|  | /*- | 
|  | * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG> | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include <sys/cdefs.h> | 
|  | __FBSDID("$FreeBSD: head/lib/msun/src/catrig.c 275819 2014-12-16 09:21:56Z ed $"); | 
|  |  | 
|  | #include <complex.h> | 
|  | #include <float.h> | 
|  |  | 
|  | #include "math.h" | 
|  | #include "math_private.h" | 
|  |  | 
|  | #undef isinf | 
|  | #define isinf(x)	(fabs(x) == INFINITY) | 
|  | #undef isnan | 
|  | #define isnan(x)	((x) != (x)) | 
|  | #define	raise_inexact()	do { volatile float junk = 1 + tiny; } while(0) | 
|  | #undef signbit | 
|  | #define signbit(x)	(__builtin_signbit(x)) | 
|  |  | 
|  | /* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */ | 
|  | static const double | 
|  | A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */ | 
|  | B_crossover =		0.6417,			/* suggested by Hull et al */ | 
|  | FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */ | 
|  | QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */ | 
|  | m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */ | 
|  | m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */ | 
|  | pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */ | 
|  | RECIP_EPSILON =		1 / DBL_EPSILON, | 
|  | SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */ | 
|  | SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */ | 
|  | SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */ | 
|  |  | 
|  | static const volatile double | 
|  | pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */ | 
|  | static const volatile float | 
|  | tiny =			0x1p-100; | 
|  |  | 
|  | static double complex clog_for_large_values(double complex z); | 
|  |  | 
|  | /* | 
|  | * Testing indicates that all these functions are accurate up to 4 ULP. | 
|  | * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh. | 
|  | * The functions catan(h) are a little under 2 times slower than atanh. | 
|  | * | 
|  | * The code for casinh, casin, cacos, and cacosh comes first.  The code is | 
|  | * rather complicated, and the four functions are highly interdependent. | 
|  | * | 
|  | * The code for catanh and catan comes at the end.  It is much simpler than | 
|  | * the other functions, and the code for these can be disconnected from the | 
|  | * rest of the code. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *			================================ | 
|  | *			| casinh, casin, cacos, cacosh | | 
|  | *			================================ | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The algorithm is very close to that in "Implementing the complex arcsine | 
|  | * and arccosine functions using exception handling" by T. E. Hull, Thomas F. | 
|  | * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on | 
|  | * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, | 
|  | * http://dl.acm.org/citation.cfm?id=275324. | 
|  | * | 
|  | * Throughout we use the convention z = x + I*y. | 
|  | * | 
|  | * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B) | 
|  | * where | 
|  | * A = (|z+I| + |z-I|) / 2 | 
|  | * B = (|z+I| - |z-I|) / 2 = y/A | 
|  | * | 
|  | * These formulas become numerically unstable: | 
|  | *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that | 
|  | *       is, Re(casinh(z)) is close to 0); | 
|  | *   (b) for Im(casinh(z)) when z is close to either of the intervals | 
|  | *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is | 
|  | *       close to PI/2). | 
|  | * | 
|  | * These numerical problems are overcome by defining | 
|  | * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2 | 
|  | * Then if A < A_crossover, we use | 
|  | *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1))) | 
|  | *   A-1 = f(x, 1+y) + f(x, 1-y) | 
|  | * and if B > B_crossover, we use | 
|  | *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y))) | 
|  | *   A-y = f(x, y+1) + f(x, y-1) | 
|  | * where without loss of generality we have assumed that x and y are | 
|  | * non-negative. | 
|  | * | 
|  | * Much of the difficulty comes because the intermediate computations may | 
|  | * produce overflows or underflows.  This is dealt with in the paper by Hull | 
|  | * et al by using exception handling.  We do this by detecting when | 
|  | * computations risk underflow or overflow.  The hardest part is handling the | 
|  | * underflows when computing f(a, b). | 
|  | * | 
|  | * Note that the function f(a, b) does not appear explicitly in the paper by | 
|  | * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the | 
|  | * function f(a, b) allows us to concentrate many of the clever tricks in this | 
|  | * paper into one function. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2. | 
|  | * Pass hypot(a, b) as the third argument. | 
|  | */ | 
|  | static inline double | 
|  | f(double a, double b, double hypot_a_b) | 
|  | { | 
|  | if (b < 0) | 
|  | return ((hypot_a_b - b) / 2); | 
|  | if (b == 0) | 
|  | return (a / 2); | 
|  | return (a * a / (hypot_a_b + b) / 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All the hard work is contained in this function. | 
|  | * x and y are assumed positive or zero, and less than RECIP_EPSILON. | 
|  | * Upon return: | 
|  | * rx = Re(casinh(z)) = -Im(cacos(y + I*x)). | 
|  | * B_is_usable is set to 1 if the value of B is usable. | 
|  | * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y. | 
|  | * If returning sqrt_A2my2 has potential to result in an underflow, it is | 
|  | * rescaled, and new_y is similarly rescaled. | 
|  | */ | 
|  | static inline void | 
|  | do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B, | 
|  | double *sqrt_A2my2, double *new_y) | 
|  | { | 
|  | double R, S, A; /* A, B, R, and S are as in Hull et al. */ | 
|  | double Am1, Amy; /* A-1, A-y. */ | 
|  |  | 
|  | R = hypot(x, y + 1);		/* |z+I| */ | 
|  | S = hypot(x, y - 1);		/* |z-I| */ | 
|  |  | 
|  | /* A = (|z+I| + |z-I|) / 2 */ | 
|  | A = (R + S) / 2; | 
|  | /* | 
|  | * Mathematically A >= 1.  There is a small chance that this will not | 
|  | * be so because of rounding errors.  So we will make certain it is | 
|  | * so. | 
|  | */ | 
|  | if (A < 1) | 
|  | A = 1; | 
|  |  | 
|  | if (A < A_crossover) { | 
|  | /* | 
|  | * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y). | 
|  | * rx = log1p(Am1 + sqrt(Am1*(A+1))) | 
|  | */ | 
|  | if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) { | 
|  | /* | 
|  | * fp is of order x^2, and fm = x/2. | 
|  | * A = 1 (inexactly). | 
|  | */ | 
|  | *rx = sqrt(x); | 
|  | } else if (x >= DBL_EPSILON * fabs(y - 1)) { | 
|  | /* | 
|  | * Underflow will not occur because | 
|  | * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN | 
|  | */ | 
|  | Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); | 
|  | *rx = log1p(Am1 + sqrt(Am1 * (A + 1))); | 
|  | } else if (y < 1) { | 
|  | /* | 
|  | * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and | 
|  | * A = 1 (inexactly). | 
|  | */ | 
|  | *rx = x / sqrt((1 - y) * (1 + y)); | 
|  | } else {		/* if (y > 1) */ | 
|  | /* | 
|  | * A-1 = y-1 (inexactly). | 
|  | */ | 
|  | *rx = log1p((y - 1) + sqrt((y - 1) * (y + 1))); | 
|  | } | 
|  | } else { | 
|  | *rx = log(A + sqrt(A * A - 1)); | 
|  | } | 
|  |  | 
|  | *new_y = y; | 
|  |  | 
|  | if (y < FOUR_SQRT_MIN) { | 
|  | /* | 
|  | * Avoid a possible underflow caused by y/A.  For casinh this | 
|  | * would be legitimate, but will be picked up by invoking atan2 | 
|  | * later on.  For cacos this would not be legitimate. | 
|  | */ | 
|  | *B_is_usable = 0; | 
|  | *sqrt_A2my2 = A * (2 / DBL_EPSILON); | 
|  | *new_y = y * (2 / DBL_EPSILON); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* B = (|z+I| - |z-I|) / 2 = y/A */ | 
|  | *B = y / A; | 
|  | *B_is_usable = 1; | 
|  |  | 
|  | if (*B > B_crossover) { | 
|  | *B_is_usable = 0; | 
|  | /* | 
|  | * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1). | 
|  | * sqrt_A2my2 = sqrt(Amy*(A+y)) | 
|  | */ | 
|  | if (y == 1 && x < DBL_EPSILON / 128) { | 
|  | /* | 
|  | * fp is of order x^2, and fm = x/2. | 
|  | * A = 1 (inexactly). | 
|  | */ | 
|  | *sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2); | 
|  | } else if (x >= DBL_EPSILON * fabs(y - 1)) { | 
|  | /* | 
|  | * Underflow will not occur because | 
|  | * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN | 
|  | * and | 
|  | * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN | 
|  | */ | 
|  | Amy = f(x, y + 1, R) + f(x, y - 1, S); | 
|  | *sqrt_A2my2 = sqrt(Amy * (A + y)); | 
|  | } else if (y > 1) { | 
|  | /* | 
|  | * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and | 
|  | * A = y (inexactly). | 
|  | * | 
|  | * y < RECIP_EPSILON.  So the following | 
|  | * scaling should avoid any underflow problems. | 
|  | */ | 
|  | *sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y / | 
|  | sqrt((y + 1) * (y - 1)); | 
|  | *new_y = y * (4 / DBL_EPSILON / DBL_EPSILON); | 
|  | } else {		/* if (y < 1) */ | 
|  | /* | 
|  | * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and | 
|  | * A = 1 (inexactly). | 
|  | */ | 
|  | *sqrt_A2my2 = sqrt((1 - y) * (1 + y)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * casinh(z) = z + O(z^3)   as z -> 0 | 
|  | * | 
|  | * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity | 
|  | * The above formula works for the imaginary part as well, because | 
|  | * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3) | 
|  | *    as z -> infinity, uniformly in y | 
|  | */ | 
|  | double complex | 
|  | casinh(double complex z) | 
|  | { | 
|  | double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; | 
|  | int B_is_usable; | 
|  | double complex w; | 
|  |  | 
|  | x = creal(z); | 
|  | y = cimag(z); | 
|  | ax = fabs(x); | 
|  | ay = fabs(y); | 
|  |  | 
|  | if (isnan(x) || isnan(y)) { | 
|  | /* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */ | 
|  | if (isinf(x)) | 
|  | return (CMPLX(x, y + y)); | 
|  | /* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */ | 
|  | if (isinf(y)) | 
|  | return (CMPLX(y, x + x)); | 
|  | /* casinh(NaN + I*0) = NaN + I*0 */ | 
|  | if (y == 0) | 
|  | return (CMPLX(x + x, y)); | 
|  | /* | 
|  | * All other cases involving NaN return NaN + I*NaN. | 
|  | * C99 leaves it optional whether to raise invalid if one of | 
|  | * the arguments is not NaN, so we opt not to raise it. | 
|  | */ | 
|  | return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); | 
|  | } | 
|  |  | 
|  | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { | 
|  | /* clog...() will raise inexact unless x or y is infinite. */ | 
|  | if (signbit(x) == 0) | 
|  | w = clog_for_large_values(z) + m_ln2; | 
|  | else | 
|  | w = clog_for_large_values(-z) + m_ln2; | 
|  | return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y))); | 
|  | } | 
|  |  | 
|  | /* Avoid spuriously raising inexact for z = 0. */ | 
|  | if (x == 0 && y == 0) | 
|  | return (z); | 
|  |  | 
|  | /* All remaining cases are inexact. */ | 
|  | raise_inexact(); | 
|  |  | 
|  | if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) | 
|  | return (z); | 
|  |  | 
|  | do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); | 
|  | if (B_is_usable) | 
|  | ry = asin(B); | 
|  | else | 
|  | ry = atan2(new_y, sqrt_A2my2); | 
|  | return (CMPLX(copysign(rx, x), copysign(ry, y))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * casin(z) = reverse(casinh(reverse(z))) | 
|  | * where reverse(x + I*y) = y + I*x = I*conj(z). | 
|  | */ | 
|  | double complex | 
|  | casin(double complex z) | 
|  | { | 
|  | double complex w = casinh(CMPLX(cimag(z), creal(z))); | 
|  |  | 
|  | return (CMPLX(cimag(w), creal(w))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cacos(z) = PI/2 - casin(z) | 
|  | * but do the computation carefully so cacos(z) is accurate when z is | 
|  | * close to 1. | 
|  | * | 
|  | * cacos(z) = PI/2 - z + O(z^3)   as z -> 0 | 
|  | * | 
|  | * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity | 
|  | * The above formula works for the real part as well, because | 
|  | * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3) | 
|  | *    as z -> infinity, uniformly in y | 
|  | */ | 
|  | double complex | 
|  | cacos(double complex z) | 
|  | { | 
|  | double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; | 
|  | int sx, sy; | 
|  | int B_is_usable; | 
|  | double complex w; | 
|  |  | 
|  | x = creal(z); | 
|  | y = cimag(z); | 
|  | sx = signbit(x); | 
|  | sy = signbit(y); | 
|  | ax = fabs(x); | 
|  | ay = fabs(y); | 
|  |  | 
|  | if (isnan(x) || isnan(y)) { | 
|  | /* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */ | 
|  | if (isinf(x)) | 
|  | return (CMPLX(y + y, -INFINITY)); | 
|  | /* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */ | 
|  | if (isinf(y)) | 
|  | return (CMPLX(x + x, -y)); | 
|  | /* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */ | 
|  | if (x == 0) | 
|  | return (CMPLX(pio2_hi + pio2_lo, y + y)); | 
|  | /* | 
|  | * All other cases involving NaN return NaN + I*NaN. | 
|  | * C99 leaves it optional whether to raise invalid if one of | 
|  | * the arguments is not NaN, so we opt not to raise it. | 
|  | */ | 
|  | return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); | 
|  | } | 
|  |  | 
|  | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { | 
|  | /* clog...() will raise inexact unless x or y is infinite. */ | 
|  | w = clog_for_large_values(z); | 
|  | rx = fabs(cimag(w)); | 
|  | ry = creal(w) + m_ln2; | 
|  | if (sy == 0) | 
|  | ry = -ry; | 
|  | return (CMPLX(rx, ry)); | 
|  | } | 
|  |  | 
|  | /* Avoid spuriously raising inexact for z = 1. */ | 
|  | if (x == 1 && y == 0) | 
|  | return (CMPLX(0, -y)); | 
|  |  | 
|  | /* All remaining cases are inexact. */ | 
|  | raise_inexact(); | 
|  |  | 
|  | if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) | 
|  | return (CMPLX(pio2_hi - (x - pio2_lo), -y)); | 
|  |  | 
|  | do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); | 
|  | if (B_is_usable) { | 
|  | if (sx == 0) | 
|  | rx = acos(B); | 
|  | else | 
|  | rx = acos(-B); | 
|  | } else { | 
|  | if (sx == 0) | 
|  | rx = atan2(sqrt_A2mx2, new_x); | 
|  | else | 
|  | rx = atan2(sqrt_A2mx2, -new_x); | 
|  | } | 
|  | if (sy == 0) | 
|  | ry = -ry; | 
|  | return (CMPLX(rx, ry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cacosh(z) = I*cacos(z) or -I*cacos(z) | 
|  | * where the sign is chosen so Re(cacosh(z)) >= 0. | 
|  | */ | 
|  | double complex | 
|  | cacosh(double complex z) | 
|  | { | 
|  | double complex w; | 
|  | double rx, ry; | 
|  |  | 
|  | w = cacos(z); | 
|  | rx = creal(w); | 
|  | ry = cimag(w); | 
|  | /* cacosh(NaN + I*NaN) = NaN + I*NaN */ | 
|  | if (isnan(rx) && isnan(ry)) | 
|  | return (CMPLX(ry, rx)); | 
|  | /* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */ | 
|  | /* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */ | 
|  | if (isnan(rx)) | 
|  | return (CMPLX(fabs(ry), rx)); | 
|  | /* cacosh(0 + I*NaN) = NaN + I*NaN */ | 
|  | if (isnan(ry)) | 
|  | return (CMPLX(ry, ry)); | 
|  | return (CMPLX(fabs(ry), copysign(rx, cimag(z)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON. | 
|  | */ | 
|  | static double complex | 
|  | clog_for_large_values(double complex z) | 
|  | { | 
|  | double x, y; | 
|  | double ax, ay, t; | 
|  |  | 
|  | x = creal(z); | 
|  | y = cimag(z); | 
|  | ax = fabs(x); | 
|  | ay = fabs(y); | 
|  | if (ax < ay) { | 
|  | t = ax; | 
|  | ax = ay; | 
|  | ay = t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid overflow in hypot() when x and y are both very large. | 
|  | * Divide x and y by E, and then add 1 to the logarithm.  This depends | 
|  | * on E being larger than sqrt(2). | 
|  | * Dividing by E causes an insignificant loss of accuracy; however | 
|  | * this method is still poor since it is uneccessarily slow. | 
|  | */ | 
|  | if (ax > DBL_MAX / 2) | 
|  | return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x))); | 
|  |  | 
|  | /* | 
|  | * Avoid overflow when x or y is large.  Avoid underflow when x or | 
|  | * y is small. | 
|  | */ | 
|  | if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) | 
|  | return (CMPLX(log(hypot(x, y)), atan2(y, x))); | 
|  |  | 
|  | return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *				================= | 
|  | *				| catanh, catan | | 
|  | *				================= | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow). | 
|  | * Assumes x*x and y*y will not overflow. | 
|  | * Assumes x and y are finite. | 
|  | * Assumes y is non-negative. | 
|  | * Assumes fabs(x) >= DBL_EPSILON. | 
|  | */ | 
|  | static inline double | 
|  | sum_squares(double x, double y) | 
|  | { | 
|  |  | 
|  | /* Avoid underflow when y is small. */ | 
|  | if (y < SQRT_MIN) | 
|  | return (x * x); | 
|  |  | 
|  | return (x * x + y * y); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y). | 
|  | * Assumes x and y are not NaN, and one of x and y is larger than | 
|  | * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use | 
|  | * the code creal(1/z), because the imaginary part may produce an unwanted | 
|  | * underflow. | 
|  | * This is only called in a context where inexact is always raised before | 
|  | * the call, so no effort is made to avoid or force inexact. | 
|  | */ | 
|  | static inline double | 
|  | real_part_reciprocal(double x, double y) | 
|  | { | 
|  | double scale; | 
|  | uint32_t hx, hy; | 
|  | int32_t ix, iy; | 
|  |  | 
|  | /* | 
|  | * This code is inspired by the C99 document n1124.pdf, Section G.5.1, | 
|  | * example 2. | 
|  | */ | 
|  | GET_HIGH_WORD(hx, x); | 
|  | ix = hx & 0x7ff00000; | 
|  | GET_HIGH_WORD(hy, y); | 
|  | iy = hy & 0x7ff00000; | 
|  | #define	BIAS	(DBL_MAX_EXP - 1) | 
|  | /* XXX more guard digits are useful iff there is extra precision. */ | 
|  | #define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */ | 
|  | if (ix - iy >= CUTOFF << 20 || isinf(x)) | 
|  | return (1 / x);		/* +-Inf -> +-0 is special */ | 
|  | if (iy - ix >= CUTOFF << 20) | 
|  | return (x / y / y);	/* should avoid double div, but hard */ | 
|  | if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20) | 
|  | return (x / (x * x + y * y)); | 
|  | scale = 1; | 
|  | SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */ | 
|  | x *= scale; | 
|  | y *= scale; | 
|  | return (x / (x * x + y * y) * scale); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * catanh(z) = log((1+z)/(1-z)) / 2 | 
|  | *           = log1p(4*x / |z-1|^2) / 4 | 
|  | *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2 | 
|  | * | 
|  | * catanh(z) = z + O(z^3)   as z -> 0 | 
|  | * | 
|  | * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity | 
|  | * The above formula works for the real part as well, because | 
|  | * Re(catanh(z)) = x/|z|^2 + O(x/z^4) | 
|  | *    as z -> infinity, uniformly in x | 
|  | */ | 
|  | double complex | 
|  | catanh(double complex z) | 
|  | { | 
|  | double x, y, ax, ay, rx, ry; | 
|  |  | 
|  | x = creal(z); | 
|  | y = cimag(z); | 
|  | ax = fabs(x); | 
|  | ay = fabs(y); | 
|  |  | 
|  | /* This helps handle many cases. */ | 
|  | if (y == 0 && ax <= 1) | 
|  | return (CMPLX(atanh(x), y)); | 
|  |  | 
|  | /* To ensure the same accuracy as atan(), and to filter out z = 0. */ | 
|  | if (x == 0) | 
|  | return (CMPLX(x, atan(y))); | 
|  |  | 
|  | if (isnan(x) || isnan(y)) { | 
|  | /* catanh(+-Inf + I*NaN) = +-0 + I*NaN */ | 
|  | if (isinf(x)) | 
|  | return (CMPLX(copysign(0, x), y + y)); | 
|  | /* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */ | 
|  | if (isinf(y)) | 
|  | return (CMPLX(copysign(0, x), | 
|  | copysign(pio2_hi + pio2_lo, y))); | 
|  | /* | 
|  | * All other cases involving NaN return NaN + I*NaN. | 
|  | * C99 leaves it optional whether to raise invalid if one of | 
|  | * the arguments is not NaN, so we opt not to raise it. | 
|  | */ | 
|  | return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); | 
|  | } | 
|  |  | 
|  | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) | 
|  | return (CMPLX(real_part_reciprocal(x, y), | 
|  | copysign(pio2_hi + pio2_lo, y))); | 
|  |  | 
|  | if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { | 
|  | /* | 
|  | * z = 0 was filtered out above.  All other cases must raise | 
|  | * inexact, but this is the only only that needs to do it | 
|  | * explicitly. | 
|  | */ | 
|  | raise_inexact(); | 
|  | return (z); | 
|  | } | 
|  |  | 
|  | if (ax == 1 && ay < DBL_EPSILON) | 
|  | rx = (m_ln2 - log(ay)) / 2; | 
|  | else | 
|  | rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4; | 
|  |  | 
|  | if (ax == 1) | 
|  | ry = atan2(2, -ay) / 2; | 
|  | else if (ay < DBL_EPSILON) | 
|  | ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2; | 
|  | else | 
|  | ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; | 
|  |  | 
|  | return (CMPLX(copysign(rx, x), copysign(ry, y))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * catan(z) = reverse(catanh(reverse(z))) | 
|  | * where reverse(x + I*y) = y + I*x = I*conj(z). | 
|  | */ | 
|  | double complex | 
|  | catan(double complex z) | 
|  | { | 
|  | double complex w = catanh(CMPLX(cimag(z), creal(z))); | 
|  |  | 
|  | return (CMPLX(cimag(w), creal(w))); | 
|  | } |