| /* | 
 |  * Copyright (C) 2008 The Android Open Source Project | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
 |  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
 |  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
 |  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
 |  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
 |  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
 |  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
 |  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include <pthread.h> | 
 |  | 
 | #include <errno.h> | 
 | #include <limits.h> | 
 | #include <stdatomic.h> | 
 | #include <string.h> | 
 | #include <sys/cdefs.h> | 
 | #include <sys/mman.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include "pthread_internal.h" | 
 |  | 
 | #include "private/bionic_constants.h" | 
 | #include "private/bionic_futex.h" | 
 | #include "private/bionic_systrace.h" | 
 | #include "private/bionic_time_conversions.h" | 
 | #include "private/bionic_tls.h" | 
 |  | 
 | /* a mutex is implemented as a 32-bit integer holding the following fields | 
 |  * | 
 |  * bits:     name     description | 
 |  * 31-16     tid      owner thread's tid (recursive and errorcheck only) | 
 |  * 15-14     type     mutex type | 
 |  * 13        shared   process-shared flag | 
 |  * 12-2      counter  counter of recursive mutexes | 
 |  * 1-0       state    lock state (0, 1 or 2) | 
 |  */ | 
 |  | 
 | /* Convenience macro, creates a mask of 'bits' bits that starts from | 
 |  * the 'shift'-th least significant bit in a 32-bit word. | 
 |  * | 
 |  * Examples: FIELD_MASK(0,4)  -> 0xf | 
 |  *           FIELD_MASK(16,9) -> 0x1ff0000 | 
 |  */ | 
 | #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift)) | 
 |  | 
 | /* This one is used to create a bit pattern from a given field value */ | 
 | #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift)) | 
 |  | 
 | /* And this one does the opposite, i.e. extract a field's value from a bit pattern */ | 
 | #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1)) | 
 |  | 
 | /* Mutex state: | 
 |  * | 
 |  * 0 for unlocked | 
 |  * 1 for locked, no waiters | 
 |  * 2 for locked, maybe waiters | 
 |  */ | 
 | #define  MUTEX_STATE_SHIFT      0 | 
 | #define  MUTEX_STATE_LEN        2 | 
 |  | 
 | #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
 | #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
 | #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
 |  | 
 | #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */ | 
 | #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */ | 
 | #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ | 
 |  | 
 | #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) | 
 | #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) | 
 | #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) | 
 |  | 
 | /* return true iff the mutex if locked with no waiters */ | 
 | #define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED) | 
 |  | 
 | /* return true iff the mutex if locked with maybe waiters */ | 
 | #define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED) | 
 |  | 
 | /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */ | 
 | #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) | 
 |  | 
 | /* Mutex counter: | 
 |  * | 
 |  * We need to check for overflow before incrementing, and we also need to | 
 |  * detect when the counter is 0 | 
 |  */ | 
 | #define  MUTEX_COUNTER_SHIFT         2 | 
 | #define  MUTEX_COUNTER_LEN           11 | 
 | #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN) | 
 |  | 
 | #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK) | 
 | #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0) | 
 |  | 
 | /* Used to increment the counter directly after overflow has been checked */ | 
 | #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) | 
 |  | 
 | /* Mutex shared bit flag | 
 |  * | 
 |  * This flag is set to indicate that the mutex is shared among processes. | 
 |  * This changes the futex opcode we use for futex wait/wake operations | 
 |  * (non-shared operations are much faster). | 
 |  */ | 
 | #define  MUTEX_SHARED_SHIFT    13 | 
 | #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1) | 
 |  | 
 | /* Mutex type: | 
 |  * We support normal, recursive and errorcheck mutexes. | 
 |  */ | 
 | #define  MUTEX_TYPE_SHIFT      14 | 
 | #define  MUTEX_TYPE_LEN        2 | 
 | #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN) | 
 |  | 
 | #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN) | 
 |  | 
 | #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL) | 
 | #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE) | 
 | #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK) | 
 |  | 
 | /* Mutex owner field: | 
 |  * | 
 |  * This is only used for recursive and errorcheck mutexes. It holds the | 
 |  * tid of the owning thread. We use 16 bits to represent tid here, | 
 |  * so the highest tid is 65535. There is a test to check /proc/sys/kernel/pid_max | 
 |  * to make sure it will not exceed our limit. | 
 |  */ | 
 | #define  MUTEX_OWNER_SHIFT     16 | 
 | #define  MUTEX_OWNER_LEN       16 | 
 |  | 
 | #define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) | 
 | #define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) | 
 |  | 
 | /* Convenience macros. | 
 |  * | 
 |  * These are used to form or modify the bit pattern of a given mutex value | 
 |  */ | 
 |  | 
 |  | 
 |  | 
 | /* a mutex attribute holds the following fields | 
 |  * | 
 |  * bits:     name       description | 
 |  * 0-3       type       type of mutex | 
 |  * 4         shared     process-shared flag | 
 |  */ | 
 | #define  MUTEXATTR_TYPE_MASK   0x000f | 
 | #define  MUTEXATTR_SHARED_MASK 0x0010 | 
 |  | 
 |  | 
 | int pthread_mutexattr_init(pthread_mutexattr_t *attr) | 
 | { | 
 |     *attr = PTHREAD_MUTEX_DEFAULT; | 
 |     return 0; | 
 | } | 
 |  | 
 | int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) | 
 | { | 
 |     *attr = -1; | 
 |     return 0; | 
 | } | 
 |  | 
 | int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p) | 
 | { | 
 |     int type = (*attr & MUTEXATTR_TYPE_MASK); | 
 |  | 
 |     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) { | 
 |         return EINVAL; | 
 |     } | 
 |  | 
 |     *type_p = type; | 
 |     return 0; | 
 | } | 
 |  | 
 | int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) | 
 | { | 
 |     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) { | 
 |         return EINVAL; | 
 |     } | 
 |  | 
 |     *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* process-shared mutexes are not supported at the moment */ | 
 |  | 
 | int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared) | 
 | { | 
 |     switch (pshared) { | 
 |     case PTHREAD_PROCESS_PRIVATE: | 
 |         *attr &= ~MUTEXATTR_SHARED_MASK; | 
 |         return 0; | 
 |  | 
 |     case PTHREAD_PROCESS_SHARED: | 
 |         /* our current implementation of pthread actually supports shared | 
 |          * mutexes but won't cleanup if a process dies with the mutex held. | 
 |          * Nevertheless, it's better than nothing. Shared mutexes are used | 
 |          * by surfaceflinger and audioflinger. | 
 |          */ | 
 |         *attr |= MUTEXATTR_SHARED_MASK; | 
 |         return 0; | 
 |     } | 
 |     return EINVAL; | 
 | } | 
 |  | 
 | int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) { | 
 |     *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE; | 
 |     return 0; | 
 | } | 
 |  | 
 | struct pthread_mutex_internal_t { | 
 |   atomic_int state; | 
 | #if defined(__LP64__) | 
 |   char __reserved[36]; | 
 | #endif | 
 | }; | 
 |  | 
 | static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t), | 
 |               "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation."); | 
 |  | 
 | // For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment | 
 | // than 4-byte alignment. | 
 | static_assert(alignof(pthread_mutex_t) == 4, | 
 |               "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t."); | 
 |  | 
 | static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) { | 
 |   return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface); | 
 | } | 
 |  | 
 | int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) { | 
 |     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
 |  | 
 |     memset(mutex, 0, sizeof(pthread_mutex_internal_t)); | 
 |  | 
 |     if (__predict_true(attr == NULL)) { | 
 |         atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     int state = 0; | 
 |     if ((*attr & MUTEXATTR_SHARED_MASK) != 0) { | 
 |         state |= MUTEX_SHARED_MASK; | 
 |     } | 
 |  | 
 |     switch (*attr & MUTEXATTR_TYPE_MASK) { | 
 |     case PTHREAD_MUTEX_NORMAL: | 
 |         state |= MUTEX_TYPE_BITS_NORMAL; | 
 |         break; | 
 |     case PTHREAD_MUTEX_RECURSIVE: | 
 |         state |= MUTEX_TYPE_BITS_RECURSIVE; | 
 |         break; | 
 |     case PTHREAD_MUTEX_ERRORCHECK: | 
 |         state |= MUTEX_TYPE_BITS_ERRORCHECK; | 
 |         break; | 
 |     default: | 
 |         return EINVAL; | 
 |     } | 
 |  | 
 |     atomic_init(&mutex->state, state); | 
 |     return 0; | 
 | } | 
 |  | 
 | static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_internal_t* mutex, | 
 |                                                                  int shared) { | 
 |     const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED; | 
 |     const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
 |  | 
 |     int old_state = unlocked; | 
 |     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, | 
 |                          locked_uncontended, memory_order_acquire, memory_order_relaxed))) { | 
 |         return 0; | 
 |     } | 
 |     return EBUSY; | 
 | } | 
 |  | 
 | /* | 
 |  * Lock a mutex of type NORMAL. | 
 |  * | 
 |  * As noted above, there are three states: | 
 |  *   0 (unlocked, no contention) | 
 |  *   1 (locked, no contention) | 
 |  *   2 (locked, contention) | 
 |  * | 
 |  * Non-recursive mutexes don't use the thread-id or counter fields, and the | 
 |  * "type" value is zero, so the only bits that will be set are the ones in | 
 |  * the lock state field. | 
 |  */ | 
 | static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex, | 
 |                                                               int shared, | 
 |                                                               const timespec* abs_timeout_or_null, | 
 |                                                               clockid_t clock) { | 
 |     if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     ScopedTrace trace("Contending for pthread mutex"); | 
 |  | 
 |     const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED; | 
 |     const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
 |  | 
 |     // We want to go to sleep until the mutex is available, which requires | 
 |     // promoting it to locked_contended. We need to swap in the new state | 
 |     // and then wait until somebody wakes us up. | 
 |     // An atomic_exchange is used to compete with other threads for the lock. | 
 |     // If it returns unlocked, we have acquired the lock, otherwise another | 
 |     // thread still holds the lock and we should wait again. | 
 |     // If lock is acquired, an acquire fence is needed to make all memory accesses | 
 |     // made by other threads visible to the current CPU. | 
 |     while (atomic_exchange_explicit(&mutex->state, locked_contended, | 
 |                                     memory_order_acquire) != unlocked) { | 
 |         timespec ts; | 
 |         timespec* rel_timeout = NULL; | 
 |         if (abs_timeout_or_null != NULL) { | 
 |             rel_timeout = &ts; | 
 |             if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) { | 
 |                 return ETIMEDOUT; | 
 |             } | 
 |         } | 
 |         if (__futex_wait_ex(&mutex->state, shared, locked_contended, rel_timeout) == -ETIMEDOUT) { | 
 |             return ETIMEDOUT; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Release a mutex of type NORMAL.  The caller is responsible for determining | 
 |  * that we are in fact the owner of this lock. | 
 |  */ | 
 | static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_internal_t* mutex, | 
 |                                                                  int shared) { | 
 |     const int unlocked         = shared | MUTEX_STATE_BITS_UNLOCKED; | 
 |     const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
 |  | 
 |     // We use an atomic_exchange to release the lock. If locked_contended state | 
 |     // is returned, some threads is waiting for the lock and we need to wake up | 
 |     // one of them. | 
 |     // A release fence is required to make previous stores visible to next | 
 |     // lock owner threads. | 
 |     if (atomic_exchange_explicit(&mutex->state, unlocked, | 
 |                                  memory_order_release) == locked_contended) { | 
 |         // Wake up one waiting thread. We don't know which thread will be | 
 |         // woken or when it'll start executing -- futexes make no guarantees | 
 |         // here. There may not even be a thread waiting. | 
 |         // | 
 |         // The newly-woken thread will replace the unlocked state we just set above | 
 |         // with locked_contended state, which means that when it eventually releases | 
 |         // the mutex it will also call FUTEX_WAKE. This results in one extra wake | 
 |         // call whenever a lock is contended, but let us avoid forgetting anyone | 
 |         // without requiring us to track the number of sleepers. | 
 |         // | 
 |         // It's possible for another thread to sneak in and grab the lock between | 
 |         // the exchange above and the wake call below. If the new thread is "slow" | 
 |         // and holds the lock for a while, we'll wake up a sleeper, which will swap | 
 |         // in locked_uncontended state and then go back to sleep since the lock is | 
 |         // still held. If the new thread is "fast", running to completion before | 
 |         // we call wake, the thread we eventually wake will find an unlocked mutex | 
 |         // and will execute. Either way we have correct behavior and nobody is | 
 |         // orphaned on the wait queue. | 
 |         __futex_wake_ex(&mutex->state, shared, 1); | 
 |     } | 
 | } | 
 |  | 
 | /* This common inlined function is used to increment the counter of a recursive mutex. | 
 |  * | 
 |  * If the counter overflows, it will return EAGAIN. | 
 |  * Otherwise, it atomically increments the counter and returns 0. | 
 |  * | 
 |  */ | 
 | static inline __always_inline int __recursive_increment(pthread_mutex_internal_t* mutex, | 
 |                                                         int old_state) { | 
 |     // Detect recursive lock overflow and return EAGAIN. | 
 |     // This is safe because only the owner thread can modify the | 
 |     // counter bits in the mutex value. | 
 |     if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) { | 
 |         return EAGAIN; | 
 |     } | 
 |  | 
 |     // We own the mutex, but other threads are able to change the lower bits | 
 |     // (e.g. promoting it to "contended"), so we need to use an atomic exchange | 
 |     // loop to update the counter. The counter will not overflow in the loop, | 
 |     // as only the owner thread can change it. | 
 |     // The mutex is still locked, so we don't need a release fence. | 
 |     atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex, | 
 |                                            const timespec* abs_timeout_or_null, clockid_t clock) { | 
 |     int old_state, mtype, tid, shared; | 
 |  | 
 |     old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
 |     mtype = (old_state & MUTEX_TYPE_MASK); | 
 |     shared = (old_state & MUTEX_SHARED_MASK); | 
 |  | 
 |     // Handle common case first. | 
 |     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { | 
 |         return __pthread_normal_mutex_lock(mutex, shared, abs_timeout_or_null, clock); | 
 |     } | 
 |  | 
 |     // Do we already own this recursive or error-check mutex? | 
 |     tid = __get_thread()->tid; | 
 |     if (tid == MUTEX_OWNER_FROM_BITS(old_state)) { | 
 |         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { | 
 |             return EDEADLK; | 
 |         } | 
 |         return __recursive_increment(mutex, old_state); | 
 |     } | 
 |  | 
 |     const int unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; | 
 |     const int locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
 |     const int locked_contended   = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
 |  | 
 |     // First, if the mutex is unlocked, try to quickly acquire it. | 
 |     // In the optimistic case where this works, set the state to locked_uncontended. | 
 |     if (old_state == unlocked) { | 
 |         int new_state = MUTEX_OWNER_TO_BITS(tid) | locked_uncontended; | 
 |         // If exchanged successfully, an acquire fence is required to make | 
 |         // all memory accesses made by other threads visible to the current CPU. | 
 |         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, | 
 |                              new_state, memory_order_acquire, memory_order_relaxed))) { | 
 |             return 0; | 
 |         } | 
 |     } | 
 |  | 
 |     ScopedTrace trace("Contending for pthread mutex"); | 
 |  | 
 |     while (true) { | 
 |         if (old_state == unlocked) { | 
 |             // NOTE: We put the state to locked_contended since we _know_ there | 
 |             // is contention when we are in this loop. This ensures all waiters | 
 |             // will be unlocked. | 
 |  | 
 |             int new_state = MUTEX_OWNER_TO_BITS(tid) | locked_contended; | 
 |             // If exchanged successfully, an acquire fence is required to make | 
 |             // all memory accesses made by other threads visible to the current CPU. | 
 |             if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state, | 
 |                                                                      &old_state, new_state, | 
 |                                                                      memory_order_acquire, | 
 |                                                                      memory_order_relaxed))) { | 
 |                 return 0; | 
 |             } | 
 |             continue; | 
 |         } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) { | 
 |             // We should set it to locked_contended beforing going to sleep. This can make | 
 |             // sure waiters will be woken up eventually. | 
 |  | 
 |             int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state); | 
 |             if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state, | 
 |                                                                        &old_state, new_state, | 
 |                                                                        memory_order_relaxed, | 
 |                                                                        memory_order_relaxed))) { | 
 |                 continue; | 
 |             } | 
 |             old_state = new_state; | 
 |         } | 
 |  | 
 |         // We are in locked_contended state, sleep until someone wakes us up. | 
 |         timespec ts; | 
 |         timespec* rel_timeout = NULL; | 
 |         if (abs_timeout_or_null != NULL) { | 
 |             rel_timeout = &ts; | 
 |             if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) { | 
 |                 return ETIMEDOUT; | 
 |             } | 
 |         } | 
 |         if (__futex_wait_ex(&mutex->state, shared, old_state, rel_timeout) == -ETIMEDOUT) { | 
 |             return ETIMEDOUT; | 
 |         } | 
 |         old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
 |     } | 
 | } | 
 |  | 
 | int pthread_mutex_lock(pthread_mutex_t* mutex_interface) { | 
 |     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
 |  | 
 |     int old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
 |     int mtype = (old_state & MUTEX_TYPE_MASK); | 
 |     int shared = (old_state & MUTEX_SHARED_MASK); | 
 |     // Avoid slowing down fast path of normal mutex lock operation. | 
 |     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
 |       if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     return __pthread_mutex_lock_with_timeout(mutex, NULL, 0); | 
 | } | 
 |  | 
 | int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) { | 
 |     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
 |  | 
 |     int old_state, mtype, tid, shared; | 
 |  | 
 |     old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
 |     mtype  = (old_state & MUTEX_TYPE_MASK); | 
 |     shared = (old_state & MUTEX_SHARED_MASK); | 
 |  | 
 |     // Handle common case first. | 
 |     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
 |         __pthread_normal_mutex_unlock(mutex, shared); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     // Do we already own this recursive or error-check mutex? | 
 |     tid = __get_thread()->tid; | 
 |     if ( tid != MUTEX_OWNER_FROM_BITS(old_state) ) | 
 |         return EPERM; | 
 |  | 
 |     // If the counter is > 0, we can simply decrement it atomically. | 
 |     // Since other threads can mutate the lower state bits (and only the | 
 |     // lower state bits), use a compare_exchange loop to do it. | 
 |     if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) { | 
 |         // We still own the mutex, so a release fence is not needed. | 
 |         atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     // The counter is 0, so we'are going to unlock the mutex by resetting its | 
 |     // state to unlocked, we need to perform a atomic_exchange inorder to read | 
 |     // the current state, which will be locked_contended if there may have waiters | 
 |     // to awake. | 
 |     // A release fence is required to make previous stores visible to next | 
 |     // lock owner threads. | 
 |     const int unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; | 
 |     old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release); | 
 |     if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) { | 
 |         __futex_wake_ex(&mutex->state, shared, 1); | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) { | 
 |     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
 |  | 
 |     int old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); | 
 |     int mtype  = (old_state & MUTEX_TYPE_MASK); | 
 |     int shared = (old_state & MUTEX_SHARED_MASK); | 
 |  | 
 |     const int unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; | 
 |     const int locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
 |  | 
 |     // Handle common case first. | 
 |     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
 |         return __pthread_normal_mutex_trylock(mutex, shared); | 
 |     } | 
 |  | 
 |     // Do we already own this recursive or error-check mutex? | 
 |     pid_t tid = __get_thread()->tid; | 
 |     if (tid == MUTEX_OWNER_FROM_BITS(old_state)) { | 
 |         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { | 
 |             return EBUSY; | 
 |         } | 
 |         return __recursive_increment(mutex, old_state); | 
 |     } | 
 |  | 
 |     // Same as pthread_mutex_lock, except that we don't want to wait, and | 
 |     // the only operation that can succeed is a single compare_exchange to acquire the | 
 |     // lock if it is released / not owned by anyone. No need for a complex loop. | 
 |     // If exchanged successfully, an acquire fence is required to make | 
 |     // all memory accesses made by other threads visible to the current CPU. | 
 |     old_state = unlocked; | 
 |     int new_state = MUTEX_OWNER_TO_BITS(tid) | locked_uncontended; | 
 |     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, new_state, | 
 |                                                                memory_order_acquire, | 
 |                                                                memory_order_relaxed))) { | 
 |         return 0; | 
 |     } | 
 |     return EBUSY; | 
 | } | 
 |  | 
 | #if !defined(__LP64__) | 
 | extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) { | 
 |     timespec abs_timeout; | 
 |     clock_gettime(CLOCK_MONOTONIC, &abs_timeout); | 
 |     abs_timeout.tv_sec  += ms / 1000; | 
 |     abs_timeout.tv_nsec += (ms % 1000) * 1000000; | 
 |     if (abs_timeout.tv_nsec >= NS_PER_S) { | 
 |         abs_timeout.tv_sec++; | 
 |         abs_timeout.tv_nsec -= NS_PER_S; | 
 |     } | 
 |  | 
 |     int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), | 
 |                                                   &abs_timeout, CLOCK_MONOTONIC); | 
 |     if (error == ETIMEDOUT) { | 
 |         error = EBUSY; | 
 |     } | 
 |     return error; | 
 | } | 
 | #endif | 
 |  | 
 | int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) { | 
 |     return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), | 
 |                                              abs_timeout, CLOCK_REALTIME); | 
 | } | 
 |  | 
 | int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) { | 
 |     // Use trylock to ensure that the mutex is valid and not already locked. | 
 |     int error = pthread_mutex_trylock(mutex_interface); | 
 |     if (error != 0) { | 
 |         return error; | 
 |     } | 
 |  | 
 |     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); | 
 |     atomic_store_explicit(&mutex->state, 0xdead10cc, memory_order_relaxed); | 
 |     return 0; | 
 | } |