lock_function(&m, &ts)); |
| ts.tv_nsec = NS_PER_S; |
| ASSERT_EQ(EINVAL, lock_function(&m, &ts)); |
| ts.tv_nsec = NS_PER_S - 1; |
| ts.tv_sec = -1; |
| ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); |
| |
| // Check we wait long enough for the lock before timing out... |
| |
| // What time is it before we start? |
| ASSERT_EQ(0, clock_gettime(clock, &ts)); |
| const int64_t start_ns = to_ns(ts); |
| // Add a second to get deadline, and wait until we time out. |
| ts.tv_sec += 1; |
| ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts)); |
| |
| // What time is it now we've timed out? |
| timespec ts2; |
| clock_gettime(clock, &ts2); |
| const int64_t end_ns = to_ns(ts2); |
| |
| // The timedlock must have waited at least 1 second before returning. |
| ASSERT_GE(end_ns - start_ns, NS_PER_S); |
| |
| // If the mutex is unlocked, pthread_mutex_timedlock should succeed. |
| ASSERT_EQ(0, pthread_mutex_unlock(&m)); |
| ASSERT_EQ(0, clock_gettime(clock, &ts)); |
| ts.tv_sec += 1; |
| ASSERT_EQ(0, lock_function(&m, &ts)); |
| |
| ASSERT_EQ(0, pthread_mutex_unlock(&m)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&m)); |
| } |
| |
| TEST(pthread, pthread_mutex_timedlock) { |
| pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock); |
| } |
| |
| TEST(pthread, pthread_mutex_timedlock_monotonic_np) { |
| #if defined(__BIONIC__) |
| pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_mutex_clocklock_MONOTONIC) { |
| #if defined(__BIONIC__) |
| pthread_mutex_timedlock_helper( |
| CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_mutex_clocklock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_mutex_clocklock_REALTIME) { |
| #if defined(__BIONIC__) |
| pthread_mutex_timedlock_helper( |
| CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_mutex_clocklock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| static void pthread_mutex_timedlock_pi_helper(clockid_t clock, |
| int (*lock_function)(pthread_mutex_t* __mutex, |
| const timespec* __timeout)) { |
| PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT); |
| |
| timespec ts; |
| clock_gettime(clock, &ts); |
| const int64_t start_ns = ts.tv_sec * NS_PER_S + ts.tv_nsec; |
| |
| // add a second to get deadline. |
| ts.tv_sec += 1; |
| |
| ASSERT_EQ(0, lock_function(&m.lock, &ts)); |
| |
| struct ThreadArgs { |
| clockid_t clock; |
| int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout); |
| PthreadMutex& m; |
| }; |
| |
| ThreadArgs thread_args = { |
| .clock = clock, |
| .lock_function = lock_function, |
| .m = m, |
| }; |
| |
| auto ThreadFn = [](void* arg) -> void* { |
| auto args = static_cast<ThreadArgs*>(arg); |
| timespec ts; |
| clock_gettime(args->clock, &ts); |
| ts.tv_sec += 1; |
| intptr_t result = args->lock_function(&args->m.lock, &ts); |
| return reinterpret_cast<void*>(result); |
| }; |
| |
| pthread_t thread; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args)); |
| void* result; |
| ASSERT_EQ(0, pthread_join(thread, &result)); |
| ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result)); |
| |
| // The timedlock must have waited at least 1 second before returning. |
| clock_gettime(clock, &ts); |
| const int64_t end_ns = ts.tv_sec * NS_PER_S + ts.tv_nsec; |
| ASSERT_GT(end_ns - start_ns, NS_PER_S); |
| |
| ASSERT_EQ(0, pthread_mutex_unlock(&m.lock)); |
| } |
| |
| TEST(pthread, pthread_mutex_timedlock_pi) { |
| pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock); |
| } |
| |
| TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) { |
| #if defined(__BIONIC__) |
| pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_mutex_clocklock_pi) { |
| #if defined(__BIONIC__) |
| pthread_mutex_timedlock_pi_helper( |
| CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout); |
| }); |
| pthread_mutex_timedlock_pi_helper( |
| CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) { |
| return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout); |
| }); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_mutex_clocklock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST(pthread, pthread_mutex_clocklock_invalid) { |
| #if defined(__BIONIC__) |
| pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
| timespec ts; |
| EXPECT_EQ(EINVAL, pthread_mutex_clocklock(&mutex, CLOCK_PROCESS_CPUTIME_ID, &ts)); |
| #else // __BIONIC__ |
| GTEST_SKIP() << "pthread_mutex_clocklock not available"; |
| #endif // __BIONIC__ |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_mutex_using_destroyed_mutex) { |
| #if defined(__BIONIC__) |
| pthread_mutex_t m; |
| ASSERT_EQ(0, pthread_mutex_init(&m, nullptr)); |
| ASSERT_EQ(0, pthread_mutex_destroy(&m)); |
| ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_lock called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_unlock called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_trylock called on a destroyed mutex"); |
| timespec ts; |
| ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_timedlock called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_MONOTONIC, &ts), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_clocklock called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_REALTIME, &ts), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_clocklock called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_PROCESS_CPUTIME_ID, &ts), |
| ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_clocklock called on a destroyed mutex"); |
| ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT), |
| "pthread_mutex_destroy called on a destroyed mutex"); |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| class StrictAlignmentAllocator { |
| public: |
| void* allocate(size_t size, size_t alignment) { |
| char* p = new char[size + alignment * 2]; |
| allocated_array.push_back(p); |
| while (!is_strict_aligned(p, alignment)) { |
| ++p; |
| } |
| return p; |
| } |
| |
| ~StrictAlignmentAllocator() { |
| for (const auto& p : allocated_array) { |
| delete[] p; |
| } |
| } |
| |
| private: |
| bool is_strict_aligned(char* p, size_t alignment) { |
| return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment; |
| } |
| |
| std::vector<char*> allocated_array; |
| }; |
| |
| TEST(pthread, pthread_types_allow_four_bytes_alignment) { |
| #if defined(__BIONIC__) |
| // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types. |
| StrictAlignmentAllocator allocator; |
| pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>( |
| allocator.allocate(sizeof(pthread_mutex_t), 4)); |
| ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr)); |
| ASSERT_EQ(0, pthread_mutex_lock(mutex)); |
| ASSERT_EQ(0, pthread_mutex_unlock(mutex)); |
| ASSERT_EQ(0, pthread_mutex_destroy(mutex)); |
| |
| pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>( |
| allocator.allocate(sizeof(pthread_cond_t), 4)); |
| ASSERT_EQ(0, pthread_cond_init(cond, nullptr)); |
| ASSERT_EQ(0, pthread_cond_signal(cond)); |
| ASSERT_EQ(0, pthread_cond_broadcast(cond)); |
| ASSERT_EQ(0, pthread_cond_destroy(cond)); |
| |
| pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>( |
| allocator.allocate(sizeof(pthread_rwlock_t), 4)); |
| ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr)); |
| ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); |
| ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock)); |
| ASSERT_EQ(0, pthread_rwlock_unlock(rwlock)); |
| ASSERT_EQ(0, pthread_rwlock_destroy(rwlock)); |
| |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_mutex_lock_null_32) { |
| #if defined(__BIONIC__) && !defined(__LP64__) |
| // For LP32, the pthread lock/unlock functions allow a NULL mutex and return |
| // EINVAL in that case: http://b/19995172. |
| // |
| // We decorate the public defintion with _Nonnull so that people recompiling |
| // their code with get a warning and might fix their bug, but need to pass |
| // NULL here to test that we remain compatible. |
| pthread_mutex_t* null_value = nullptr; |
| ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value)); |
| #else |
| GTEST_SKIP() << "32-bit bionic-only test"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_mutex_unlock_null_32) { |
| #if defined(__BIONIC__) && !defined(__LP64__) |
| // For LP32, the pthread lock/unlock functions allow a NULL mutex and return |
| // EINVAL in that case: http://b/19995172. |
| // |
| // We decorate the public defintion with _Nonnull so that people recompiling |
| // their code with get a warning and might fix their bug, but need to pass |
| // NULL here to test that we remain compatible. |
| pthread_mutex_t* null_value = nullptr; |
| ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value)); |
| #else |
| GTEST_SKIP() << "32-bit bionic-only test"; |
| #endif |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) { |
| #if defined(__BIONIC__) && defined(__LP64__) |
| pthread_mutex_t* null_value = nullptr; |
| ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), ""); |
| #else |
| GTEST_SKIP() << "64-bit bionic-only test"; |
| #endif |
| } |
| |
| TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) { |
| #if defined(__BIONIC__) && defined(__LP64__) |
| pthread_mutex_t* null_value = nullptr; |
| ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), ""); |
| #else |
| GTEST_SKIP() << "64-bit bionic-only test"; |
| #endif |
| } |
| |
| extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg); |
| |
| static volatile bool signal_handler_on_altstack_done; |
| |
| __attribute__((__noinline__)) |
| static void signal_handler_backtrace() { |
| // Check if we have enough stack space for unwinding. |
| int count = 0; |
| _Unwind_Backtrace(FrameCounter, &count); |
| ASSERT_GT(count, 0); |
| } |
| |
| __attribute__((__noinline__)) |
| static void signal_handler_logging() { |
| // Check if we have enough stack space for logging. |
| std::string s(2048, '*'); |
| GTEST_LOG_(INFO) << s; |
| signal_handler_on_altstack_done = true; |
| } |
| |
| __attribute__((__noinline__)) |
| static void signal_handler_snprintf() { |
| // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra. |
| char buf[PATH_MAX + 2048]; |
| ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0); |
| } |
| |
| static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) { |
| ASSERT_EQ(SIGUSR1, signo); |
| signal_handler_backtrace(); |
| signal_handler_logging(); |
| signal_handler_snprintf(); |
| } |
| |
| TEST(pthread, big_enough_signal_stack) { |
| signal_handler_on_altstack_done = false; |
| ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK); |
| kill(getpid(), SIGUSR1); |
| ASSERT_TRUE(signal_handler_on_altstack_done); |
| } |
| |
| TEST(pthread, pthread_barrierattr_smoke) { |
| pthread_barrierattr_t attr; |
| ASSERT_EQ(0, pthread_barrierattr_init(&attr)); |
| int pshared; |
| ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared); |
| ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED)); |
| ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared)); |
| ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared); |
| ASSERT_EQ(0, pthread_barrierattr_destroy(&attr)); |
| } |
| |
| struct BarrierTestHelperData { |
| size_t thread_count; |
| pthread_barrier_t barrier; |
| std::atomic<int> finished_mask; |
| std::atomic<int> serial_thread_count; |
| size_t iteration_count; |
| std::atomic<size_t> finished_iteration_count; |
| |
| BarrierTestHelperData(size_t thread_count, size_t iteration_count) |
| : thread_count(thread_count), finished_mask(0), serial_thread_count(0), |
| iteration_count(iteration_count), finished_iteration_count(0) { |
| } |
| }; |
| |
| struct BarrierTestHelperArg { |
| int id; |
| BarrierTestHelperData* data; |
| }; |
| |
| static void BarrierTestHelper(BarrierTestHelperArg* arg) { |
| for (size_t i = 0; i < arg->data->iteration_count; ++i) { |
| int result = pthread_barrier_wait(&arg->data->barrier); |
| if (result == PTHREAD_BARRIER_SERIAL_THREAD) { |
| arg->data->serial_thread_count++; |
| } else { |
| ASSERT_EQ(0, result); |
| } |
| int mask = arg->data->finished_mask.fetch_or(1 << arg->id); |
| mask |= 1 << arg->id; |
| if (mask == ((1 << arg->data->thread_count) - 1)) { |
| ASSERT_EQ(1, arg->data->serial_thread_count); |
| arg->data->finished_iteration_count++; |
| arg->data->finished_mask = 0; |
| arg->data->serial_thread_count = 0; |
| } |
| } |
| } |
| |
| TEST(pthread, pthread_barrier_smoke) { |
| const size_t BARRIER_ITERATION_COUNT = 10; |
| const size_t BARRIER_THREAD_COUNT = 10; |
| BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT); |
| ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count)); |
| std::vector<pthread_t> threads(data.thread_count); |
| std::vector<BarrierTestHelperArg> args(threads.size()); |
| for (size_t i = 0; i < threads.size(); ++i) { |
| args[i].id = i; |
| args[i].data = &data; |
| ASSERT_EQ(0, pthread_create(&threads[i], nullptr, |
| reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i])); |
| } |
| for (size_t i = 0; i < threads.size(); ++i) { |
| ASSERT_EQ(0, pthread_join(threads[i], nullptr)); |
| } |
| ASSERT_EQ(data.iteration_count, data.finished_iteration_count); |
| ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier)); |
| } |
| |
| struct BarrierDestroyTestArg { |
| std::atomic<int> tid; |
| pthread_barrier_t* barrier; |
| }; |
| |
| static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) { |
| arg->tid = gettid(); |
| ASSERT_EQ(0, pthread_barrier_wait(arg->barrier)); |
| } |
| |
| TEST(pthread, pthread_barrier_destroy) { |
| pthread_barrier_t barrier; |
| ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2)); |
| pthread_t thread; |
| BarrierDestroyTestArg arg; |
| arg.tid = 0; |
| arg.barrier = &barrier; |
| ASSERT_EQ(0, pthread_create(&thread, nullptr, |
| reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg)); |
| WaitUntilThreadSleep(arg.tid); |
| ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier)); |
| ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier)); |
| // Verify if the barrier can be destroyed directly after pthread_barrier_wait(). |
| ASSERT_EQ(0, pthread_barrier_destroy(&barrier)); |
| ASSERT_EQ(0, pthread_join(thread, nullptr)); |
| #if defined(__BIONIC__) |
| ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier)); |
| #endif |
| } |
| |
| struct BarrierOrderingTestHelperArg { |
| pthread_barrier_t* barrier; |
| size_t* array; |
| size_t array_length; |
| size_t id; |
| }; |
| |
| void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) { |
| const size_t ITERATION_COUNT = 10000; |
| for (size_t i = 1; i <= ITERATION_COUNT; ++i) { |
| arg->array[arg->id] = i; |
| int result = pthread_barrier_wait(arg->barrier); |
| ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); |
| for (size_t j = 0; j < arg->array_length; ++j) { |
| ASSERT_EQ(i, arg->array[j]); |
| } |
| result = pthread_barrier_wait(arg->barrier); |
| ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD); |
| } |
| } |
| |
| TEST(pthread, pthread_barrier_check_ordering) { |
| const size_t THREAD_COUNT = 4; |
| pthread_barrier_t barrier; |
| ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT)); |
| size_t array[THREAD_COUNT]; |
| std::vector<pthread_t> threads(THREAD_COUNT); |
| std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT); |
| for (size_t i = 0; i < THREAD_COUNT; ++i) { |
| args[i].barrier = &barrier; |
| args[i].array = array; |
| args[i].array_length = THREAD_COUNT; |
| args[i].id = i; |
| ASSERT_EQ(0, pthread_create(&threads[i], nullptr, |
| reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper), |
| &args[i])); |
| } |
| for (size_t i = 0; i < THREAD_COUNT; ++i) { |
| ASSERT_EQ(0, pthread_join(threads[i], nullptr)); |
| } |
| } |
| |
| TEST(pthread, pthread_barrier_init_zero_count) { |
| pthread_barrier_t barrier; |
| ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0)); |
| } |
| |
| TEST(pthread, pthread_spinlock_smoke) { |
| pthread_spinlock_t lock; |
| ASSERT_EQ(0, pthread_spin_init(&lock, 0)); |
| ASSERT_EQ(0, pthread_spin_trylock(&lock)); |
| ASSERT_EQ(0, pthread_spin_unlock(&lock)); |
| ASSERT_EQ(0, pthread_spin_lock(&lock)); |
| ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock)); |
| ASSERT_EQ(0, pthread_spin_unlock(&lock)); |
| ASSERT_EQ(0, pthread_spin_destroy(&lock)); |
| } |
| |
| TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| |
| int state; |
| ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); |
| ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); |
| ASSERT_EQ(PTHREAD_CREATE_DETACHED, state); |
| |
| ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); |
| ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); |
| ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state); |
| |
| ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123)); |
| ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state)); |
| ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state); |
| } |
| |
| TEST(pthread, pthread_create__mmap_failures) { |
| // After thread is successfully created, native_bridge might need more memory to run it. |
| SKIP_WITH_NATIVE_BRIDGE; |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); |
| |
| const auto kPageSize = sysconf(_SC_PAGE_SIZE); |
| |
| // Use up all the VMAs. By default this is 64Ki (though some will already be in use). |
| std::vector<void*> pages; |
| pages.reserve(64 * 1024); |
| int prot = PROT_NONE; |
| while (true) { |
| void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0); |
| if (page == MAP_FAILED) break; |
| pages.push_back(page); |
| prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE; |
| } |
| |
| // Try creating threads, freeing up a page each time we fail. |
| size_t EAGAIN_count = 0; |
| size_t i = 0; |
| for (; i < pages.size(); ++i) { |
| pthread_t t; |
| int status = pthread_create(&t, &attr, IdFn, nullptr); |
| if (status != EAGAIN) break; |
| ++EAGAIN_count; |
| ASSERT_EQ(0, munmap(pages[i], kPageSize)); |
| } |
| |
| // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each |
| // side. So we should have seen at least three failures. |
| ASSERT_GE(EAGAIN_count, 3U); |
| |
| for (; i < pages.size(); ++i) { |
| ASSERT_EQ(0, munmap(pages[i], kPageSize)); |
| } |
| } |
| |
| TEST(pthread, pthread_setschedparam) { |
| sched_param p = { .sched_priority = INT_MIN }; |
| ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p)); |
| } |
| |
| TEST(pthread, pthread_setschedprio) { |
| ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN)); |
| } |
| |
| TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| |
| int state; |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); |
| ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); |
| ASSERT_EQ(PTHREAD_INHERIT_SCHED, state); |
| |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); |
| ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); |
| ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state); |
| |
| ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123)); |
| ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state)); |
| ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state); |
| } |
| |
| TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) { |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| |
| // If we set invalid scheduling attributes but choose to inherit, everything's fine... |
| sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 }; |
| ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m)); |
| ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO)); |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); |
| |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr)); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| |
| #if defined(__LP64__) |
| // If we ask to use them, though, we'll see a failure... |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); |
| ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr)); |
| #else |
| // For backwards compatibility with broken apps, we just ignore failures |
| // to set scheduler attributes on LP32. |
| #endif |
| } |
| |
| TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) { |
| sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; |
| int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m); |
| if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM"; |
| ASSERT_EQ(0, rc); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); |
| |
| SpinFunctionHelper spin_helper; |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); |
| int actual_policy; |
| sched_param actual_param; |
| ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); |
| ASSERT_EQ(SCHED_FIFO, actual_policy); |
| spin_helper.UnSpin(); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) { |
| sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; |
| int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m); |
| if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM"; |
| ASSERT_EQ(0, rc); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED)); |
| ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER)); |
| |
| SpinFunctionHelper spin_helper; |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); |
| int actual_policy; |
| sched_param actual_param; |
| ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); |
| ASSERT_EQ(SCHED_OTHER, actual_policy); |
| spin_helper.UnSpin(); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) { |
| sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) }; |
| int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m); |
| if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM"; |
| ASSERT_EQ(0, rc); |
| |
| pthread_attr_t attr; |
| ASSERT_EQ(0, pthread_attr_init(&attr)); |
| ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); |
| |
| SpinFunctionHelper spin_helper; |
| pthread_t t; |
| ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr)); |
| int actual_policy; |
| sched_param actual_param; |
| ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param)); |
| ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy); |
| spin_helper.UnSpin(); |
| ASSERT_EQ(0, pthread_join(t, nullptr)); |
| } |
| |
| extern "C" bool android_run_on_all_threads(bool (*func)(void*), void* arg); |
| |
| TEST(pthread, run_on_all_threads) { |
| #if defined(__BIONIC__) |
| pthread_t t; |
| ASSERT_EQ( |
| 0, pthread_create( |
| &t, nullptr, |
| [](void*) -> void* { |
| pthread_attr_t detached; |
| if (pthread_attr_init(&detached) != 0 || |
| pthread_attr_setdetachstate(&detached, PTHREAD_CREATE_DETACHED) != 0) { |
| return reinterpret_cast<void*>(errno); |
| } |
| |
| for (int i = 0; i != 1000; ++i) { |
| pthread_t t1, t2; |
| if (pthread_create( |
| &t1, &detached, [](void*) -> void* { return nullptr; }, nullptr) != 0 || |
| pthread_create( |
| &t2, nullptr, [](void*) -> void* { return nullptr; }, nullptr) != 0 || |
| pthread_join(t2, nullptr) != 0) { |
| return reinterpret_cast<void*>(errno); |
| } |
| } |
| |
| if (pthread_attr_destroy(&detached) != 0) { |
| return reinterpret_cast<void*>(errno); |
| } |
| return nullptr; |
| }, |
| nullptr)); |
| |
| for (int i = 0; i != 1000; ++i) { |
| ASSERT_TRUE(android_run_on_all_threads([](void* arg) { return arg == nullptr; }, nullptr)); |
| } |
| |
| void *retval; |
| ASSERT_EQ(0, pthread_join(t, &retval)); |
| ASSERT_EQ(nullptr, retval); |
| #else |
| GTEST_SKIP() << "bionic-only test"; |
| #endif |
| } |
| |
| TEST(pthread, pthread_getaffinity_np_failure) { |
| // Trivial test of the errno-preserving/returning behavior. |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wnonnull" |
| errno = 0; |
| ASSERT_EQ(EINVAL, pthread_getaffinity_np(pthread_self(), 0, nullptr)); |
| ASSERT_ERRNO(0); |
| #pragma clang diagnostic pop |
| } |
| |
| TEST(pthread, pthread_getaffinity) { |
| cpu_set_t set; |
| CPU_ZERO(&set); |
| ASSERT_EQ(0, pthread_getaffinity_np(pthread_self(), sizeof(set), &set)); |
| ASSERT_GT(CPU_COUNT(&set), 0); |
| } |
| |
| TEST(pthread, pthread_setaffinity_np_failure) { |
| // Trivial test of the errno-preserving/returning behavior. |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wnonnull" |
| errno = 0; |
| ASSERT_EQ(EINVAL, pthread_setaffinity_np(pthread_self(), 0, nullptr)); |
| ASSERT_ERRNO(0); |
| #pragma clang diagnostic pop |
| } |
| |
| TEST(pthread, pthread_setaffinity) { |
| cpu_set_t set; |
| CPU_ZERO(&set); |
| ASSERT_EQ(0, pthread_getaffinity_np(pthread_self(), sizeof(set), &set)); |
| // It's hard to make any more general claim than this, |
| // but it ought to be safe to ask for the same affinity you already have. |
| ASSERT_EQ(0, pthread_setaffinity_np(pthread_self(), sizeof(set), &set)); |
| } |