|  | /* | 
|  |  | 
|  | Copyright (c) 2007-2008  Michael G Schwern | 
|  |  | 
|  | This software originally derived from Paul Sheer's pivotal_gmtime_r.c. | 
|  |  | 
|  | The MIT License: | 
|  |  | 
|  | Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | of this software and associated documentation files (the "Software"), to deal | 
|  | in the Software without restriction, including without limitation the rights | 
|  | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | copies of the Software, and to permit persons to whom the Software is | 
|  | furnished to do so, subject to the following conditions: | 
|  |  | 
|  | The above copyright notice and this permission notice shall be included in | 
|  | all copies or substantial portions of the Software. | 
|  |  | 
|  | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | THE SOFTWARE. | 
|  |  | 
|  | */ | 
|  |  | 
|  | /* See http://code.google.com/p/y2038 for this code's origin */ | 
|  |  | 
|  | /* | 
|  |  | 
|  | Programmers who have available to them 64-bit time values as a 'long | 
|  | long' type can use localtime64_r() and gmtime64_r() which correctly | 
|  | converts the time even on 32-bit systems. Whether you have 64-bit time | 
|  | values will depend on the operating system. | 
|  |  | 
|  | localtime64_r() is a 64-bit equivalent of localtime_r(). | 
|  |  | 
|  | gmtime64_r() is a 64-bit equivalent of gmtime_r(). | 
|  |  | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <time.h> | 
|  | #include <errno.h> | 
|  | #include "time64.h" | 
|  |  | 
|  | /* BIONIC_BEGIN */ | 
|  | /* the following are here to avoid exposing time64_config.h and | 
|  | * other types in our public time64.h header | 
|  | */ | 
|  | #include "time64_config.h" | 
|  |  | 
|  | /* Not everyone has gm/localtime_r(), provide a replacement */ | 
|  | #ifdef HAS_LOCALTIME_R | 
|  | # define LOCALTIME_R(clock, result) localtime_r(clock, result) | 
|  | #else | 
|  | # define LOCALTIME_R(clock, result) fake_localtime_r(clock, result) | 
|  | #endif | 
|  | #ifdef HAS_GMTIME_R | 
|  | # define GMTIME_R(clock, result) gmtime_r(clock, result) | 
|  | #else | 
|  | # define GMTIME_R(clock, result) fake_gmtime_r(clock, result) | 
|  | #endif | 
|  |  | 
|  | typedef int64_t  Int64; | 
|  | typedef time64_t Time64_T; | 
|  | typedef int64_t  Year; | 
|  | #define  TM      tm | 
|  | /* BIONIC_END */ | 
|  |  | 
|  | /* Spec says except for stftime() and the _r() functions, these | 
|  | all return static memory.  Stabbings! */ | 
|  | static struct TM   Static_Return_Date; | 
|  | static char        Static_Return_String[35]; | 
|  |  | 
|  | static const int days_in_month[2][12] = { | 
|  | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, | 
|  | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, | 
|  | }; | 
|  |  | 
|  | static const int julian_days_by_month[2][12] = { | 
|  | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, | 
|  | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, | 
|  | }; | 
|  |  | 
|  | static char const wday_name[7][3] = { | 
|  | "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" | 
|  | }; | 
|  |  | 
|  | static char const mon_name[12][3] = { | 
|  | "Jan", "Feb", "Mar", "Apr", "May", "Jun", | 
|  | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" | 
|  | }; | 
|  |  | 
|  | static const int length_of_year[2] = { 365, 366 }; | 
|  |  | 
|  | /* Some numbers relating to the gregorian cycle */ | 
|  | static const Year     years_in_gregorian_cycle   = 400; | 
|  | #define               days_in_gregorian_cycle      ((365 * 400) + 100 - 4 + 1) | 
|  | static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; | 
|  |  | 
|  | /* Year range we can trust the time funcitons with */ | 
|  | #define MAX_SAFE_YEAR 2037 | 
|  | #define MIN_SAFE_YEAR 1971 | 
|  |  | 
|  | /* 28 year Julian calendar cycle */ | 
|  | #define SOLAR_CYCLE_LENGTH 28 | 
|  |  | 
|  | /* Year cycle from MAX_SAFE_YEAR down. */ | 
|  | static const int safe_years_high[SOLAR_CYCLE_LENGTH] = { | 
|  | 2016, 2017, 2018, 2019, | 
|  | 2020, 2021, 2022, 2023, | 
|  | 2024, 2025, 2026, 2027, | 
|  | 2028, 2029, 2030, 2031, | 
|  | 2032, 2033, 2034, 2035, | 
|  | 2036, 2037, 2010, 2011, | 
|  | 2012, 2013, 2014, 2015 | 
|  | }; | 
|  |  | 
|  | /* Year cycle from MIN_SAFE_YEAR up */ | 
|  | static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { | 
|  | 1996, 1997, 1998, 1971, | 
|  | 1972, 1973, 1974, 1975, | 
|  | 1976, 1977, 1978, 1979, | 
|  | 1980, 1981, 1982, 1983, | 
|  | 1984, 1985, 1986, 1987, | 
|  | 1988, 1989, 1990, 1991, | 
|  | 1992, 1993, 1994, 1995, | 
|  | }; | 
|  |  | 
|  | /* This isn't used, but it's handy to look at */ | 
|  | static const int dow_year_start[SOLAR_CYCLE_LENGTH] = { | 
|  | 5, 0, 1, 2,     /* 0       2016 - 2019 */ | 
|  | 3, 5, 6, 0,     /* 4  */ | 
|  | 1, 3, 4, 5,     /* 8       1996 - 1998, 1971*/ | 
|  | 6, 1, 2, 3,     /* 12      1972 - 1975 */ | 
|  | 4, 6, 0, 1,     /* 16 */ | 
|  | 2, 4, 5, 6,     /* 20      2036, 2037, 2010, 2011 */ | 
|  | 0, 2, 3, 4      /* 24      2012, 2013, 2014, 2015 */ | 
|  | }; | 
|  |  | 
|  | /* Let's assume people are going to be looking for dates in the future. | 
|  | Let's provide some cheats so you can skip ahead. | 
|  | This has a 4x speed boost when near 2008. | 
|  | */ | 
|  | /* Number of days since epoch on Jan 1st, 2008 GMT */ | 
|  | #define CHEAT_DAYS  (1199145600 / 24 / 60 / 60) | 
|  | #define CHEAT_YEARS 108 | 
|  |  | 
|  | #define IS_LEAP(n)      ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) | 
|  | #define WRAP(a,b,m)     ((a) = ((a) <  0  ) ? ((b)--, (a) + (m)) : (a)) | 
|  |  | 
|  | #ifdef USE_SYSTEM_LOCALTIME | 
|  | #    define SHOULD_USE_SYSTEM_LOCALTIME(a)  (       \ | 
|  | (a) <= SYSTEM_LOCALTIME_MAX &&              \ | 
|  | (a) >= SYSTEM_LOCALTIME_MIN                 \ | 
|  | ) | 
|  | #else | 
|  | #    define SHOULD_USE_SYSTEM_LOCALTIME(a)      (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_SYSTEM_GMTIME | 
|  | #    define SHOULD_USE_SYSTEM_GMTIME(a)     (       \ | 
|  | (a) <= SYSTEM_GMTIME_MAX    &&              \ | 
|  | (a) >= SYSTEM_GMTIME_MIN                    \ | 
|  | ) | 
|  | #else | 
|  | #    define SHOULD_USE_SYSTEM_GMTIME(a)         (0) | 
|  | #endif | 
|  |  | 
|  | /* Multi varadic macros are a C99 thing, alas */ | 
|  | #ifdef TIME_64_DEBUG | 
|  | #    define TRACE(format) (fprintf(stderr, format)) | 
|  | #    define TRACE1(format, var1)    (fprintf(stderr, format, var1)) | 
|  | #    define TRACE2(format, var1, var2)    (fprintf(stderr, format, var1, var2)) | 
|  | #    define TRACE3(format, var1, var2, var3)    (fprintf(stderr, format, var1, var2, var3)) | 
|  | #else | 
|  | #    define TRACE(format) ((void)0) | 
|  | #    define TRACE1(format, var1) ((void)0) | 
|  | #    define TRACE2(format, var1, var2) ((void)0) | 
|  | #    define TRACE3(format, var1, var2, var3) ((void)0) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int is_exception_century(Year year) | 
|  | { | 
|  | int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); | 
|  | TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); | 
|  |  | 
|  | return(is_exception); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* timegm() is not in the C or POSIX spec, but it is such a useful | 
|  | extension I would be remiss in leaving it out.  Also I need it | 
|  | for localtime64() | 
|  | */ | 
|  | Time64_T timegm64(const struct TM *date) { | 
|  | Time64_T days    = 0; | 
|  | Time64_T seconds = 0; | 
|  | Year     year; | 
|  | Year     orig_year = (Year)date->tm_year; | 
|  | int      cycles  = 0; | 
|  |  | 
|  | if( orig_year > 100 ) { | 
|  | cycles = (orig_year - 100) / 400; | 
|  | orig_year -= cycles * 400; | 
|  | days      += (Time64_T)cycles * days_in_gregorian_cycle; | 
|  | } | 
|  | else if( orig_year < -300 ) { | 
|  | cycles = (orig_year - 100) / 400; | 
|  | orig_year -= cycles * 400; | 
|  | days      += (Time64_T)cycles * days_in_gregorian_cycle; | 
|  | } | 
|  | TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); | 
|  |  | 
|  | if( orig_year > 70 ) { | 
|  | year = 70; | 
|  | while( year < orig_year ) { | 
|  | days += length_of_year[IS_LEAP(year)]; | 
|  | year++; | 
|  | } | 
|  | } | 
|  | else if ( orig_year < 70 ) { | 
|  | year = 69; | 
|  | do { | 
|  | days -= length_of_year[IS_LEAP(year)]; | 
|  | year--; | 
|  | } while( year >= orig_year ); | 
|  | } | 
|  |  | 
|  |  | 
|  | days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; | 
|  | days += date->tm_mday - 1; | 
|  |  | 
|  | seconds = days * 60 * 60 * 24; | 
|  |  | 
|  | seconds += date->tm_hour * 60 * 60; | 
|  | seconds += date->tm_min * 60; | 
|  | seconds += date->tm_sec; | 
|  |  | 
|  | return(seconds); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int check_tm(struct TM *tm) | 
|  | { | 
|  | /* Don't forget leap seconds */ | 
|  | assert(tm->tm_sec >= 0); | 
|  | assert(tm->tm_sec <= 61); | 
|  |  | 
|  | assert(tm->tm_min >= 0); | 
|  | assert(tm->tm_min <= 59); | 
|  |  | 
|  | assert(tm->tm_hour >= 0); | 
|  | assert(tm->tm_hour <= 23); | 
|  |  | 
|  | assert(tm->tm_mday >= 1); | 
|  | assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); | 
|  |  | 
|  | assert(tm->tm_mon  >= 0); | 
|  | assert(tm->tm_mon  <= 11); | 
|  |  | 
|  | assert(tm->tm_wday >= 0); | 
|  | assert(tm->tm_wday <= 6); | 
|  |  | 
|  | assert(tm->tm_yday >= 0); | 
|  | assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); | 
|  |  | 
|  | #ifdef HAS_TM_TM_GMTOFF | 
|  | assert(tm->tm_gmtoff >= -24 * 60 * 60); | 
|  | assert(tm->tm_gmtoff <=  24 * 60 * 60); | 
|  | #endif | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The exceptional centuries without leap years cause the cycle to | 
|  | shift by 16 | 
|  | */ | 
|  | static Year cycle_offset(Year year) | 
|  | { | 
|  | const Year start_year = 2000; | 
|  | Year year_diff  = year - start_year; | 
|  | Year exceptions; | 
|  |  | 
|  | if( year > start_year ) | 
|  | year_diff--; | 
|  |  | 
|  | exceptions  = year_diff / 100; | 
|  | exceptions -= year_diff / 400; | 
|  |  | 
|  | TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", | 
|  | year, exceptions, year_diff); | 
|  |  | 
|  | return exceptions * 16; | 
|  | } | 
|  |  | 
|  | /* For a given year after 2038, pick the latest possible matching | 
|  | year in the 28 year calendar cycle. | 
|  |  | 
|  | A matching year... | 
|  | 1) Starts on the same day of the week. | 
|  | 2) Has the same leap year status. | 
|  |  | 
|  | This is so the calendars match up. | 
|  |  | 
|  | Also the previous year must match.  When doing Jan 1st you might | 
|  | wind up on Dec 31st the previous year when doing a -UTC time zone. | 
|  |  | 
|  | Finally, the next year must have the same start day of week.  This | 
|  | is for Dec 31st with a +UTC time zone. | 
|  | It doesn't need the same leap year status since we only care about | 
|  | January 1st. | 
|  | */ | 
|  | static int safe_year(const Year year) | 
|  | { | 
|  | int safe_year = 0; | 
|  | Year year_cycle; | 
|  |  | 
|  | if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { | 
|  | return (int)year; | 
|  | } | 
|  |  | 
|  | year_cycle = year + cycle_offset(year); | 
|  |  | 
|  | /* safe_years_low is off from safe_years_high by 8 years */ | 
|  | if( year < MIN_SAFE_YEAR ) | 
|  | year_cycle -= 8; | 
|  |  | 
|  | /* Change non-leap xx00 years to an equivalent */ | 
|  | if( is_exception_century(year) ) | 
|  | year_cycle += 11; | 
|  |  | 
|  | /* Also xx01 years, since the previous year will be wrong */ | 
|  | if( is_exception_century(year - 1) ) | 
|  | year_cycle += 17; | 
|  |  | 
|  | year_cycle %= SOLAR_CYCLE_LENGTH; | 
|  | if( year_cycle < 0 ) | 
|  | year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; | 
|  |  | 
|  | assert( year_cycle >= 0 ); | 
|  | assert( year_cycle < SOLAR_CYCLE_LENGTH ); | 
|  | if( year < MIN_SAFE_YEAR ) | 
|  | safe_year = safe_years_low[year_cycle]; | 
|  | else if( year > MAX_SAFE_YEAR ) | 
|  | safe_year = safe_years_high[year_cycle]; | 
|  | else | 
|  | assert(0); | 
|  |  | 
|  | TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", | 
|  | year, year_cycle, safe_year); | 
|  |  | 
|  | assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR); | 
|  |  | 
|  | return safe_year; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void copy_tm_to_TM(const struct tm *src, struct TM *dest) { | 
|  | if( src == NULL ) { | 
|  | memset(dest, 0, sizeof(*dest)); | 
|  | } | 
|  | else { | 
|  | #       ifdef USE_TM64 | 
|  | dest->tm_sec        = src->tm_sec; | 
|  | dest->tm_min        = src->tm_min; | 
|  | dest->tm_hour       = src->tm_hour; | 
|  | dest->tm_mday       = src->tm_mday; | 
|  | dest->tm_mon        = src->tm_mon; | 
|  | dest->tm_year       = (Year)src->tm_year; | 
|  | dest->tm_wday       = src->tm_wday; | 
|  | dest->tm_yday       = src->tm_yday; | 
|  | dest->tm_isdst      = src->tm_isdst; | 
|  |  | 
|  | #           ifdef HAS_TM_TM_GMTOFF | 
|  | dest->tm_gmtoff  = src->tm_gmtoff; | 
|  | #           endif | 
|  |  | 
|  | #           ifdef HAS_TM_TM_ZONE | 
|  | dest->tm_zone  = src->tm_zone; | 
|  | #           endif | 
|  |  | 
|  | #       else | 
|  | /* They're the same type */ | 
|  | memcpy(dest, src, sizeof(*dest)); | 
|  | #       endif | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void copy_TM_to_tm(const struct TM *src, struct tm *dest) { | 
|  | if( src == NULL ) { | 
|  | memset(dest, 0, sizeof(*dest)); | 
|  | } | 
|  | else { | 
|  | #       ifdef USE_TM64 | 
|  | dest->tm_sec        = src->tm_sec; | 
|  | dest->tm_min        = src->tm_min; | 
|  | dest->tm_hour       = src->tm_hour; | 
|  | dest->tm_mday       = src->tm_mday; | 
|  | dest->tm_mon        = src->tm_mon; | 
|  | dest->tm_year       = (int)src->tm_year; | 
|  | dest->tm_wday       = src->tm_wday; | 
|  | dest->tm_yday       = src->tm_yday; | 
|  | dest->tm_isdst      = src->tm_isdst; | 
|  |  | 
|  | #           ifdef HAS_TM_TM_GMTOFF | 
|  | dest->tm_gmtoff  = src->tm_gmtoff; | 
|  | #           endif | 
|  |  | 
|  | #           ifdef HAS_TM_TM_ZONE | 
|  | dest->tm_zone  = src->tm_zone; | 
|  | #           endif | 
|  |  | 
|  | #       else | 
|  | /* They're the same type */ | 
|  | memcpy(dest, src, sizeof(*dest)); | 
|  | #       endif | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Simulate localtime_r() to the best of our ability */ | 
|  | struct tm * fake_localtime_r(const time_t *clock, struct tm *result) { | 
|  | const struct tm *static_result = localtime(clock); | 
|  |  | 
|  | assert(result != NULL); | 
|  |  | 
|  | if( static_result == NULL ) { | 
|  | memset(result, 0, sizeof(*result)); | 
|  | return NULL; | 
|  | } | 
|  | else { | 
|  | memcpy(result, static_result, sizeof(*result)); | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Simulate gmtime_r() to the best of our ability */ | 
|  | struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) { | 
|  | const struct tm *static_result = gmtime(clock); | 
|  |  | 
|  | assert(result != NULL); | 
|  |  | 
|  | if( static_result == NULL ) { | 
|  | memset(result, 0, sizeof(*result)); | 
|  | return NULL; | 
|  | } | 
|  | else { | 
|  | memcpy(result, static_result, sizeof(*result)); | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static Time64_T seconds_between_years(Year left_year, Year right_year) { | 
|  | int increment = (left_year > right_year) ? 1 : -1; | 
|  | Time64_T seconds = 0; | 
|  | int cycles; | 
|  |  | 
|  | if( left_year > 2400 ) { | 
|  | cycles = (left_year - 2400) / 400; | 
|  | left_year -= cycles * 400; | 
|  | seconds   += cycles * seconds_in_gregorian_cycle; | 
|  | } | 
|  | else if( left_year < 1600 ) { | 
|  | cycles = (left_year - 1600) / 400; | 
|  | left_year += cycles * 400; | 
|  | seconds   += cycles * seconds_in_gregorian_cycle; | 
|  | } | 
|  |  | 
|  | while( left_year != right_year ) { | 
|  | seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; | 
|  | right_year += increment; | 
|  | } | 
|  |  | 
|  | return seconds * increment; | 
|  | } | 
|  |  | 
|  |  | 
|  | Time64_T mktime64(const struct TM *input_date) { | 
|  | struct tm safe_date; | 
|  | struct TM date; | 
|  | Time64_T  time; | 
|  | Year      year = input_date->tm_year + 1900; | 
|  |  | 
|  | if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) { | 
|  | copy_TM_to_tm(input_date, &safe_date); | 
|  | return (Time64_T)mktime(&safe_date); | 
|  | } | 
|  |  | 
|  | /* Have to make the year safe in date else it won't fit in safe_date */ | 
|  | date = *input_date; | 
|  | date.tm_year = safe_year(year) - 1900; | 
|  | copy_TM_to_tm(&date, &safe_date); | 
|  |  | 
|  | time = (Time64_T)mktime(&safe_date); | 
|  |  | 
|  | time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900)); | 
|  |  | 
|  | return time; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Because I think mktime() is a crappy name */ | 
|  | Time64_T timelocal64(const struct TM *date) { | 
|  | return mktime64(date); | 
|  | } | 
|  |  | 
|  |  | 
|  | struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) | 
|  | { | 
|  | int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; | 
|  | Time64_T v_tm_tday; | 
|  | int leap; | 
|  | Time64_T m; | 
|  | Time64_T time = *in_time; | 
|  | Year year = 70; | 
|  | int cycles = 0; | 
|  |  | 
|  | assert(p != NULL); | 
|  |  | 
|  | /* Use the system gmtime() if time_t is small enough */ | 
|  | if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { | 
|  | time_t safe_time = *in_time; | 
|  | struct tm safe_date; | 
|  | GMTIME_R(&safe_time, &safe_date); | 
|  |  | 
|  | copy_tm_to_TM(&safe_date, p); | 
|  | assert(check_tm(p)); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | #ifdef HAS_TM_TM_GMTOFF | 
|  | p->tm_gmtoff = 0; | 
|  | #endif | 
|  | p->tm_isdst  = 0; | 
|  |  | 
|  | #ifdef HAS_TM_TM_ZONE | 
|  | p->tm_zone   = "UTC"; | 
|  | #endif | 
|  |  | 
|  | v_tm_sec =  (int)(time % 60); | 
|  | time /= 60; | 
|  | v_tm_min =  (int)(time % 60); | 
|  | time /= 60; | 
|  | v_tm_hour = (int)(time % 24); | 
|  | time /= 24; | 
|  | v_tm_tday = time; | 
|  |  | 
|  | WRAP (v_tm_sec, v_tm_min, 60); | 
|  | WRAP (v_tm_min, v_tm_hour, 60); | 
|  | WRAP (v_tm_hour, v_tm_tday, 24); | 
|  |  | 
|  | v_tm_wday = (int)((v_tm_tday + 4) % 7); | 
|  | if (v_tm_wday < 0) | 
|  | v_tm_wday += 7; | 
|  | m = v_tm_tday; | 
|  |  | 
|  | if (m >= CHEAT_DAYS) { | 
|  | year = CHEAT_YEARS; | 
|  | m -= CHEAT_DAYS; | 
|  | } | 
|  |  | 
|  | if (m >= 0) { | 
|  | /* Gregorian cycles, this is huge optimization for distant times */ | 
|  | cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); | 
|  | if( cycles ) { | 
|  | m -= (cycles * (Time64_T) days_in_gregorian_cycle); | 
|  | year += (cycles * years_in_gregorian_cycle); | 
|  | } | 
|  |  | 
|  | /* Years */ | 
|  | leap = IS_LEAP (year); | 
|  | while (m >= (Time64_T) length_of_year[leap]) { | 
|  | m -= (Time64_T) length_of_year[leap]; | 
|  | year++; | 
|  | leap = IS_LEAP (year); | 
|  | } | 
|  |  | 
|  | /* Months */ | 
|  | v_tm_mon = 0; | 
|  | while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { | 
|  | m -= (Time64_T) days_in_month[leap][v_tm_mon]; | 
|  | v_tm_mon++; | 
|  | } | 
|  | } else { | 
|  | year--; | 
|  |  | 
|  | /* Gregorian cycles */ | 
|  | cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); | 
|  | if( cycles ) { | 
|  | m -= (cycles * (Time64_T) days_in_gregorian_cycle); | 
|  | year += (cycles * years_in_gregorian_cycle); | 
|  | } | 
|  |  | 
|  | /* Years */ | 
|  | leap = IS_LEAP (year); | 
|  | while (m < (Time64_T) -length_of_year[leap]) { | 
|  | m += (Time64_T) length_of_year[leap]; | 
|  | year--; | 
|  | leap = IS_LEAP (year); | 
|  | } | 
|  |  | 
|  | /* Months */ | 
|  | v_tm_mon = 11; | 
|  | while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { | 
|  | m += (Time64_T) days_in_month[leap][v_tm_mon]; | 
|  | v_tm_mon--; | 
|  | } | 
|  | m += (Time64_T) days_in_month[leap][v_tm_mon]; | 
|  | } | 
|  |  | 
|  | p->tm_year = year; | 
|  | if( p->tm_year != year ) { | 
|  | #ifdef EOVERFLOW | 
|  | errno = EOVERFLOW; | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* At this point m is less than a year so casting to an int is safe */ | 
|  | p->tm_mday = (int) m + 1; | 
|  | p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; | 
|  | p->tm_sec  = v_tm_sec; | 
|  | p->tm_min  = v_tm_min; | 
|  | p->tm_hour = v_tm_hour; | 
|  | p->tm_mon  = v_tm_mon; | 
|  | p->tm_wday = v_tm_wday; | 
|  |  | 
|  | assert(check_tm(p)); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm) | 
|  | { | 
|  | time_t safe_time; | 
|  | struct tm safe_date; | 
|  | struct TM gm_tm; | 
|  | Year orig_year; | 
|  | int month_diff; | 
|  |  | 
|  | assert(local_tm != NULL); | 
|  |  | 
|  | /* Use the system localtime() if time_t is small enough */ | 
|  | if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { | 
|  | safe_time = *time; | 
|  |  | 
|  | TRACE1("Using system localtime for %lld\n", *time); | 
|  |  | 
|  | LOCALTIME_R(&safe_time, &safe_date); | 
|  |  | 
|  | copy_tm_to_TM(&safe_date, local_tm); | 
|  | assert(check_tm(local_tm)); | 
|  |  | 
|  | return local_tm; | 
|  | } | 
|  |  | 
|  | if( gmtime64_r(time, &gm_tm) == NULL ) { | 
|  | TRACE1("gmtime64_r returned null for %lld\n", *time); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | orig_year = gm_tm.tm_year; | 
|  |  | 
|  | if (gm_tm.tm_year > (2037 - 1900) || | 
|  | gm_tm.tm_year < (1970 - 1900) | 
|  | ) | 
|  | { | 
|  | TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); | 
|  | gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; | 
|  | } | 
|  |  | 
|  | safe_time = timegm64(&gm_tm); | 
|  | if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { | 
|  | TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | copy_tm_to_TM(&safe_date, local_tm); | 
|  |  | 
|  | local_tm->tm_year = orig_year; | 
|  | if( local_tm->tm_year != orig_year ) { | 
|  | TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", | 
|  | (Year)local_tm->tm_year, (Year)orig_year); | 
|  |  | 
|  | #ifdef EOVERFLOW | 
|  | errno = EOVERFLOW; | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | month_diff = local_tm->tm_mon - gm_tm.tm_mon; | 
|  |  | 
|  | /*  When localtime is Dec 31st previous year and | 
|  | gmtime is Jan 1st next year. | 
|  | */ | 
|  | if( month_diff == 11 ) { | 
|  | local_tm->tm_year--; | 
|  | } | 
|  |  | 
|  | /*  When localtime is Jan 1st, next year and | 
|  | gmtime is Dec 31st, previous year. | 
|  | */ | 
|  | if( month_diff == -11 ) { | 
|  | local_tm->tm_year++; | 
|  | } | 
|  |  | 
|  | /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st | 
|  | in a non-leap xx00.  There is one point in the cycle | 
|  | we can't account for which the safe xx00 year is a leap | 
|  | year.  So we need to correct for Dec 31st comming out as | 
|  | the 366th day of the year. | 
|  | */ | 
|  | if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) | 
|  | local_tm->tm_yday--; | 
|  |  | 
|  | assert(check_tm(local_tm)); | 
|  |  | 
|  | return local_tm; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int valid_tm_wday( const struct TM* date ) { | 
|  | if( 0 <= date->tm_wday && date->tm_wday <= 6 ) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int valid_tm_mon( const struct TM* date ) { | 
|  | if( 0 <= date->tm_mon && date->tm_mon <= 11 ) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | char *asctime64_r( const struct TM* date, char *result ) { | 
|  | /* I figure everything else can be displayed, even hour 25, but if | 
|  | these are out of range we walk off the name arrays */ | 
|  | if( !valid_tm_wday(date) || !valid_tm_mon(date) ) | 
|  | return NULL; | 
|  |  | 
|  | sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n", | 
|  | wday_name[date->tm_wday], | 
|  | mon_name[date->tm_mon], | 
|  | date->tm_mday, date->tm_hour, | 
|  | date->tm_min, date->tm_sec, | 
|  | 1900 + date->tm_year); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | char *ctime64_r( const Time64_T* time, char* result ) { | 
|  | struct TM date; | 
|  |  | 
|  | localtime64_r( time, &date ); | 
|  | return asctime64_r( &date, result ); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Non-thread safe versions of the above */ | 
|  | struct TM *localtime64(const Time64_T *time) { | 
|  | return localtime64_r(time, &Static_Return_Date); | 
|  | } | 
|  |  | 
|  | struct TM *gmtime64(const Time64_T *time) { | 
|  | return gmtime64_r(time, &Static_Return_Date); | 
|  | } | 
|  |  | 
|  | char *asctime64( const struct TM* date ) { | 
|  | return asctime64_r( date, Static_Return_String ); | 
|  | } | 
|  |  | 
|  | char *ctime64( const Time64_T* time ) { | 
|  | return asctime64(localtime64(time)); | 
|  | } |