| /* | 
 | ** This file is in the public domain, so clarified as of | 
 | ** 1996-06-05 by Arthur David Olson. | 
 | */ | 
 |  | 
 | /* | 
 | ** Leap second handling from Bradley White. | 
 | ** POSIX-style TZ environment variable handling from Guy Harris. | 
 | */ | 
 |  | 
 | /*LINTLIBRARY*/ | 
 |  | 
 | #define LOCALTIME_IMPLEMENTATION | 
 | #include "private.h" | 
 |  | 
 | #include "tzfile.h" | 
 | #include "fcntl.h" | 
 |  | 
 | #if THREAD_SAFE | 
 | # include <pthread.h> | 
 | static pthread_mutex_t locallock = PTHREAD_MUTEX_INITIALIZER; | 
 | static int lock(void) { return pthread_mutex_lock(&locallock); } | 
 | static void unlock(void) { pthread_mutex_unlock(&locallock); } | 
 | #else | 
 | static int lock(void) { return 0; } | 
 | static void unlock(void) { } | 
 | #endif | 
 |  | 
 | /* NETBSD_INSPIRED_EXTERN functions are exported to callers if | 
 |    NETBSD_INSPIRED is defined, and are private otherwise.  */ | 
 | #if NETBSD_INSPIRED | 
 | # define NETBSD_INSPIRED_EXTERN | 
 | #else | 
 | # define NETBSD_INSPIRED_EXTERN static | 
 | #endif | 
 |  | 
 | #ifndef TZ_ABBR_MAX_LEN | 
 | #define TZ_ABBR_MAX_LEN 16 | 
 | #endif /* !defined TZ_ABBR_MAX_LEN */ | 
 |  | 
 | #ifndef TZ_ABBR_CHAR_SET | 
 | #define TZ_ABBR_CHAR_SET \ | 
 |     "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" | 
 | #endif /* !defined TZ_ABBR_CHAR_SET */ | 
 |  | 
 | #ifndef TZ_ABBR_ERR_CHAR | 
 | #define TZ_ABBR_ERR_CHAR    '_' | 
 | #endif /* !defined TZ_ABBR_ERR_CHAR */ | 
 |  | 
 | /* | 
 | ** SunOS 4.1.1 headers lack O_BINARY. | 
 | */ | 
 |  | 
 | #ifdef O_BINARY | 
 | #define OPEN_MODE   (O_RDONLY | O_BINARY) | 
 | #endif /* defined O_BINARY */ | 
 | #ifndef O_BINARY | 
 | #define OPEN_MODE   O_RDONLY | 
 | #endif /* !defined O_BINARY */ | 
 |  | 
 | #ifndef WILDABBR | 
 | /* | 
 | ** Someone might make incorrect use of a time zone abbreviation: | 
 | **  1.  They might reference tzname[0] before calling tzset (explicitly | 
 | **      or implicitly). | 
 | **  2.  They might reference tzname[1] before calling tzset (explicitly | 
 | **      or implicitly). | 
 | **  3.  They might reference tzname[1] after setting to a time zone | 
 | **      in which Daylight Saving Time is never observed. | 
 | **  4.  They might reference tzname[0] after setting to a time zone | 
 | **      in which Standard Time is never observed. | 
 | **  5.  They might reference tm.TM_ZONE after calling offtime. | 
 | ** What's best to do in the above cases is open to debate; | 
 | ** for now, we just set things up so that in any of the five cases | 
 | ** WILDABBR is used. Another possibility: initialize tzname[0] to the | 
 | ** string "tzname[0] used before set", and similarly for the other cases. | 
 | ** And another: initialize tzname[0] to "ERA", with an explanation in the | 
 | ** manual page of what this "time zone abbreviation" means (doing this so | 
 | ** that tzname[0] has the "normal" length of three characters). | 
 | */ | 
 | #define WILDABBR    "   " | 
 | #endif /* !defined WILDABBR */ | 
 |  | 
 | static const char       wildabbr[] = WILDABBR; | 
 |  | 
 | static const char gmt[] = "GMT"; | 
 |  | 
 | /* | 
 | ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. | 
 | ** We default to US rules as of 1999-08-17. | 
 | ** POSIX 1003.1 section 8.1.1 says that the default DST rules are | 
 | ** implementation dependent; for historical reasons, US rules are a | 
 | ** common default. | 
 | */ | 
 | #ifndef TZDEFRULESTRING | 
 | #define TZDEFRULESTRING ",M4.1.0,M10.5.0" | 
 | #endif /* !defined TZDEFDST */ | 
 |  | 
 | struct ttinfo {              /* time type information */ | 
 |     int_fast32_t tt_gmtoff;  /* UT offset in seconds */ | 
 |     bool         tt_isdst;   /* used to set tm_isdst */ | 
 |     int          tt_abbrind; /* abbreviation list index */ | 
 |     bool         tt_ttisstd; /* transition is std time */ | 
 |     bool         tt_ttisgmt; /* transition is UT */ | 
 | }; | 
 |  | 
 | struct lsinfo {              /* leap second information */ | 
 |     time_t       ls_trans;   /* transition time */ | 
 |     int_fast64_t ls_corr;    /* correction to apply */ | 
 | }; | 
 |  | 
 | #define SMALLEST(a, b)	(((a) < (b)) ? (a) : (b)) | 
 | #define BIGGEST(a, b)   (((a) > (b)) ? (a) : (b)) | 
 |  | 
 | #ifdef TZNAME_MAX | 
 | #define MY_TZNAME_MAX   TZNAME_MAX | 
 | #endif /* defined TZNAME_MAX */ | 
 | #ifndef TZNAME_MAX | 
 | #define MY_TZNAME_MAX   255 | 
 | #endif /* !defined TZNAME_MAX */ | 
 |  | 
 | struct state { | 
 |     int           leapcnt; | 
 |     int           timecnt; | 
 |     int           typecnt; | 
 |     int           charcnt; | 
 |     bool          goback; | 
 |     bool          goahead; | 
 |     time_t        ats[TZ_MAX_TIMES]; | 
 |     unsigned char types[TZ_MAX_TIMES]; | 
 |     struct ttinfo ttis[TZ_MAX_TYPES]; | 
 |     char          chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), | 
 |                   (2 * (MY_TZNAME_MAX + 1)))]; | 
 |     struct lsinfo lsis[TZ_MAX_LEAPS]; | 
 |     int           defaulttype; /* for early times or if no transitions */ | 
 | }; | 
 |  | 
 | enum r_type { | 
 |   JULIAN_DAY,		/* Jn = Julian day */ | 
 |   DAY_OF_YEAR,		/* n = day of year */ | 
 |   MONTH_NTH_DAY_OF_WEEK	/* Mm.n.d = month, week, day of week */ | 
 | }; | 
 |  | 
 | struct rule { | 
 | 	enum r_type	r_type;		/* type of rule */ | 
 |     int          r_day;  /* day number of rule */ | 
 |     int          r_week; /* week number of rule */ | 
 |     int          r_mon;  /* month number of rule */ | 
 |     int_fast32_t r_time; /* transition time of rule */ | 
 | }; | 
 |  | 
 | static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t, | 
 | 			 struct tm *); | 
 | static bool increment_overflow(int *, int); | 
 | static bool increment_overflow_time(time_t *, int_fast32_t); | 
 | static bool normalize_overflow32(int_fast32_t *, int *, int); | 
 | static struct tm *timesub(time_t const *, int_fast32_t, struct state const *, | 
 | 			  struct tm *); | 
 | static bool typesequiv(struct state const *, int, int); | 
 | static bool tzparse(char const *, struct state *, bool); | 
 |  | 
 | #ifdef ALL_STATE | 
 | static struct state * lclptr; | 
 | static struct state * gmtptr; | 
 | #endif /* defined ALL_STATE */ | 
 |  | 
 | #ifndef ALL_STATE | 
 | static struct state lclmem; | 
 | static struct state gmtmem; | 
 | #define lclptr      (&lclmem) | 
 | #define gmtptr      (&gmtmem) | 
 | #endif /* State Farm */ | 
 |  | 
 | #ifndef TZ_STRLEN_MAX | 
 | #define TZ_STRLEN_MAX 255 | 
 | #endif /* !defined TZ_STRLEN_MAX */ | 
 |  | 
 | static char lcl_TZname[TZ_STRLEN_MAX + 1]; | 
 | static int  lcl_is_set; | 
 |  | 
 | /* | 
 | ** Section 4.12.3 of X3.159-1989 requires that | 
 | **  Except for the strftime function, these functions [asctime, | 
 | **  ctime, gmtime, localtime] return values in one of two static | 
 | **  objects: a broken-down time structure and an array of char. | 
 | ** Thanks to Paul Eggert for noting this. | 
 | */ | 
 |  | 
 | static struct tm	tm; | 
 |  | 
 | #if !HAVE_POSIX_DECLS | 
 | char *			tzname[2] = { | 
 | 	(char *) wildabbr, | 
 | 	(char *) wildabbr | 
 | }; | 
 | #ifdef USG_COMPAT | 
 | long			timezone; | 
 | int			daylight; | 
 | # endif | 
 | #endif | 
 |  | 
 | #ifdef ALTZONE | 
 | long			altzone; | 
 | #endif /* defined ALTZONE */ | 
 |  | 
 | /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND.  */ | 
 | static void | 
 | init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind) | 
 | { | 
 |   s->tt_gmtoff = gmtoff; | 
 |   s->tt_isdst = isdst; | 
 |   s->tt_abbrind = abbrind; | 
 |   s->tt_ttisstd = false; | 
 |   s->tt_ttisgmt = false; | 
 | } | 
 |  | 
 | static int_fast32_t | 
 | detzcode(const char *const codep) | 
 | { | 
 | 	register int_fast32_t	result; | 
 | 	register int		i; | 
 | 	int_fast32_t one = 1; | 
 | 	int_fast32_t halfmaxval = one << (32 - 2); | 
 | 	int_fast32_t maxval = halfmaxval - 1 + halfmaxval; | 
 | 	int_fast32_t minval = -1 - maxval; | 
 |  | 
 | 	result = codep[0] & 0x7f; | 
 | 	for (i = 1; i < 4; ++i) | 
 | 		result = (result << 8) | (codep[i] & 0xff); | 
 |  | 
 | 	if (codep[0] & 0x80) { | 
 | 	  /* Do two's-complement negation even on non-two's-complement machines. | 
 | 	     If the result would be minval - 1, return minval.  */ | 
 | 	  result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0; | 
 | 	  result += minval; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static int_fast64_t | 
 | detzcode64(const char *const codep) | 
 | { | 
 | 	register uint_fast64_t result; | 
 | 	register int	i; | 
 | 	int_fast64_t one = 1; | 
 | 	int_fast64_t halfmaxval = one << (64 - 2); | 
 | 	int_fast64_t maxval = halfmaxval - 1 + halfmaxval; | 
 | 	int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval; | 
 |  | 
 | 	result = codep[0] & 0x7f; | 
 | 	for (i = 1; i < 8; ++i) | 
 | 		result = (result << 8) | (codep[i] & 0xff); | 
 |  | 
 | 	if (codep[0] & 0x80) { | 
 | 	  /* Do two's-complement negation even on non-two's-complement machines. | 
 | 	     If the result would be minval - 1, return minval.  */ | 
 | 	  result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0; | 
 | 	  result += minval; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static void | 
 | update_tzname_etc(struct state const *sp, struct ttinfo const *ttisp) | 
 | { | 
 |   tzname[ttisp->tt_isdst] = (char *) &sp->chars[ttisp->tt_abbrind]; | 
 | #ifdef USG_COMPAT | 
 |   if (!ttisp->tt_isdst) | 
 |     timezone = - ttisp->tt_gmtoff; | 
 | #endif | 
 | #ifdef ALTZONE | 
 |   if (ttisp->tt_isdst) | 
 |     altzone = - ttisp->tt_gmtoff; | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | settzname(void) | 
 | { | 
 | 	register struct state * const	sp = lclptr; | 
 | 	register int			i; | 
 |  | 
 | 	tzname[0] = tzname[1] = (char *) wildabbr; | 
 | #ifdef USG_COMPAT | 
 | 	daylight = 0; | 
 | 	timezone = 0; | 
 | #endif /* defined USG_COMPAT */ | 
 | #ifdef ALTZONE | 
 | 	altzone = 0; | 
 | #endif /* defined ALTZONE */ | 
 | 	if (sp == NULL) { | 
 | 		tzname[0] = tzname[1] = (char *) gmt; | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	** And to get the latest zone names into tzname. . . | 
 | 	*/ | 
 | 	for (i = 0; i < sp->typecnt; ++i) { | 
 | 		register const struct ttinfo * const	ttisp = &sp->ttis[i]; | 
 | 		update_tzname_etc(sp, ttisp); | 
 | 	} | 
 | 	for (i = 0; i < sp->timecnt; ++i) { | 
 | 		register const struct ttinfo * const	ttisp = | 
 | 							&sp->ttis[ | 
 | 								sp->types[i]]; | 
 | 		update_tzname_etc(sp, ttisp); | 
 | #ifdef USG_COMPAT | 
 | 		if (ttisp->tt_isdst) | 
 | 			daylight = 1; | 
 | #endif /* defined USG_COMPAT */ | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | scrub_abbrs(struct state *sp) | 
 | { | 
 | 	int i; | 
 | 	/* | 
 | 	** First, replace bogus characters. | 
 | 	*/ | 
 | 	for (i = 0; i < sp->charcnt; ++i) | 
 | 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) | 
 | 			sp->chars[i] = TZ_ABBR_ERR_CHAR; | 
 | 	/* | 
 | 	** Second, truncate long abbreviations. | 
 | 	*/ | 
 | 	for (i = 0; i < sp->typecnt; ++i) { | 
 | 		register const struct ttinfo * const	ttisp = &sp->ttis[i]; | 
 | 		register char *				cp = &sp->chars[ttisp->tt_abbrind]; | 
 |  | 
 | 		if (strlen(cp) > TZ_ABBR_MAX_LEN && | 
 | 			strcmp(cp, GRANDPARENTED) != 0) | 
 | 				*(cp + TZ_ABBR_MAX_LEN) = '\0'; | 
 | 	} | 
 | } | 
 |  | 
 | static bool | 
 | differ_by_repeat(const time_t t1, const time_t t0) | 
 | { | 
 |     if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) | 
 |         return 0; | 
 | #if defined(__LP64__) // 32-bit Android/glibc has a signed 32-bit time_t; 64-bit doesn't. | 
 |     return t1 - t0 == SECSPERREPEAT; | 
 | #endif | 
 | } | 
 |  | 
 | /* Input buffer for data read from a compiled tz file.  */ | 
 | union input_buffer { | 
 |   /* The first part of the buffer, interpreted as a header.  */ | 
 |   struct tzhead tzhead; | 
 |  | 
 |   /* The entire buffer.  */ | 
 |   char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state) | 
 | 	   + 4 * TZ_MAX_TIMES]; | 
 | }; | 
 |  | 
 | /* Local storage needed for 'tzloadbody'.  */ | 
 | union local_storage { | 
 |   /* The file name to be opened.  */ | 
 |   char fullname[FILENAME_MAX + 1]; | 
 |  | 
 |   /* The results of analyzing the file's contents after it is opened.  */ | 
 |   struct { | 
 |     /* The input buffer.  */ | 
 |     union input_buffer u; | 
 |  | 
 |     /* A temporary state used for parsing a TZ string in the file.  */ | 
 |     struct state st; | 
 |   } u; | 
 | }; | 
 |  | 
 | /* Load tz data from the file named NAME into *SP.  Read extended | 
 |    format if DOEXTEND.  Use *LSP for temporary storage.  Return 0 on | 
 |    success, an errno value on failure.  */ | 
 | static int | 
 | tzloadbody(char const *name, struct state *sp, bool doextend, | 
 | 	   union local_storage *lsp) | 
 | { | 
 | 	register int			i; | 
 | 	register int			fid; | 
 | 	register int			stored; | 
 | 	register ssize_t		nread; | 
 | #if !defined(__BIONIC__) | 
 | 	register bool doaccess; | 
 | 	register char *fullname = lsp->fullname; | 
 | #endif | 
 | 	register union input_buffer *up = &lsp->u.u; | 
 | 	register int tzheadsize = sizeof (struct tzhead); | 
 |  | 
 | 	sp->goback = sp->goahead = false; | 
 |  | 
 | 	if (! name) { | 
 | 		name = TZDEFAULT; | 
 | 		if (! name) | 
 | 		  return EINVAL; | 
 | 	} | 
 |  | 
 | #if defined(__BIONIC__) | 
 | 	extern int __bionic_open_tzdata(const char*, int32_t*); | 
 | 	int32_t entry_length; | 
 | 	fid = __bionic_open_tzdata(name, &entry_length); | 
 | #else | 
 | 	if (name[0] == ':') | 
 | 		++name; | 
 | 	doaccess = name[0] == '/'; | 
 | 	if (!doaccess) { | 
 | 		char const *p = TZDIR; | 
 | 		if (! p) | 
 | 		  return EINVAL; | 
 | 		if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name)) | 
 | 		  return ENAMETOOLONG; | 
 | 		strcpy(fullname, p); | 
 | 		strcat(fullname, "/"); | 
 | 		strcat(fullname, name); | 
 | 		/* Set doaccess if '.' (as in "../") shows up in name.  */ | 
 | 		if (strchr(name, '.')) | 
 | 			doaccess = true; | 
 | 		name = fullname; | 
 | 	} | 
 | 	if (doaccess && access(name, R_OK) != 0) | 
 | 	  return errno; | 
 | 	fid = open(name, OPEN_MODE); | 
 | #endif | 
 | 	if (fid < 0) | 
 | 	  return errno; | 
 |  | 
 | #if defined(__BIONIC__) | 
 | 	nread = TEMP_FAILURE_RETRY(read(fid, up->buf, entry_length)); | 
 | #else | 
 | 	nread = read(fid, up->buf, sizeof up->buf); | 
 | #endif | 
 | 	if (nread < tzheadsize) { | 
 | 	  int err = nread < 0 ? errno : EINVAL; | 
 | 	  close(fid); | 
 | 	  return err; | 
 | 	} | 
 | 	if (close(fid) < 0) | 
 | 	  return errno; | 
 | 	for (stored = 4; stored <= 8; stored *= 2) { | 
 | 		int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt); | 
 | 		int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt); | 
 | 		int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt); | 
 | 		int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt); | 
 | 		int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt); | 
 | 		int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt); | 
 | 		char const *p = up->buf + tzheadsize; | 
 | 		if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS | 
 | 		       && 0 < typecnt && typecnt < TZ_MAX_TYPES | 
 | 		       && 0 <= timecnt && timecnt < TZ_MAX_TIMES | 
 | 		       && 0 <= charcnt && charcnt < TZ_MAX_CHARS | 
 | 		       && (ttisstdcnt == typecnt || ttisstdcnt == 0) | 
 | 		       && (ttisgmtcnt == typecnt || ttisgmtcnt == 0))) | 
 | 		  return EINVAL; | 
 | 		if (nread | 
 | 		    < (tzheadsize		/* struct tzhead */ | 
 | 		       + timecnt * stored	/* ats */ | 
 | 		       + timecnt		/* types */ | 
 | 		       + typecnt * 6		/* ttinfos */ | 
 | 		       + charcnt		/* chars */ | 
 | 		       + leapcnt * (stored + 4)	/* lsinfos */ | 
 | 		       + ttisstdcnt		/* ttisstds */ | 
 | 		       + ttisgmtcnt))		/* ttisgmts */ | 
 | 		  return EINVAL; | 
 | 		sp->leapcnt = leapcnt; | 
 | 		sp->timecnt = timecnt; | 
 | 		sp->typecnt = typecnt; | 
 | 		sp->charcnt = charcnt; | 
 |  | 
 | 		/* Read transitions, discarding those out of time_t range. | 
 | 		   But pretend the last transition before time_t_min | 
 | 		   occurred at time_t_min.  */ | 
 | 		timecnt = 0; | 
 | 		for (i = 0; i < sp->timecnt; ++i) { | 
 | 			int_fast64_t at | 
 | 			  = stored == 4 ? detzcode(p) : detzcode64(p); | 
 | 			sp->types[i] = at <= time_t_max; | 
 | 			if (sp->types[i]) { | 
 | 			  time_t attime | 
 | 			    = ((TYPE_SIGNED(time_t) ? at < time_t_min : at < 0) | 
 | 			       ? time_t_min : at); | 
 | 			  if (timecnt && attime <= sp->ats[timecnt - 1]) { | 
 | 			    if (attime < sp->ats[timecnt - 1]) | 
 | 			      return EINVAL; | 
 | 			    sp->types[i - 1] = 0; | 
 | 			    timecnt--; | 
 | 			  } | 
 | 			  sp->ats[timecnt++] = attime; | 
 | 			} | 
 | 			p += stored; | 
 | 		} | 
 |  | 
 | 		timecnt = 0; | 
 | 		for (i = 0; i < sp->timecnt; ++i) { | 
 | 			unsigned char typ = *p++; | 
 | 			if (sp->typecnt <= typ) | 
 | 			  return EINVAL; | 
 | 			if (sp->types[i]) | 
 | 				sp->types[timecnt++] = typ; | 
 | 		} | 
 | 		sp->timecnt = timecnt; | 
 | 		for (i = 0; i < sp->typecnt; ++i) { | 
 | 			register struct ttinfo *	ttisp; | 
 | 			unsigned char isdst, abbrind; | 
 |  | 
 | 			ttisp = &sp->ttis[i]; | 
 | 			ttisp->tt_gmtoff = detzcode(p); | 
 | 			p += 4; | 
 | 			isdst = *p++; | 
 | 			if (! (isdst < 2)) | 
 | 			  return EINVAL; | 
 | 			ttisp->tt_isdst = isdst; | 
 | 			abbrind = *p++; | 
 | 			if (! (abbrind < sp->charcnt)) | 
 | 			  return EINVAL; | 
 | 			ttisp->tt_abbrind = abbrind; | 
 | 		} | 
 | 		for (i = 0; i < sp->charcnt; ++i) | 
 | 			sp->chars[i] = *p++; | 
 | 		sp->chars[i] = '\0';	/* ensure '\0' at end */ | 
 |  | 
 | 		/* Read leap seconds, discarding those out of time_t range.  */ | 
 | 		leapcnt = 0; | 
 | 		for (i = 0; i < sp->leapcnt; ++i) { | 
 | 		  int_fast64_t tr = stored == 4 ? detzcode(p) : detzcode64(p); | 
 | 		  int_fast32_t corr = detzcode(p + stored); | 
 | 		  p += stored + 4; | 
 | 		  if (tr <= time_t_max) { | 
 | 		    time_t trans | 
 | 		      = ((TYPE_SIGNED(time_t) ? tr < time_t_min : tr < 0) | 
 | 			 ? time_t_min : tr); | 
 | 		    if (leapcnt && trans <= sp->lsis[leapcnt - 1].ls_trans) { | 
 | 		      if (trans < sp->lsis[leapcnt - 1].ls_trans) | 
 | 			return EINVAL; | 
 | 		      leapcnt--; | 
 | 		    } | 
 | 		    sp->lsis[leapcnt].ls_trans = trans; | 
 | 		    sp->lsis[leapcnt].ls_corr = corr; | 
 | 		    leapcnt++; | 
 | 		  } | 
 | 		} | 
 | 		sp->leapcnt = leapcnt; | 
 |  | 
 | 		for (i = 0; i < sp->typecnt; ++i) { | 
 | 			register struct ttinfo *	ttisp; | 
 |  | 
 | 			ttisp = &sp->ttis[i]; | 
 | 			if (ttisstdcnt == 0) | 
 | 				ttisp->tt_ttisstd = false; | 
 | 			else { | 
 | 				if (*p != true && *p != false) | 
 | 				  return EINVAL; | 
 | 				ttisp->tt_ttisstd = *p++; | 
 | 			} | 
 | 		} | 
 | 		for (i = 0; i < sp->typecnt; ++i) { | 
 | 			register struct ttinfo *	ttisp; | 
 |  | 
 | 			ttisp = &sp->ttis[i]; | 
 | 			if (ttisgmtcnt == 0) | 
 | 				ttisp->tt_ttisgmt = false; | 
 | 			else { | 
 | 				if (*p != true && *p != false) | 
 | 						return EINVAL; | 
 | 				ttisp->tt_ttisgmt = *p++; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		** If this is an old file, we're done. | 
 | 		*/ | 
 | 		if (up->tzhead.tzh_version[0] == '\0') | 
 | 			break; | 
 | 		nread -= p - up->buf; | 
 | 		memmove(up->buf, p, nread); | 
 | 	} | 
 | 	if (doextend && nread > 2 && | 
 | 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && | 
 | 		sp->typecnt + 2 <= TZ_MAX_TYPES) { | 
 | 			struct state	*ts = &lsp->u.st; | 
 |  | 
 | 			up->buf[nread - 1] = '\0'; | 
 | 			if (tzparse(&up->buf[1], ts, false) | 
 | 			    && ts->typecnt == 2) { | 
 |  | 
 | 			  /* Attempt to reuse existing abbreviations. | 
 | 			     Without this, America/Anchorage would stop | 
 | 			     working after 2037 when TZ_MAX_CHARS is 50, as | 
 | 			     sp->charcnt equals 42 (for LMT CAT CAWT CAPT AHST | 
 | 			     AHDT YST AKDT AKST) and ts->charcnt equals 10 | 
 | 			     (for AKST AKDT).  Reusing means sp->charcnt can | 
 | 			     stay 42 in this example.  */ | 
 | 			  int gotabbr = 0; | 
 | 			  int charcnt = sp->charcnt; | 
 | 			  for (i = 0; i < 2; i++) { | 
 | 			    char *tsabbr = ts->chars + ts->ttis[i].tt_abbrind; | 
 | 			    int j; | 
 | 			    for (j = 0; j < charcnt; j++) | 
 | 			      if (strcmp(sp->chars + j, tsabbr) == 0) { | 
 | 				ts->ttis[i].tt_abbrind = j; | 
 | 				gotabbr++; | 
 | 				break; | 
 | 			      } | 
 | 			    if (! (j < charcnt)) { | 
 | 			      int tsabbrlen = strlen(tsabbr); | 
 | 			      if (j + tsabbrlen < TZ_MAX_CHARS) { | 
 | 				strcpy(sp->chars + j, tsabbr); | 
 | 				charcnt = j + tsabbrlen + 1; | 
 | 				ts->ttis[i].tt_abbrind = j; | 
 | 				gotabbr++; | 
 | 			      } | 
 | 			    } | 
 | 			  } | 
 | 			  if (gotabbr == 2) { | 
 | 			    sp->charcnt = charcnt; | 
 | 			    for (i = 0; i < ts->timecnt; i++) | 
 | 			      if (sp->ats[sp->timecnt - 1] < ts->ats[i]) | 
 | 				break; | 
 | 			    while (i < ts->timecnt | 
 | 				   && sp->timecnt < TZ_MAX_TIMES) { | 
 | 			      sp->ats[sp->timecnt] = ts->ats[i]; | 
 | 			      sp->types[sp->timecnt] = (sp->typecnt | 
 | 							+ ts->types[i]); | 
 | 			      sp->timecnt++; | 
 | 			      i++; | 
 | 			    } | 
 | 			    sp->ttis[sp->typecnt++] = ts->ttis[0]; | 
 | 			    sp->ttis[sp->typecnt++] = ts->ttis[1]; | 
 | 			  } | 
 | 			} | 
 | 	} | 
 | 	if (sp->timecnt > 1) { | 
 | 		for (i = 1; i < sp->timecnt; ++i) | 
 | 			if (typesequiv(sp, sp->types[i], sp->types[0]) && | 
 | 				differ_by_repeat(sp->ats[i], sp->ats[0])) { | 
 | 					sp->goback = true; | 
 | 					break; | 
 | 				} | 
 | 		for (i = sp->timecnt - 2; i >= 0; --i) | 
 | 			if (typesequiv(sp, sp->types[sp->timecnt - 1], | 
 | 				sp->types[i]) && | 
 | 				differ_by_repeat(sp->ats[sp->timecnt - 1], | 
 | 				sp->ats[i])) { | 
 | 					sp->goahead = true; | 
 | 					break; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	** If type 0 is is unused in transitions, | 
 | 	** it's the type to use for early times. | 
 | 	*/ | 
 | 	for (i = 0; i < sp->timecnt; ++i) | 
 | 		if (sp->types[i] == 0) | 
 | 			break; | 
 | 	i = i < sp->timecnt ? -1 : 0; | 
 | 	/* | 
 | 	** Absent the above, | 
 | 	** if there are transition times | 
 | 	** and the first transition is to a daylight time | 
 | 	** find the standard type less than and closest to | 
 | 	** the type of the first transition. | 
 | 	*/ | 
 | 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) { | 
 | 		i = sp->types[0]; | 
 | 		while (--i >= 0) | 
 | 			if (!sp->ttis[i].tt_isdst) | 
 | 				break; | 
 | 	} | 
 | 	/* | 
 | 	** If no result yet, find the first standard type. | 
 | 	** If there is none, punt to type zero. | 
 | 	*/ | 
 | 	if (i < 0) { | 
 | 		i = 0; | 
 | 		while (sp->ttis[i].tt_isdst) | 
 | 			if (++i >= sp->typecnt) { | 
 | 				i = 0; | 
 | 				break; | 
 | 			} | 
 | 	} | 
 | 	sp->defaulttype = i; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Load tz data from the file named NAME into *SP.  Read extended | 
 |    format if DOEXTEND.  Return 0 on success, an errno value on failure.  */ | 
 | static int | 
 | tzload(char const *name, struct state *sp, bool doextend) | 
 | { | 
 | #ifdef ALL_STATE | 
 |   union local_storage *lsp = malloc(sizeof *lsp); | 
 |   if (!lsp) | 
 |     return errno; | 
 |   else { | 
 |     int err = tzloadbody(name, sp, doextend, lsp); | 
 |     free(lsp); | 
 |     return err; | 
 |   } | 
 | #else | 
 |   union local_storage ls; | 
 |   return tzloadbody(name, sp, doextend, &ls); | 
 | #endif | 
 | } | 
 |  | 
 | static bool | 
 | typesequiv(const struct state *sp, int a, int b) | 
 | { | 
 | 	register bool result; | 
 |  | 
 | 	if (sp == NULL || | 
 | 		a < 0 || a >= sp->typecnt || | 
 | 		b < 0 || b >= sp->typecnt) | 
 | 			result = false; | 
 | 	else { | 
 | 		register const struct ttinfo *	ap = &sp->ttis[a]; | 
 | 		register const struct ttinfo *	bp = &sp->ttis[b]; | 
 | 		result = ap->tt_gmtoff == bp->tt_gmtoff && | 
 | 			ap->tt_isdst == bp->tt_isdst && | 
 | 			ap->tt_ttisstd == bp->tt_ttisstd && | 
 | 			ap->tt_ttisgmt == bp->tt_ttisgmt && | 
 | 			strcmp(&sp->chars[ap->tt_abbrind], | 
 | 			&sp->chars[bp->tt_abbrind]) == 0; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static const int	mon_lengths[2][MONSPERYEAR] = { | 
 | 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, | 
 | 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } | 
 | }; | 
 |  | 
 | static const int	year_lengths[2] = { | 
 | 	DAYSPERNYEAR, DAYSPERLYEAR | 
 | }; | 
 |  | 
 | /* | 
 | ** Given a pointer into a time zone string, scan until a character that is not | 
 | ** a valid character in a zone name is found. Return a pointer to that | 
 | ** character. | 
 | */ | 
 |  | 
 | static const char * ATTRIBUTE_PURE | 
 | getzname(register const char *strp) | 
 | { | 
 | 	register char	c; | 
 |  | 
 | 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && | 
 | 		c != '+') | 
 | 			++strp; | 
 | 	return strp; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a pointer into an extended time zone string, scan until the ending | 
 | ** delimiter of the zone name is located. Return a pointer to the delimiter. | 
 | ** | 
 | ** As with getzname above, the legal character set is actually quite | 
 | ** restricted, with other characters producing undefined results. | 
 | ** We don't do any checking here; checking is done later in common-case code. | 
 | */ | 
 |  | 
 | static const char * ATTRIBUTE_PURE | 
 | getqzname(register const char *strp, const int delim) | 
 | { | 
 | 	register int	c; | 
 |  | 
 | 	while ((c = *strp) != '\0' && c != delim) | 
 | 		++strp; | 
 | 	return strp; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a pointer into a time zone string, extract a number from that string. | 
 | ** Check that the number is within a specified range; if it is not, return | 
 | ** NULL. | 
 | ** Otherwise, return a pointer to the first character not part of the number. | 
 | */ | 
 |  | 
 | static const char * | 
 | getnum(register const char *strp, int *const nump, const int min, const int max) | 
 | { | 
 | 	register char	c; | 
 | 	register int	num; | 
 |  | 
 | 	if (strp == NULL || !is_digit(c = *strp)) | 
 | 		return NULL; | 
 | 	num = 0; | 
 | 	do { | 
 | 		num = num * 10 + (c - '0'); | 
 | 		if (num > max) | 
 | 			return NULL;	/* illegal value */ | 
 | 		c = *++strp; | 
 | 	} while (is_digit(c)); | 
 | 	if (num < min) | 
 | 		return NULL;		/* illegal value */ | 
 | 	*nump = num; | 
 | 	return strp; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a pointer into a time zone string, extract a number of seconds, | 
 | ** in hh[:mm[:ss]] form, from the string. | 
 | ** If any error occurs, return NULL. | 
 | ** Otherwise, return a pointer to the first character not part of the number | 
 | ** of seconds. | 
 | */ | 
 |  | 
 | static const char * | 
 | getsecs(register const char *strp, int_fast32_t *const secsp) | 
 | { | 
 | 	int	num; | 
 |  | 
 | 	/* | 
 | 	** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like | 
 | 	** "M10.4.6/26", which does not conform to Posix, | 
 | 	** but which specifies the equivalent of | 
 | 	** "02:00 on the first Sunday on or after 23 Oct". | 
 | 	*/ | 
 | 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); | 
 | 	if (strp == NULL) | 
 | 		return NULL; | 
 | 	*secsp = num * (int_fast32_t) SECSPERHOUR; | 
 | 	if (*strp == ':') { | 
 | 		++strp; | 
 | 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1); | 
 | 		if (strp == NULL) | 
 | 			return NULL; | 
 | 		*secsp += num * SECSPERMIN; | 
 | 		if (*strp == ':') { | 
 | 			++strp; | 
 | 			/* 'SECSPERMIN' allows for leap seconds.  */ | 
 | 			strp = getnum(strp, &num, 0, SECSPERMIN); | 
 | 			if (strp == NULL) | 
 | 				return NULL; | 
 | 			*secsp += num; | 
 | 		} | 
 | 	} | 
 | 	return strp; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a pointer into a time zone string, extract an offset, in | 
 | ** [+-]hh[:mm[:ss]] form, from the string. | 
 | ** If any error occurs, return NULL. | 
 | ** Otherwise, return a pointer to the first character not part of the time. | 
 | */ | 
 |  | 
 | static const char * | 
 | getoffset(register const char *strp, int_fast32_t *const offsetp) | 
 | { | 
 | 	register bool neg = false; | 
 |  | 
 | 	if (*strp == '-') { | 
 | 		neg = true; | 
 | 		++strp; | 
 | 	} else if (*strp == '+') | 
 | 		++strp; | 
 | 	strp = getsecs(strp, offsetp); | 
 | 	if (strp == NULL) | 
 | 		return NULL;		/* illegal time */ | 
 | 	if (neg) | 
 | 		*offsetp = -*offsetp; | 
 | 	return strp; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a pointer into a time zone string, extract a rule in the form | 
 | ** date[/time]. See POSIX section 8 for the format of "date" and "time". | 
 | ** If a valid rule is not found, return NULL. | 
 | ** Otherwise, return a pointer to the first character not part of the rule. | 
 | */ | 
 |  | 
 | static const char * | 
 | getrule(const char *strp, register struct rule *const rulep) | 
 | { | 
 | 	if (*strp == 'J') { | 
 | 		/* | 
 | 		** Julian day. | 
 | 		*/ | 
 | 		rulep->r_type = JULIAN_DAY; | 
 | 		++strp; | 
 | 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); | 
 | 	} else if (*strp == 'M') { | 
 | 		/* | 
 | 		** Month, week, day. | 
 | 		*/ | 
 | 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK; | 
 | 		++strp; | 
 | 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); | 
 | 		if (strp == NULL) | 
 | 			return NULL; | 
 | 		if (*strp++ != '.') | 
 | 			return NULL; | 
 | 		strp = getnum(strp, &rulep->r_week, 1, 5); | 
 | 		if (strp == NULL) | 
 | 			return NULL; | 
 | 		if (*strp++ != '.') | 
 | 			return NULL; | 
 | 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); | 
 | 	} else if (is_digit(*strp)) { | 
 | 		/* | 
 | 		** Day of year. | 
 | 		*/ | 
 | 		rulep->r_type = DAY_OF_YEAR; | 
 | 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); | 
 | 	} else	return NULL;		/* invalid format */ | 
 | 	if (strp == NULL) | 
 | 		return NULL; | 
 | 	if (*strp == '/') { | 
 | 		/* | 
 | 		** Time specified. | 
 | 		*/ | 
 | 		++strp; | 
 | 		strp = getoffset(strp, &rulep->r_time); | 
 | 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */ | 
 | 	return strp; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a year, a rule, and the offset from UT at the time that rule takes | 
 | ** effect, calculate the year-relative time that rule takes effect. | 
 | */ | 
 |  | 
 | static int_fast32_t ATTRIBUTE_PURE | 
 | transtime(const int year, register const struct rule *const rulep, | 
 |           const int_fast32_t offset) | 
 | { | 
 |     register bool         leapyear; | 
 |     register int_fast32_t value; | 
 |     register int          i; | 
 |     int d, m1, yy0, yy1, yy2, dow; | 
 |  | 
 |     INITIALIZE(value); | 
 |     leapyear = isleap(year); | 
 |     switch (rulep->r_type) { | 
 |  | 
 |     case JULIAN_DAY: | 
 |         /* | 
 |         ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap | 
 |         ** years. | 
 |         ** In non-leap years, or if the day number is 59 or less, just | 
 |         ** add SECSPERDAY times the day number-1 to the time of | 
 |         ** January 1, midnight, to get the day. | 
 |         */ | 
 |         value = (rulep->r_day - 1) * SECSPERDAY; | 
 |         if (leapyear && rulep->r_day >= 60) | 
 |             value += SECSPERDAY; | 
 |         break; | 
 |  | 
 |     case DAY_OF_YEAR: | 
 |         /* | 
 |         ** n - day of year. | 
 |         ** Just add SECSPERDAY times the day number to the time of | 
 |         ** January 1, midnight, to get the day. | 
 |         */ | 
 |         value = rulep->r_day * SECSPERDAY; | 
 |         break; | 
 |  | 
 |     case MONTH_NTH_DAY_OF_WEEK: | 
 |         /* | 
 |         ** Mm.n.d - nth "dth day" of month m. | 
 |         */ | 
 |  | 
 |         /* | 
 |         ** Use Zeller's Congruence to get day-of-week of first day of | 
 |         ** month. | 
 |         */ | 
 |         m1 = (rulep->r_mon + 9) % 12 + 1; | 
 |         yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; | 
 |         yy1 = yy0 / 100; | 
 |         yy2 = yy0 % 100; | 
 |         dow = ((26 * m1 - 2) / 10 + | 
 |             1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; | 
 |         if (dow < 0) | 
 |             dow += DAYSPERWEEK; | 
 |  | 
 |         /* | 
 |         ** "dow" is the day-of-week of the first day of the month. Get | 
 |         ** the day-of-month (zero-origin) of the first "dow" day of the | 
 |         ** month. | 
 |         */ | 
 |         d = rulep->r_day - dow; | 
 |         if (d < 0) | 
 |             d += DAYSPERWEEK; | 
 |         for (i = 1; i < rulep->r_week; ++i) { | 
 |             if (d + DAYSPERWEEK >= | 
 |                 mon_lengths[leapyear][rulep->r_mon - 1]) | 
 |                     break; | 
 |             d += DAYSPERWEEK; | 
 |         } | 
 |  | 
 |         /* | 
 |         ** "d" is the day-of-month (zero-origin) of the day we want. | 
 |         */ | 
 |         value = d * SECSPERDAY; | 
 |         for (i = 0; i < rulep->r_mon - 1; ++i) | 
 |             value += mon_lengths[leapyear][i] * SECSPERDAY; | 
 |         break; | 
 |     } | 
 |  | 
 |     /* | 
 |     ** "value" is the year-relative time of 00:00:00 UT on the day in | 
 |     ** question. To get the year-relative time of the specified local | 
 |     ** time on that day, add the transition time and the current offset | 
 |     ** from UT. | 
 |     */ | 
 |     return value + rulep->r_time + offset; | 
 | } | 
 |  | 
 | /* | 
 | ** Given a POSIX section 8-style TZ string, fill in the rule tables as | 
 | ** appropriate. | 
 | */ | 
 |  | 
 | static bool | 
 | tzparse(const char *name, struct state *sp, bool lastditch) | 
 | { | 
 | 	const char *			stdname; | 
 | 	const char *			dstname; | 
 | 	size_t				stdlen; | 
 | 	size_t				dstlen; | 
 | 	size_t				charcnt; | 
 | 	int_fast32_t			stdoffset; | 
 | 	int_fast32_t			dstoffset; | 
 | 	register char *			cp; | 
 | 	register bool			load_ok; | 
 |  | 
 | 	stdname = name; | 
 | 	if (lastditch) { | 
 | 		stdlen = sizeof gmt - 1; | 
 | 		name += stdlen; | 
 | 		stdoffset = 0; | 
 | 	} else { | 
 | 		if (*name == '<') { | 
 | 			name++; | 
 | 			stdname = name; | 
 | 			name = getqzname(name, '>'); | 
 | 			if (*name != '>') | 
 | 			  return false; | 
 | 			stdlen = name - stdname; | 
 | 			name++; | 
 | 		} else { | 
 | 			name = getzname(name); | 
 | 			stdlen = name - stdname; | 
 | 		} | 
 | 		if (!stdlen) | 
 | 		  return false; | 
 | 		name = getoffset(name, &stdoffset); | 
 | 		if (name == NULL) | 
 | 		  return false; | 
 | 	} | 
 | 	charcnt = stdlen + 1; | 
 | 	if (sizeof sp->chars < charcnt) | 
 | 	  return false; | 
 | 	load_ok = tzload(TZDEFRULES, sp, false) == 0; | 
 | 	if (!load_ok) | 
 | 		sp->leapcnt = 0;		/* so, we're off a little */ | 
 | 	if (*name != '\0') { | 
 | 		if (*name == '<') { | 
 | 			dstname = ++name; | 
 | 			name = getqzname(name, '>'); | 
 | 			if (*name != '>') | 
 | 			  return false; | 
 | 			dstlen = name - dstname; | 
 | 			name++; | 
 | 		} else { | 
 | 			dstname = name; | 
 | 			name = getzname(name); | 
 | 			dstlen = name - dstname; /* length of DST zone name */ | 
 | 		} | 
 | 		if (!dstlen) | 
 | 		  return false; | 
 | 		charcnt += dstlen + 1; | 
 | 		if (sizeof sp->chars < charcnt) | 
 | 		  return false; | 
 | 		if (*name != '\0' && *name != ',' && *name != ';') { | 
 | 			name = getoffset(name, &dstoffset); | 
 | 			if (name == NULL) | 
 | 			  return false; | 
 | 		} else	dstoffset = stdoffset - SECSPERHOUR; | 
 | 		if (*name == '\0' && !load_ok) | 
 | 			name = TZDEFRULESTRING; | 
 | 		if (*name == ',' || *name == ';') { | 
 | 			struct rule	start; | 
 | 			struct rule	end; | 
 | 			register int	year; | 
 | 			register int	yearlim; | 
 | 			register int	timecnt; | 
 | 			time_t		janfirst; | 
 |  | 
 | 			++name; | 
 | 			if ((name = getrule(name, &start)) == NULL) | 
 | 			  return false; | 
 | 			if (*name++ != ',') | 
 | 			  return false; | 
 | 			if ((name = getrule(name, &end)) == NULL) | 
 | 			  return false; | 
 | 			if (*name != '\0') | 
 | 			  return false; | 
 | 			sp->typecnt = 2;	/* standard time and DST */ | 
 | 			/* | 
 | 			** Two transitions per year, from EPOCH_YEAR forward. | 
 | 			*/ | 
 | 			init_ttinfo(&sp->ttis[0], -dstoffset, true, stdlen + 1); | 
 | 			init_ttinfo(&sp->ttis[1], -stdoffset, false, 0); | 
 | 			sp->defaulttype = 0; | 
 | 			timecnt = 0; | 
 | 			janfirst = 0; | 
 | 			yearlim = EPOCH_YEAR + YEARSPERREPEAT; | 
 | 			for (year = EPOCH_YEAR; year < yearlim; year++) { | 
 | 				int_fast32_t | 
 | 				  starttime = transtime(year, &start, stdoffset), | 
 | 				  endtime = transtime(year, &end, dstoffset); | 
 | 				int_fast32_t | 
 | 				  yearsecs = (year_lengths[isleap(year)] | 
 | 					      * SECSPERDAY); | 
 | 				bool reversed = endtime < starttime; | 
 | 				if (reversed) { | 
 | 					int_fast32_t swap = starttime; | 
 | 					starttime = endtime; | 
 | 					endtime = swap; | 
 | 				} | 
 | 				if (reversed | 
 | 				    || (starttime < endtime | 
 | 					&& (endtime - starttime | 
 | 					    < (yearsecs | 
 | 					       + (stdoffset - dstoffset))))) { | 
 | 					if (TZ_MAX_TIMES - 2 < timecnt) | 
 | 						break; | 
 | 					yearlim = year + YEARSPERREPEAT + 1; | 
 | 					sp->ats[timecnt] = janfirst; | 
 | 					if (increment_overflow_time | 
 | 					    (&sp->ats[timecnt], starttime)) | 
 | 						break; | 
 | 					sp->types[timecnt++] = reversed; | 
 | 					sp->ats[timecnt] = janfirst; | 
 | 					if (increment_overflow_time | 
 | 					    (&sp->ats[timecnt], endtime)) | 
 | 						break; | 
 | 					sp->types[timecnt++] = !reversed; | 
 | 				} | 
 | 				if (increment_overflow_time(&janfirst, yearsecs)) | 
 | 					break; | 
 | 			} | 
 | 			sp->timecnt = timecnt; | 
 | 			if (!timecnt) | 
 | 				sp->typecnt = 1;	/* Perpetual DST.  */ | 
 | 		} else { | 
 | 			register int_fast32_t	theirstdoffset; | 
 | 			register int_fast32_t	theirdstoffset; | 
 | 			register int_fast32_t	theiroffset; | 
 | 			register bool		isdst; | 
 | 			register int		i; | 
 | 			register int		j; | 
 |  | 
 | 			if (*name != '\0') | 
 | 			  return false; | 
 | 			/* | 
 | 			** Initial values of theirstdoffset and theirdstoffset. | 
 | 			*/ | 
 | 			theirstdoffset = 0; | 
 | 			for (i = 0; i < sp->timecnt; ++i) { | 
 | 				j = sp->types[i]; | 
 | 				if (!sp->ttis[j].tt_isdst) { | 
 | 					theirstdoffset = | 
 | 						-sp->ttis[j].tt_gmtoff; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			theirdstoffset = 0; | 
 | 			for (i = 0; i < sp->timecnt; ++i) { | 
 | 				j = sp->types[i]; | 
 | 				if (sp->ttis[j].tt_isdst) { | 
 | 					theirdstoffset = | 
 | 						-sp->ttis[j].tt_gmtoff; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			/* | 
 | 			** Initially we're assumed to be in standard time. | 
 | 			*/ | 
 | 			isdst = false; | 
 | 			theiroffset = theirstdoffset; | 
 | 			/* | 
 | 			** Now juggle transition times and types | 
 | 			** tracking offsets as you do. | 
 | 			*/ | 
 | 			for (i = 0; i < sp->timecnt; ++i) { | 
 | 				j = sp->types[i]; | 
 | 				sp->types[i] = sp->ttis[j].tt_isdst; | 
 | 				if (sp->ttis[j].tt_ttisgmt) { | 
 | 					/* No adjustment to transition time */ | 
 | 				} else { | 
 | 					/* | 
 | 					** If summer time is in effect, and the | 
 | 					** transition time was not specified as | 
 | 					** standard time, add the summer time | 
 | 					** offset to the transition time; | 
 | 					** otherwise, add the standard time | 
 | 					** offset to the transition time. | 
 | 					*/ | 
 | 					/* | 
 | 					** Transitions from DST to DDST | 
 | 					** will effectively disappear since | 
 | 					** POSIX provides for only one DST | 
 | 					** offset. | 
 | 					*/ | 
 | 					if (isdst && !sp->ttis[j].tt_ttisstd) { | 
 | 						sp->ats[i] += dstoffset - | 
 | 							theirdstoffset; | 
 | 					} else { | 
 | 						sp->ats[i] += stdoffset - | 
 | 							theirstdoffset; | 
 | 					} | 
 | 				} | 
 | 				theiroffset = -sp->ttis[j].tt_gmtoff; | 
 | 				if (sp->ttis[j].tt_isdst) | 
 | 					theirdstoffset = theiroffset; | 
 | 				else	theirstdoffset = theiroffset; | 
 | 			} | 
 | 			/* | 
 | 			** Finally, fill in ttis. | 
 | 			*/ | 
 | 			init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); | 
 | 			init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1); | 
 | 			sp->typecnt = 2; | 
 | 			sp->defaulttype = 0; | 
 | 		} | 
 | 	} else { | 
 | 		dstlen = 0; | 
 | 		sp->typecnt = 1;		/* only standard time */ | 
 | 		sp->timecnt = 0; | 
 | 		init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); | 
 | 		sp->defaulttype = 0; | 
 | 	} | 
 | 	sp->charcnt = charcnt; | 
 | 	cp = sp->chars; | 
 | 	memcpy(cp, stdname, stdlen); | 
 | 	cp += stdlen; | 
 | 	*cp++ = '\0'; | 
 | 	if (dstlen != 0) { | 
 | 		memcpy(cp, dstname, dstlen); | 
 | 		*(cp + dstlen) = '\0'; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static void | 
 | gmtload(struct state *const sp) | 
 | { | 
 | 	if (tzload(gmt, sp, true) != 0) | 
 | 		tzparse(gmt, sp, true); | 
 | } | 
 |  | 
 | /* Initialize *SP to a value appropriate for the TZ setting NAME. | 
 |    Return 0 on success, an errno value on failure.  */ | 
 | static int | 
 | zoneinit(struct state *sp, char const *name) | 
 | { | 
 |   if (name && ! name[0]) { | 
 |     /* | 
 |     ** User wants it fast rather than right. | 
 |     */ | 
 |     sp->leapcnt = 0;		/* so, we're off a little */ | 
 |     sp->timecnt = 0; | 
 |     sp->typecnt = 0; | 
 |     sp->charcnt = 0; | 
 |     sp->goback = sp->goahead = false; | 
 |     init_ttinfo(&sp->ttis[0], 0, false, 0); | 
 |     strcpy(sp->chars, gmt); | 
 |     sp->defaulttype = 0; | 
 |     return 0; | 
 |   } else { | 
 |     int err = tzload(name, sp, true); | 
 |     if (err != 0 && name && name[0] != ':' && tzparse(name, sp, false)) | 
 |       err = 0; | 
 |     if (err == 0) | 
 |       scrub_abbrs(sp); | 
 |     return err; | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | tzsetlcl(char const *name) | 
 | { | 
 |   struct state *sp = lclptr; | 
 |   int lcl = name ? strlen(name) < sizeof lcl_TZname : -1; | 
 |   if (lcl < 0 | 
 |       ? lcl_is_set < 0 | 
 |       : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0) | 
 |     return; | 
 | #ifdef ALL_STATE | 
 |   if (! sp) | 
 |     lclptr = sp = malloc(sizeof *lclptr); | 
 | #endif /* defined ALL_STATE */ | 
 |   if (sp) { | 
 |     if (zoneinit(sp, name) != 0) | 
 |       zoneinit(sp, ""); | 
 |     if (0 < lcl) | 
 |       strcpy(lcl_TZname, name); | 
 |   } | 
 |   settzname(); | 
 |   lcl_is_set = lcl; | 
 | } | 
 |  | 
 | #ifdef STD_INSPIRED | 
 | void | 
 | tzsetwall(void) | 
 | { | 
 |   if (lock() != 0) | 
 |     return; | 
 |   tzsetlcl(NULL); | 
 |   unlock(); | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(__BIONIC__) | 
 | extern void tzset_unlocked(void); | 
 | #else | 
 | static void | 
 | tzset_unlocked(void) | 
 | { | 
 |   tzsetlcl(getenv("TZ")); | 
 | } | 
 | #endif | 
 |  | 
 | void | 
 | tzset(void) | 
 | { | 
 |   if (lock() != 0) | 
 |     return; | 
 |   tzset_unlocked(); | 
 |   unlock(); | 
 | } | 
 |  | 
 | static void | 
 | gmtcheck(void) | 
 | { | 
 |   static bool gmt_is_set; | 
 |   if (lock() != 0) | 
 |     return; | 
 |   if (! gmt_is_set) { | 
 | #ifdef ALL_STATE | 
 |     gmtptr = malloc(sizeof *gmtptr); | 
 | #endif | 
 |     if (gmtptr) | 
 |       gmtload(gmtptr); | 
 |     gmt_is_set = true; | 
 |   } | 
 |   unlock(); | 
 | } | 
 |  | 
 | #if NETBSD_INSPIRED | 
 |  | 
 | timezone_t | 
 | tzalloc(char const *name) | 
 | { | 
 |   timezone_t sp = malloc(sizeof *sp); | 
 |   if (sp) { | 
 |     int err = zoneinit(sp, name); | 
 |     if (err != 0) { | 
 |       free(sp); | 
 |       errno = err; | 
 |       return NULL; | 
 |     } | 
 |   } | 
 |   return sp; | 
 | } | 
 |  | 
 | void | 
 | tzfree(timezone_t sp) | 
 | { | 
 |   free(sp); | 
 | } | 
 |  | 
 | /* | 
 | ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and | 
 | ** ctime_r are obsolescent and have potential security problems that | 
 | ** ctime_rz would share.  Callers can instead use localtime_rz + strftime. | 
 | ** | 
 | ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work | 
 | ** in zones with three or more time zone abbreviations. | 
 | ** Callers can instead use localtime_rz + strftime. | 
 | */ | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 | ** The easy way to behave "as if no library function calls" localtime | 
 | ** is to not call it, so we drop its guts into "localsub", which can be | 
 | ** freely called. (And no, the PANS doesn't require the above behavior, | 
 | ** but it *is* desirable.) | 
 | ** | 
 | ** If successful and SETNAME is nonzero, | 
 | ** set the applicable parts of tzname, timezone and altzone; | 
 | ** however, it's OK to omit this step if the time zone is POSIX-compatible, | 
 | ** since in that case tzset should have already done this step correctly. | 
 | ** SETNAME's type is intfast32_t for compatibility with gmtsub, | 
 | ** but it is actually a boolean and its value should be 0 or 1. | 
 | */ | 
 |  | 
 | /*ARGSUSED*/ | 
 | static struct tm * | 
 | localsub(struct state const *sp, time_t const *timep, int_fast32_t setname, | 
 | 	 struct tm *const tmp) | 
 | { | 
 | 	register const struct ttinfo *	ttisp; | 
 | 	register int			i; | 
 | 	register struct tm *		result; | 
 | 	const time_t			t = *timep; | 
 |  | 
 | 	if (sp == NULL) { | 
 | 	  /* Don't bother to set tzname etc.; tzset has already done it.  */ | 
 | 	  return gmtsub(gmtptr, timep, 0, tmp); | 
 | 	} | 
 | 	if ((sp->goback && t < sp->ats[0]) || | 
 | 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) { | 
 | 			time_t			newt = t; | 
 | 			register time_t		seconds; | 
 | 			register time_t		years; | 
 |  | 
 | 			if (t < sp->ats[0]) | 
 | 				seconds = sp->ats[0] - t; | 
 | 			else	seconds = t - sp->ats[sp->timecnt - 1]; | 
 | 			--seconds; | 
 | 			years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT; | 
 | 			seconds = years * AVGSECSPERYEAR; | 
 | 			if (t < sp->ats[0]) | 
 | 				newt += seconds; | 
 | 			else	newt -= seconds; | 
 | 			if (newt < sp->ats[0] || | 
 | 				newt > sp->ats[sp->timecnt - 1]) | 
 | 					return NULL;	/* "cannot happen" */ | 
 | 			result = localsub(sp, &newt, setname, tmp); | 
 | 			if (result) { | 
 | 				register int_fast64_t newy; | 
 |  | 
 | 				newy = result->tm_year; | 
 | 				if (t < sp->ats[0]) | 
 | 					newy -= years; | 
 | 				else	newy += years; | 
 | 				if (! (INT_MIN <= newy && newy <= INT_MAX)) | 
 | 					return NULL; | 
 | 				result->tm_year = newy; | 
 | 			} | 
 | 			return result; | 
 | 	} | 
 | 	if (sp->timecnt == 0 || t < sp->ats[0]) { | 
 | 		i = sp->defaulttype; | 
 | 	} else { | 
 | 		register int	lo = 1; | 
 | 		register int	hi = sp->timecnt; | 
 |  | 
 | 		while (lo < hi) { | 
 | 			register int	mid = (lo + hi) >> 1; | 
 |  | 
 | 			if (t < sp->ats[mid]) | 
 | 				hi = mid; | 
 | 			else	lo = mid + 1; | 
 | 		} | 
 | 		i = (int) sp->types[lo - 1]; | 
 | 	} | 
 | 	ttisp = &sp->ttis[i]; | 
 | 	/* | 
 | 	** To get (wrong) behavior that's compatible with System V Release 2.0 | 
 | 	** you'd replace the statement below with | 
 | 	**	t += ttisp->tt_gmtoff; | 
 | 	**	timesub(&t, 0L, sp, tmp); | 
 | 	*/ | 
 | 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); | 
 | 	if (result) { | 
 | 	  result->tm_isdst = ttisp->tt_isdst; | 
 | #ifdef TM_ZONE | 
 | 	  result->TM_ZONE = (char *) &sp->chars[ttisp->tt_abbrind]; | 
 | #endif /* defined TM_ZONE */ | 
 | 	  if (setname) | 
 | 	    update_tzname_etc(sp, ttisp); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | #if NETBSD_INSPIRED | 
 |  | 
 | struct tm * | 
 | localtime_rz(struct state *sp, time_t const *timep, struct tm *tmp) | 
 | { | 
 |   return localsub(sp, timep, 0, tmp); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static struct tm * | 
 | localtime_tzset(time_t const *timep, struct tm *tmp) | 
 | { | 
 |   int err = lock(); | 
 |   if (err) { | 
 |     errno = err; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   // http://b/31339449: POSIX says localtime(3) acts as if it called tzset(3), but upstream | 
 |   // and glibc both think it's okay for localtime_r(3) to not do so (presumably because of | 
 |   // the "not required to set tzname" clause). It's unclear that POSIX actually intended this, | 
 |   // the BSDs disagree with glibc, and it's confusing to developers to have localtime_r(3) | 
 |   // behave differently than other time zone-sensitive functions in <time.h>. | 
 |   tzset_unlocked(); | 
 |  | 
 |   tmp = localsub(lclptr, timep, true, tmp); | 
 |   unlock(); | 
 |   return tmp; | 
 | } | 
 |  | 
 | struct tm * | 
 | localtime(const time_t *timep) | 
 | { | 
 |   return localtime_tzset(timep, &tm); | 
 | } | 
 |  | 
 | struct tm * | 
 | localtime_r(const time_t *timep, struct tm *tmp) | 
 | { | 
 |   return localtime_tzset(timep, tmp); | 
 | } | 
 |  | 
 | /* | 
 | ** gmtsub is to gmtime as localsub is to localtime. | 
 | */ | 
 |  | 
 | static struct tm * | 
 | gmtsub(struct state const *sp, time_t const *timep, int_fast32_t offset, | 
 |        struct tm *tmp) | 
 | { | 
 | 	register struct tm *	result; | 
 |  | 
 | 	result = timesub(timep, offset, gmtptr, tmp); | 
 | #ifdef TM_ZONE | 
 | 	/* | 
 | 	** Could get fancy here and deliver something such as | 
 | 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero, | 
 | 	** but this is no time for a treasure hunt. | 
 | 	*/ | 
 | 	tmp->TM_ZONE = ((char *) | 
 | 			(offset ? wildabbr : gmtptr ? gmtptr->chars : gmt)); | 
 | #endif /* defined TM_ZONE */ | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 | * Re-entrant version of gmtime. | 
 | */ | 
 |  | 
 | struct tm * | 
 | gmtime_r(const time_t *timep, struct tm *tmp) | 
 | { | 
 |   gmtcheck(); | 
 |   return gmtsub(gmtptr, timep, 0, tmp); | 
 | } | 
 |  | 
 | struct tm * | 
 | gmtime(const time_t *timep) | 
 | { | 
 |   return gmtime_r(timep, &tm); | 
 | } | 
 |  | 
 | #ifdef STD_INSPIRED | 
 |  | 
 | struct tm * | 
 | offtime(const time_t *timep, long offset) | 
 | { | 
 |   gmtcheck(); | 
 |   return gmtsub(gmtptr, timep, offset, &tm); | 
 | } | 
 |  | 
 | #endif /* defined STD_INSPIRED */ | 
 |  | 
 | /* | 
 | ** Return the number of leap years through the end of the given year | 
 | ** where, to make the math easy, the answer for year zero is defined as zero. | 
 | */ | 
 |  | 
 | static int ATTRIBUTE_PURE | 
 | leaps_thru_end_of(register const int y) | 
 | { | 
 | 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) : | 
 | 		-(leaps_thru_end_of(-(y + 1)) + 1); | 
 | } | 
 |  | 
 | static struct tm * | 
 | timesub(const time_t *timep, int_fast32_t offset, | 
 | 	const struct state *sp, struct tm *tmp) | 
 | { | 
 | 	register const struct lsinfo *	lp; | 
 | 	register time_t			tdays; | 
 | 	register int			idays;	/* unsigned would be so 2003 */ | 
 | 	register int_fast64_t		rem; | 
 | 	int				y; | 
 | 	register const int *		ip; | 
 | 	register int_fast64_t		corr; | 
 | 	register bool			hit; | 
 | 	register int			i; | 
 |  | 
 | 	corr = 0; | 
 | 	hit = false; | 
 | 	i = (sp == NULL) ? 0 : sp->leapcnt; | 
 | 	while (--i >= 0) { | 
 | 		lp = &sp->lsis[i]; | 
 | 		if (*timep >= lp->ls_trans) { | 
 | 			if (*timep == lp->ls_trans) { | 
 | 				hit = ((i == 0 && lp->ls_corr > 0) || | 
 | 					lp->ls_corr > sp->lsis[i - 1].ls_corr); | 
 | 				if (hit) | 
 | 					while (i > 0 && | 
 | 						sp->lsis[i].ls_trans == | 
 | 						sp->lsis[i - 1].ls_trans + 1 && | 
 | 						sp->lsis[i].ls_corr == | 
 | 						sp->lsis[i - 1].ls_corr + 1) { | 
 | 							++hit; | 
 | 							--i; | 
 | 					} | 
 | 			} | 
 | 			corr = lp->ls_corr; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	y = EPOCH_YEAR; | 
 | 	tdays = *timep / SECSPERDAY; | 
 | 	rem = *timep % SECSPERDAY; | 
 | 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { | 
 | 		int		newy; | 
 | 		register time_t	tdelta; | 
 | 		register int	idelta; | 
 | 		register int	leapdays; | 
 |  | 
 | 		tdelta = tdays / DAYSPERLYEAR; | 
 | 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta) | 
 | 		       && tdelta <= INT_MAX)) | 
 | 		  goto out_of_range; | 
 | 		idelta = tdelta; | 
 | 		if (idelta == 0) | 
 | 			idelta = (tdays < 0) ? -1 : 1; | 
 | 		newy = y; | 
 | 		if (increment_overflow(&newy, idelta)) | 
 | 		  goto out_of_range; | 
 | 		leapdays = leaps_thru_end_of(newy - 1) - | 
 | 			leaps_thru_end_of(y - 1); | 
 | 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR; | 
 | 		tdays -= leapdays; | 
 | 		y = newy; | 
 | 	} | 
 | 	/* | 
 | 	** Given the range, we can now fearlessly cast... | 
 | 	*/ | 
 | 	idays = tdays; | 
 | 	rem += offset - corr; | 
 | 	while (rem < 0) { | 
 | 		rem += SECSPERDAY; | 
 | 		--idays; | 
 | 	} | 
 | 	while (rem >= SECSPERDAY) { | 
 | 		rem -= SECSPERDAY; | 
 | 		++idays; | 
 | 	} | 
 | 	while (idays < 0) { | 
 | 		if (increment_overflow(&y, -1)) | 
 | 		  goto out_of_range; | 
 | 		idays += year_lengths[isleap(y)]; | 
 | 	} | 
 | 	while (idays >= year_lengths[isleap(y)]) { | 
 | 		idays -= year_lengths[isleap(y)]; | 
 | 		if (increment_overflow(&y, 1)) | 
 | 		  goto out_of_range; | 
 | 	} | 
 | 	tmp->tm_year = y; | 
 | 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) | 
 | 	  goto out_of_range; | 
 | 	tmp->tm_yday = idays; | 
 | 	/* | 
 | 	** The "extra" mods below avoid overflow problems. | 
 | 	*/ | 
 | 	tmp->tm_wday = EPOCH_WDAY + | 
 | 		((y - EPOCH_YEAR) % DAYSPERWEEK) * | 
 | 		(DAYSPERNYEAR % DAYSPERWEEK) + | 
 | 		leaps_thru_end_of(y - 1) - | 
 | 		leaps_thru_end_of(EPOCH_YEAR - 1) + | 
 | 		idays; | 
 | 	tmp->tm_wday %= DAYSPERWEEK; | 
 | 	if (tmp->tm_wday < 0) | 
 | 		tmp->tm_wday += DAYSPERWEEK; | 
 | 	tmp->tm_hour = (int) (rem / SECSPERHOUR); | 
 | 	rem %= SECSPERHOUR; | 
 | 	tmp->tm_min = (int) (rem / SECSPERMIN); | 
 | 	/* | 
 | 	** A positive leap second requires a special | 
 | 	** representation. This uses "... ??:59:60" et seq. | 
 | 	*/ | 
 | 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; | 
 | 	ip = mon_lengths[isleap(y)]; | 
 | 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) | 
 | 		idays -= ip[tmp->tm_mon]; | 
 | 	tmp->tm_mday = (int) (idays + 1); | 
 | 	tmp->tm_isdst = 0; | 
 | #ifdef TM_GMTOFF | 
 | 	tmp->TM_GMTOFF = offset; | 
 | #endif /* defined TM_GMTOFF */ | 
 | 	return tmp; | 
 |  | 
 |  out_of_range: | 
 | 	errno = EOVERFLOW; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | char * | 
 | ctime(const time_t *timep) | 
 | { | 
 | /* | 
 | ** Section 4.12.3.2 of X3.159-1989 requires that | 
 | **	The ctime function converts the calendar time pointed to by timer | 
 | **	to local time in the form of a string. It is equivalent to | 
 | **		asctime(localtime(timer)) | 
 | */ | 
 |   struct tm *tmp = localtime(timep); | 
 |   return tmp ? asctime(tmp) : NULL; | 
 | } | 
 |  | 
 | char * | 
 | ctime_r(const time_t *timep, char *buf) | 
 | { | 
 |   struct tm mytm; | 
 |   struct tm *tmp = localtime_r(timep, &mytm); | 
 |   return tmp ? asctime_r(tmp, buf) : NULL; | 
 | } | 
 |  | 
 | /* | 
 | ** Adapted from code provided by Robert Elz, who writes: | 
 | **	The "best" way to do mktime I think is based on an idea of Bob | 
 | **	Kridle's (so its said...) from a long time ago. | 
 | **	It does a binary search of the time_t space. Since time_t's are | 
 | **	just 32 bits, its a max of 32 iterations (even at 64 bits it | 
 | **	would still be very reasonable). | 
 | */ | 
 |  | 
 | #ifndef WRONG | 
 | #define WRONG	(-1) | 
 | #endif /* !defined WRONG */ | 
 |  | 
 | /* | 
 | ** Normalize logic courtesy Paul Eggert. | 
 | */ | 
 |  | 
 | static bool | 
 | increment_overflow(int *ip, int j) | 
 | { | 
 | 	register int const	i = *ip; | 
 |  | 
 | 	/* | 
 | 	** If i >= 0 there can only be overflow if i + j > INT_MAX | 
 | 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. | 
 | 	** If i < 0 there can only be overflow if i + j < INT_MIN | 
 | 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. | 
 | 	*/ | 
 | 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) | 
 | 		return true; | 
 | 	*ip += j; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool | 
 | increment_overflow32(int_fast32_t *const lp, int const m) | 
 | { | 
 | 	register int_fast32_t const	l = *lp; | 
 |  | 
 | 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l)) | 
 | 		return true; | 
 | 	*lp += m; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool | 
 | increment_overflow_time(time_t *tp, int_fast32_t j) | 
 | { | 
 | 	/* | 
 | 	** This is like | 
 | 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...', | 
 | 	** except that it does the right thing even if *tp + j would overflow. | 
 | 	*/ | 
 | 	if (! (j < 0 | 
 | 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp) | 
 | 	       : *tp <= time_t_max - j)) | 
 | 		return true; | 
 | 	*tp += j; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool | 
 | normalize_overflow(int *const tensptr, int *const unitsptr, const int base) | 
 | { | 
 | 	register int	tensdelta; | 
 |  | 
 | 	tensdelta = (*unitsptr >= 0) ? | 
 | 		(*unitsptr / base) : | 
 | 		(-1 - (-1 - *unitsptr) / base); | 
 | 	*unitsptr -= tensdelta * base; | 
 | 	return increment_overflow(tensptr, tensdelta); | 
 | } | 
 |  | 
 | static bool | 
 | normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base) | 
 | { | 
 | 	register int	tensdelta; | 
 |  | 
 | 	tensdelta = (*unitsptr >= 0) ? | 
 | 		(*unitsptr / base) : | 
 | 		(-1 - (-1 - *unitsptr) / base); | 
 | 	*unitsptr -= tensdelta * base; | 
 | 	return increment_overflow32(tensptr, tensdelta); | 
 | } | 
 |  | 
 | static int | 
 | tmcomp(register const struct tm *const atmp, | 
 |        register const struct tm *const btmp) | 
 | { | 
 | 	register int	result; | 
 |  | 
 | 	if (atmp->tm_year != btmp->tm_year) | 
 | 		return atmp->tm_year < btmp->tm_year ? -1 : 1; | 
 | 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 && | 
 | 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 && | 
 | 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 && | 
 | 		(result = (atmp->tm_min - btmp->tm_min)) == 0) | 
 | 			result = atmp->tm_sec - btmp->tm_sec; | 
 | 	return result; | 
 | } | 
 |  | 
 | static time_t | 
 | time2sub(struct tm *const tmp, | 
 | 	 struct tm *(*funcp)(struct state const *, time_t const *, | 
 | 			     int_fast32_t, struct tm *), | 
 | 	 struct state const *sp, | 
 | 	 const int_fast32_t offset, | 
 | 	 bool *okayp, | 
 | 	 bool do_norm_secs) | 
 | { | 
 | 	register int			dir; | 
 | 	register int			i, j; | 
 | 	register int			saved_seconds; | 
 | 	register int_fast32_t		li; | 
 | 	register time_t			lo; | 
 | 	register time_t			hi; | 
 | 	int_fast32_t			y; | 
 | 	time_t				newt; | 
 | 	time_t				t; | 
 | 	struct tm			yourtm, mytm; | 
 |  | 
 | 	*okayp = false; | 
 | 	yourtm = *tmp; | 
 | 	if (do_norm_secs) { | 
 | 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, | 
 | 			SECSPERMIN)) | 
 | 				return WRONG; | 
 | 	} | 
 | 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) | 
 | 		return WRONG; | 
 | 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) | 
 | 		return WRONG; | 
 | 	y = yourtm.tm_year; | 
 | 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) | 
 | 		return WRONG; | 
 | 	/* | 
 | 	** Turn y into an actual year number for now. | 
 | 	** It is converted back to an offset from TM_YEAR_BASE later. | 
 | 	*/ | 
 | 	if (increment_overflow32(&y, TM_YEAR_BASE)) | 
 | 		return WRONG; | 
 | 	while (yourtm.tm_mday <= 0) { | 
 | 		if (increment_overflow32(&y, -1)) | 
 | 			return WRONG; | 
 | 		li = y + (1 < yourtm.tm_mon); | 
 | 		yourtm.tm_mday += year_lengths[isleap(li)]; | 
 | 	} | 
 | 	while (yourtm.tm_mday > DAYSPERLYEAR) { | 
 | 		li = y + (1 < yourtm.tm_mon); | 
 | 		yourtm.tm_mday -= year_lengths[isleap(li)]; | 
 | 		if (increment_overflow32(&y, 1)) | 
 | 			return WRONG; | 
 | 	} | 
 | 	for ( ; ; ) { | 
 | 		i = mon_lengths[isleap(y)][yourtm.tm_mon]; | 
 | 		if (yourtm.tm_mday <= i) | 
 | 			break; | 
 | 		yourtm.tm_mday -= i; | 
 | 		if (++yourtm.tm_mon >= MONSPERYEAR) { | 
 | 			yourtm.tm_mon = 0; | 
 | 			if (increment_overflow32(&y, 1)) | 
 | 				return WRONG; | 
 | 		} | 
 | 	} | 
 | 	if (increment_overflow32(&y, -TM_YEAR_BASE)) | 
 | 		return WRONG; | 
 | 	if (! (INT_MIN <= y && y <= INT_MAX)) | 
 | 		return WRONG; | 
 | 	yourtm.tm_year = y; | 
 | 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) | 
 | 		saved_seconds = 0; | 
 | 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) { | 
 | 		/* | 
 | 		** We can't set tm_sec to 0, because that might push the | 
 | 		** time below the minimum representable time. | 
 | 		** Set tm_sec to 59 instead. | 
 | 		** This assumes that the minimum representable time is | 
 | 		** not in the same minute that a leap second was deleted from, | 
 | 		** which is a safer assumption than using 58 would be. | 
 | 		*/ | 
 | 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) | 
 | 			return WRONG; | 
 | 		saved_seconds = yourtm.tm_sec; | 
 | 		yourtm.tm_sec = SECSPERMIN - 1; | 
 | 	} else { | 
 | 		saved_seconds = yourtm.tm_sec; | 
 | 		yourtm.tm_sec = 0; | 
 | 	} | 
 | 	/* | 
 | 	** Do a binary search (this works whatever time_t's type is). | 
 | 	*/ | 
 | 	lo = time_t_min; | 
 | 	hi = time_t_max; | 
 | 	for ( ; ; ) { | 
 | 		t = lo / 2 + hi / 2; | 
 | 		if (t < lo) | 
 | 			t = lo; | 
 | 		else if (t > hi) | 
 | 			t = hi; | 
 | 		if (! funcp(sp, &t, offset, &mytm)) { | 
 | 			/* | 
 | 			** Assume that t is too extreme to be represented in | 
 | 			** a struct tm; arrange things so that it is less | 
 | 			** extreme on the next pass. | 
 | 			*/ | 
 | 			dir = (t > 0) ? 1 : -1; | 
 | 		} else	dir = tmcomp(&mytm, &yourtm); | 
 | 		if (dir != 0) { | 
 | 			if (t == lo) { | 
 | 				if (t == time_t_max) | 
 | 					return WRONG; | 
 | 				++t; | 
 | 				++lo; | 
 | 			} else if (t == hi) { | 
 | 				if (t == time_t_min) | 
 | 					return WRONG; | 
 | 				--t; | 
 | 				--hi; | 
 | 			} | 
 | 			if (lo > hi) | 
 | 				return WRONG; | 
 | 			if (dir > 0) | 
 | 				hi = t; | 
 | 			else	lo = t; | 
 | 			continue; | 
 | 		} | 
 | #if defined TM_GMTOFF && ! UNINIT_TRAP | 
 | 		if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF | 
 | 		    && (yourtm.TM_GMTOFF < 0 | 
 | 			? (-SECSPERDAY <= yourtm.TM_GMTOFF | 
 | 			   && (mytm.TM_GMTOFF <= | 
 | 			       (SMALLEST (INT_FAST32_MAX, LONG_MAX) | 
 | 				+ yourtm.TM_GMTOFF))) | 
 | 			: (yourtm.TM_GMTOFF <= SECSPERDAY | 
 | 			   && ((BIGGEST (INT_FAST32_MIN, LONG_MIN) | 
 | 				+ yourtm.TM_GMTOFF) | 
 | 			       <= mytm.TM_GMTOFF)))) { | 
 | 		  /* MYTM matches YOURTM except with the wrong UTC offset. | 
 | 		     YOURTM.TM_GMTOFF is plausible, so try it instead. | 
 | 		     It's OK if YOURTM.TM_GMTOFF contains uninitialized data, | 
 | 		     since the guess gets checked.  */ | 
 | 		  time_t altt = t; | 
 | 		  int_fast32_t diff = mytm.TM_GMTOFF - yourtm.TM_GMTOFF; | 
 | 		  if (!increment_overflow_time(&altt, diff)) { | 
 | 		    struct tm alttm; | 
 | 		    if (funcp(sp, &altt, offset, &alttm) | 
 | 			&& alttm.tm_isdst == mytm.tm_isdst | 
 | 			&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF | 
 | 			&& tmcomp(&alttm, &yourtm) == 0) { | 
 | 		      t = altt; | 
 | 		      mytm = alttm; | 
 | 		    } | 
 | 		  } | 
 | 		} | 
 | #endif | 
 | 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) | 
 | 			break; | 
 | 		/* | 
 | 		** Right time, wrong type. | 
 | 		** Hunt for right time, right type. | 
 | 		** It's okay to guess wrong since the guess | 
 | 		** gets checked. | 
 | 		*/ | 
 | 		if (sp == NULL) | 
 | 			return WRONG; | 
 | 		for (i = sp->typecnt - 1; i >= 0; --i) { | 
 | 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) | 
 | 				continue; | 
 | 			for (j = sp->typecnt - 1; j >= 0; --j) { | 
 | 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) | 
 | 					continue; | 
 | 				newt = t + sp->ttis[j].tt_gmtoff - | 
 | 					sp->ttis[i].tt_gmtoff; | 
 | 				if (! funcp(sp, &newt, offset, &mytm)) | 
 | 					continue; | 
 | 				if (tmcomp(&mytm, &yourtm) != 0) | 
 | 					continue; | 
 | 				if (mytm.tm_isdst != yourtm.tm_isdst) | 
 | 					continue; | 
 | 				/* | 
 | 				** We have a match. | 
 | 				*/ | 
 | 				t = newt; | 
 | 				goto label; | 
 | 			} | 
 | 		} | 
 | 		return WRONG; | 
 | 	} | 
 | label: | 
 | 	newt = t + saved_seconds; | 
 | 	if ((newt < t) != (saved_seconds < 0)) | 
 | 		return WRONG; | 
 | 	t = newt; | 
 | 	if (funcp(sp, &t, offset, tmp)) | 
 | 		*okayp = true; | 
 | 	return t; | 
 | } | 
 |  | 
 | static time_t | 
 | time2(struct tm * const	tmp, | 
 |       struct tm *(*funcp)(struct state const *, time_t const *, | 
 | 			  int_fast32_t, struct tm *), | 
 |       struct state const *sp, | 
 |       const int_fast32_t offset, | 
 |       bool *okayp) | 
 | { | 
 | 	time_t	t; | 
 |  | 
 | 	/* | 
 | 	** First try without normalization of seconds | 
 | 	** (in case tm_sec contains a value associated with a leap second). | 
 | 	** If that fails, try with normalization of seconds. | 
 | 	*/ | 
 | 	t = time2sub(tmp, funcp, sp, offset, okayp, false); | 
 | 	return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true); | 
 | } | 
 |  | 
 | static time_t | 
 | time1(struct tm *const tmp, | 
 |       struct tm *(*funcp) (struct state const *, time_t const *, | 
 | 			   int_fast32_t, struct tm *), | 
 |       struct state const *sp, | 
 |       const int_fast32_t offset) | 
 | { | 
 | 	register time_t			t; | 
 | 	register int			samei, otheri; | 
 | 	register int			sameind, otherind; | 
 | 	register int			i; | 
 | 	register int			nseen; | 
 | 	char				seen[TZ_MAX_TYPES]; | 
 | 	unsigned char			types[TZ_MAX_TYPES]; | 
 | 	bool				okay; | 
 |  | 
 | 	if (tmp == NULL) { | 
 | 		errno = EINVAL; | 
 | 		return WRONG; | 
 | 	} | 
 | 	if (tmp->tm_isdst > 1) | 
 | 		tmp->tm_isdst = 1; | 
 | 	t = time2(tmp, funcp, sp, offset, &okay); | 
 | 	if (okay) | 
 | 		return t; | 
 | 	if (tmp->tm_isdst < 0) | 
 | #ifdef PCTS | 
 | 		/* | 
 | 		** POSIX Conformance Test Suite code courtesy Grant Sullivan. | 
 | 		*/ | 
 | 		tmp->tm_isdst = 0;	/* reset to std and try again */ | 
 | #else | 
 | 		return t; | 
 | #endif /* !defined PCTS */ | 
 | 	/* | 
 | 	** We're supposed to assume that somebody took a time of one type | 
 | 	** and did some math on it that yielded a "struct tm" that's bad. | 
 | 	** We try to divine the type they started from and adjust to the | 
 | 	** type they need. | 
 | 	*/ | 
 | 	if (sp == NULL) | 
 | 		return WRONG; | 
 | 	for (i = 0; i < sp->typecnt; ++i) | 
 | 		seen[i] = false; | 
 | 	nseen = 0; | 
 | 	for (i = sp->timecnt - 1; i >= 0; --i) | 
 | 		if (!seen[sp->types[i]]) { | 
 | 			seen[sp->types[i]] = true; | 
 | 			types[nseen++] = sp->types[i]; | 
 | 		} | 
 | 	for (sameind = 0; sameind < nseen; ++sameind) { | 
 | 		samei = types[sameind]; | 
 | 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) | 
 | 			continue; | 
 | 		for (otherind = 0; otherind < nseen; ++otherind) { | 
 | 			otheri = types[otherind]; | 
 | 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) | 
 | 				continue; | 
 | 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - | 
 | 					sp->ttis[samei].tt_gmtoff; | 
 | 			tmp->tm_isdst = !tmp->tm_isdst; | 
 | 			t = time2(tmp, funcp, sp, offset, &okay); | 
 | 			if (okay) | 
 | 				return t; | 
 | 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - | 
 | 					sp->ttis[samei].tt_gmtoff; | 
 | 			tmp->tm_isdst = !tmp->tm_isdst; | 
 | 		} | 
 | 	} | 
 | 	return WRONG; | 
 | } | 
 |  | 
 | static time_t | 
 | mktime_tzname(struct state *sp, struct tm *tmp, bool setname) | 
 | { | 
 |   if (sp) | 
 |     return time1(tmp, localsub, sp, setname); | 
 |   else { | 
 |     gmtcheck(); | 
 |     return time1(tmp, gmtsub, gmtptr, 0); | 
 |   } | 
 | } | 
 |  | 
 | #if NETBSD_INSPIRED | 
 |  | 
 | time_t | 
 | mktime_z(struct state *sp, struct tm *tmp) | 
 | { | 
 |   return mktime_tzname(sp, tmp, false); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | time_t | 
 | mktime(struct tm *tmp) | 
 | { | 
 | #if defined(__BIONIC__) | 
 |   int saved_errno = errno; | 
 | #endif | 
 |  | 
 |   time_t t; | 
 |   int err = lock(); | 
 |   if (err) { | 
 |     errno = err; | 
 |     return -1; | 
 |   } | 
 |   tzset_unlocked(); | 
 |   t = mktime_tzname(lclptr, tmp, true); | 
 |   unlock(); | 
 |  | 
 | #if defined(__BIONIC__) | 
 |   errno = (t == -1) ? EOVERFLOW : saved_errno; | 
 | #endif | 
 |   return t; | 
 | } | 
 |  | 
 | #ifdef STD_INSPIRED | 
 |  | 
 | time_t | 
 | timelocal(struct tm *tmp) | 
 | { | 
 | 	if (tmp != NULL) | 
 | 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */ | 
 | 	return mktime(tmp); | 
 | } | 
 |  | 
 | time_t | 
 | timegm(struct tm *tmp) | 
 | { | 
 |   return timeoff(tmp, 0); | 
 | } | 
 |  | 
 | time_t | 
 | timeoff(struct tm *tmp, long offset) | 
 | { | 
 |   if (tmp) | 
 |     tmp->tm_isdst = 0; | 
 |   gmtcheck(); | 
 |   return time1(tmp, gmtsub, gmtptr, offset); | 
 | } | 
 |  | 
 | #endif /* defined STD_INSPIRED */ | 
 |  | 
 | /* | 
 | ** XXX--is the below the right way to conditionalize?? | 
 | */ | 
 |  | 
 | #ifdef STD_INSPIRED | 
 |  | 
 | /* | 
 | ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 | 
 | ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which | 
 | ** is not the case if we are accounting for leap seconds. | 
 | ** So, we provide the following conversion routines for use | 
 | ** when exchanging timestamps with POSIX conforming systems. | 
 | */ | 
 |  | 
 | static int_fast64_t | 
 | leapcorr(struct state const *sp, time_t t) | 
 | { | 
 | 	register struct lsinfo const *	lp; | 
 | 	register int			i; | 
 |  | 
 | 	i = sp->leapcnt; | 
 | 	while (--i >= 0) { | 
 | 		lp = &sp->lsis[i]; | 
 | 		if (t >= lp->ls_trans) | 
 | 			return lp->ls_corr; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE | 
 | time2posix_z(struct state *sp, time_t t) | 
 | { | 
 |   return t - leapcorr(sp, t); | 
 | } | 
 |  | 
 | time_t | 
 | time2posix(time_t t) | 
 | { | 
 |   int err = lock(); | 
 |   if (err) { | 
 |     errno = err; | 
 |     return -1; | 
 |   } | 
 |   if (!lcl_is_set) | 
 |     tzset_unlocked(); | 
 |   if (lclptr) | 
 |     t = time2posix_z(lclptr, t); | 
 |   unlock(); | 
 |   return t; | 
 | } | 
 |  | 
 | NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE | 
 | posix2time_z(struct state *sp, time_t t) | 
 | { | 
 | 	time_t	x; | 
 | 	time_t	y; | 
 | 	/* | 
 | 	** For a positive leap second hit, the result | 
 | 	** is not unique. For a negative leap second | 
 | 	** hit, the corresponding time doesn't exist, | 
 | 	** so we return an adjacent second. | 
 | 	*/ | 
 | 	x = t + leapcorr(sp, t); | 
 | 	y = x - leapcorr(sp, x); | 
 | 	if (y < t) { | 
 | 		do { | 
 | 			x++; | 
 | 			y = x - leapcorr(sp, x); | 
 | 		} while (y < t); | 
 | 		x -= y != t; | 
 | 	} else if (y > t) { | 
 | 		do { | 
 | 			--x; | 
 | 			y = x - leapcorr(sp, x); | 
 | 		} while (y > t); | 
 | 		x += y != t; | 
 | 	} | 
 | 	return x; | 
 | } | 
 |  | 
 | time_t | 
 | posix2time(time_t t) | 
 | { | 
 |   int err = lock(); | 
 |   if (err) { | 
 |     errno = err; | 
 |     return -1; | 
 |   } | 
 |   if (!lcl_is_set) | 
 |     tzset_unlocked(); | 
 |   if (lclptr) | 
 |     t = posix2time_z(lclptr, t); | 
 |   unlock(); | 
 |   return t; | 
 | } | 
 |  | 
 | #endif /* defined STD_INSPIRED */ | 
 |  | 
 | #ifdef time_tz | 
 |  | 
 | /* Convert from the underlying system's time_t to the ersatz time_tz, | 
 |    which is called 'time_t' in this file.  */ | 
 |  | 
 | time_t | 
 | time(time_t *p) | 
 | { | 
 |   time_t r = sys_time(0); | 
 |   if (p) | 
 |     *p = r; | 
 |   return r; | 
 | } | 
 |  | 
 | #endif |