|  | /* | 
|  | * Copyright (C) 2008 The Android Open Source Project | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | *  * Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | *  * Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
|  | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
|  | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
|  | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
|  | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
|  | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
|  | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
|  | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include <pthread.h> | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <limits.h> | 
|  | #include <sys/atomics.h> | 
|  | #include <sys/mman.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include "bionic_atomic_inline.h" | 
|  | #include "bionic_futex.h" | 
|  | #include "bionic_pthread.h" | 
|  | #include "bionic_tls.h" | 
|  | #include "pthread_internal.h" | 
|  | #include "thread_private.h" | 
|  |  | 
|  | extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex); | 
|  | extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex); | 
|  |  | 
|  | extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode); | 
|  | extern void _exit_thread(int  retCode); | 
|  |  | 
|  | int  __futex_wake_ex(volatile void *ftx, int pshared, int val) | 
|  | { | 
|  | return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val); | 
|  | } | 
|  |  | 
|  | int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout) | 
|  | { | 
|  | return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout); | 
|  | } | 
|  |  | 
|  | /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions | 
|  | *         and thread cancelation | 
|  | */ | 
|  |  | 
|  | void __pthread_cleanup_push( __pthread_cleanup_t*      c, | 
|  | __pthread_cleanup_func_t  routine, | 
|  | void*                     arg ) | 
|  | { | 
|  | pthread_internal_t*  thread = __get_thread(); | 
|  |  | 
|  | c->__cleanup_routine  = routine; | 
|  | c->__cleanup_arg      = arg; | 
|  | c->__cleanup_prev     = thread->cleanup_stack; | 
|  | thread->cleanup_stack = c; | 
|  | } | 
|  |  | 
|  | void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute ) | 
|  | { | 
|  | pthread_internal_t*  thread = __get_thread(); | 
|  |  | 
|  | thread->cleanup_stack = c->__cleanup_prev; | 
|  | if (execute) | 
|  | c->__cleanup_routine(c->__cleanup_arg); | 
|  | } | 
|  |  | 
|  | void pthread_exit(void * retval) | 
|  | { | 
|  | pthread_internal_t*  thread     = __get_thread(); | 
|  | void*                stack_base = thread->attr.stack_base; | 
|  | int                  stack_size = thread->attr.stack_size; | 
|  | int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0; | 
|  | sigset_t mask; | 
|  |  | 
|  | // call the cleanup handlers first | 
|  | while (thread->cleanup_stack) { | 
|  | __pthread_cleanup_t*  c = thread->cleanup_stack; | 
|  | thread->cleanup_stack   = c->__cleanup_prev; | 
|  | c->__cleanup_routine(c->__cleanup_arg); | 
|  | } | 
|  |  | 
|  | // call the TLS destructors, it is important to do that before removing this | 
|  | // thread from the global list. this will ensure that if someone else deletes | 
|  | // a TLS key, the corresponding value will be set to NULL in this thread's TLS | 
|  | // space (see pthread_key_delete) | 
|  | pthread_key_clean_all(); | 
|  |  | 
|  | if (thread->alternate_signal_stack != NULL) { | 
|  | // Tell the kernel to stop using the alternate signal stack. | 
|  | stack_t ss; | 
|  | ss.ss_sp = NULL; | 
|  | ss.ss_flags = SS_DISABLE; | 
|  | sigaltstack(&ss, NULL); | 
|  |  | 
|  | // Free it. | 
|  | munmap(thread->alternate_signal_stack, SIGSTKSZ); | 
|  | thread->alternate_signal_stack = NULL; | 
|  | } | 
|  |  | 
|  | // if the thread is detached, destroy the pthread_internal_t | 
|  | // otherwise, keep it in memory and signal any joiners. | 
|  | pthread_mutex_lock(&gThreadListLock); | 
|  | if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { | 
|  | _pthread_internal_remove_locked(thread); | 
|  | } else { | 
|  | /* make sure that the thread struct doesn't have stale pointers to a stack that | 
|  | * will be unmapped after the exit call below. | 
|  | */ | 
|  | if (!user_stack) { | 
|  | thread->attr.stack_base = NULL; | 
|  | thread->attr.stack_size = 0; | 
|  | thread->tls = NULL; | 
|  | } | 
|  |  | 
|  | /* Indicate that the thread has exited for joining threads. */ | 
|  | thread->attr.flags |= PTHREAD_ATTR_FLAG_ZOMBIE; | 
|  | thread->return_value = retval; | 
|  |  | 
|  | /* Signal the joining thread if present. */ | 
|  | if (thread->attr.flags & PTHREAD_ATTR_FLAG_JOINED) { | 
|  | pthread_cond_signal(&thread->join_cond); | 
|  | } | 
|  | } | 
|  | pthread_mutex_unlock(&gThreadListLock); | 
|  |  | 
|  | sigfillset(&mask); | 
|  | sigdelset(&mask, SIGSEGV); | 
|  | (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL); | 
|  |  | 
|  | // destroy the thread stack | 
|  | if (user_stack) | 
|  | _exit_thread((int)retval); | 
|  | else | 
|  | _exit_with_stack_teardown(stack_base, stack_size, (int)retval); | 
|  | } | 
|  |  | 
|  | /* a mutex is implemented as a 32-bit integer holding the following fields | 
|  | * | 
|  | * bits:     name     description | 
|  | * 31-16     tid      owner thread's tid (recursive and errorcheck only) | 
|  | * 15-14     type     mutex type | 
|  | * 13        shared   process-shared flag | 
|  | * 12-2      counter  counter of recursive mutexes | 
|  | * 1-0       state    lock state (0, 1 or 2) | 
|  | */ | 
|  |  | 
|  | /* Convenience macro, creates a mask of 'bits' bits that starts from | 
|  | * the 'shift'-th least significant bit in a 32-bit word. | 
|  | * | 
|  | * Examples: FIELD_MASK(0,4)  -> 0xf | 
|  | *           FIELD_MASK(16,9) -> 0x1ff0000 | 
|  | */ | 
|  | #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift)) | 
|  |  | 
|  | /* This one is used to create a bit pattern from a given field value */ | 
|  | #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift)) | 
|  |  | 
|  | /* And this one does the opposite, i.e. extract a field's value from a bit pattern */ | 
|  | #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1)) | 
|  |  | 
|  | /* Mutex state: | 
|  | * | 
|  | * 0 for unlocked | 
|  | * 1 for locked, no waiters | 
|  | * 2 for locked, maybe waiters | 
|  | */ | 
|  | #define  MUTEX_STATE_SHIFT      0 | 
|  | #define  MUTEX_STATE_LEN        2 | 
|  |  | 
|  | #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  | #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  | #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  |  | 
|  | #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */ | 
|  | #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */ | 
|  | #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ | 
|  |  | 
|  | #define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  | #define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) | 
|  |  | 
|  | #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) | 
|  | #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) | 
|  | #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) | 
|  |  | 
|  | /* return true iff the mutex if locked with no waiters */ | 
|  | #define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED) | 
|  |  | 
|  | /* return true iff the mutex if locked with maybe waiters */ | 
|  | #define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED) | 
|  |  | 
|  | /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */ | 
|  | #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) | 
|  |  | 
|  | /* Mutex counter: | 
|  | * | 
|  | * We need to check for overflow before incrementing, and we also need to | 
|  | * detect when the counter is 0 | 
|  | */ | 
|  | #define  MUTEX_COUNTER_SHIFT         2 | 
|  | #define  MUTEX_COUNTER_LEN           11 | 
|  | #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN) | 
|  |  | 
|  | #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK) | 
|  | #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0) | 
|  |  | 
|  | /* Used to increment the counter directly after overflow has been checked */ | 
|  | #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) | 
|  |  | 
|  | /* Returns true iff the counter is 0 */ | 
|  | #define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0) | 
|  |  | 
|  | /* Mutex shared bit flag | 
|  | * | 
|  | * This flag is set to indicate that the mutex is shared among processes. | 
|  | * This changes the futex opcode we use for futex wait/wake operations | 
|  | * (non-shared operations are much faster). | 
|  | */ | 
|  | #define  MUTEX_SHARED_SHIFT    13 | 
|  | #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1) | 
|  |  | 
|  | /* Mutex type: | 
|  | * | 
|  | * We support normal, recursive and errorcheck mutexes. | 
|  | * | 
|  | * The constants defined here *cannot* be changed because they must match | 
|  | * the C library ABI which defines the following initialization values in | 
|  | * <pthread.h>: | 
|  | * | 
|  | *   __PTHREAD_MUTEX_INIT_VALUE | 
|  | *   __PTHREAD_RECURSIVE_MUTEX_VALUE | 
|  | *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE | 
|  | */ | 
|  | #define  MUTEX_TYPE_SHIFT      14 | 
|  | #define  MUTEX_TYPE_LEN        2 | 
|  | #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN) | 
|  |  | 
|  | #define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */ | 
|  | #define  MUTEX_TYPE_RECURSIVE       1 | 
|  | #define  MUTEX_TYPE_ERRORCHECK      2 | 
|  |  | 
|  | #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN) | 
|  |  | 
|  | #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL) | 
|  | #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE) | 
|  | #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK) | 
|  |  | 
|  | /* Mutex owner field: | 
|  | * | 
|  | * This is only used for recursive and errorcheck mutexes. It holds the | 
|  | * tid of the owning thread. Note that this works because the Linux | 
|  | * kernel _only_ uses 16-bit values for tids. | 
|  | * | 
|  | * More specifically, it will wrap to 10000 when it reaches over 32768 for | 
|  | * application processes. You can check this by running the following inside | 
|  | * an adb shell session: | 
|  | * | 
|  | OLDPID=$$; | 
|  | while true; do | 
|  | NEWPID=$(sh -c 'echo $$') | 
|  | if [ "$NEWPID" -gt 32768 ]; then | 
|  | echo "AARGH: new PID $NEWPID is too high!" | 
|  | exit 1 | 
|  | fi | 
|  | if [ "$NEWPID" -lt "$OLDPID" ]; then | 
|  | echo "****** Wrapping from PID $OLDPID to $NEWPID. *******" | 
|  | else | 
|  | echo -n "$NEWPID!" | 
|  | fi | 
|  | OLDPID=$NEWPID | 
|  | done | 
|  |  | 
|  | * Note that you can run the same example on a desktop Linux system, | 
|  | * the wrapping will also happen at 32768, but will go back to 300 instead. | 
|  | */ | 
|  | #define  MUTEX_OWNER_SHIFT     16 | 
|  | #define  MUTEX_OWNER_LEN       16 | 
|  |  | 
|  | #define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) | 
|  | #define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) | 
|  |  | 
|  | /* Convenience macros. | 
|  | * | 
|  | * These are used to form or modify the bit pattern of a given mutex value | 
|  | */ | 
|  |  | 
|  |  | 
|  |  | 
|  | /* a mutex attribute holds the following fields | 
|  | * | 
|  | * bits:     name       description | 
|  | * 0-3       type       type of mutex | 
|  | * 4         shared     process-shared flag | 
|  | */ | 
|  | #define  MUTEXATTR_TYPE_MASK   0x000f | 
|  | #define  MUTEXATTR_SHARED_MASK 0x0010 | 
|  |  | 
|  |  | 
|  | int pthread_mutexattr_init(pthread_mutexattr_t *attr) | 
|  | { | 
|  | if (attr) { | 
|  | *attr = PTHREAD_MUTEX_DEFAULT; | 
|  | return 0; | 
|  | } else { | 
|  | return EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) | 
|  | { | 
|  | if (attr) { | 
|  | *attr = -1; | 
|  | return 0; | 
|  | } else { | 
|  | return EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) | 
|  | { | 
|  | if (attr) { | 
|  | int  atype = (*attr & MUTEXATTR_TYPE_MASK); | 
|  |  | 
|  | if (atype >= PTHREAD_MUTEX_NORMAL && | 
|  | atype <= PTHREAD_MUTEX_ERRORCHECK) { | 
|  | *type = atype; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) | 
|  | { | 
|  | if (attr && type >= PTHREAD_MUTEX_NORMAL && | 
|  | type <= PTHREAD_MUTEX_ERRORCHECK ) { | 
|  | *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type; | 
|  | return 0; | 
|  | } | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | /* process-shared mutexes are not supported at the moment */ | 
|  |  | 
|  | int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared) | 
|  | { | 
|  | if (!attr) | 
|  | return EINVAL; | 
|  |  | 
|  | switch (pshared) { | 
|  | case PTHREAD_PROCESS_PRIVATE: | 
|  | *attr &= ~MUTEXATTR_SHARED_MASK; | 
|  | return 0; | 
|  |  | 
|  | case PTHREAD_PROCESS_SHARED: | 
|  | /* our current implementation of pthread actually supports shared | 
|  | * mutexes but won't cleanup if a process dies with the mutex held. | 
|  | * Nevertheless, it's better than nothing. Shared mutexes are used | 
|  | * by surfaceflinger and audioflinger. | 
|  | */ | 
|  | *attr |= MUTEXATTR_SHARED_MASK; | 
|  | return 0; | 
|  | } | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared) | 
|  | { | 
|  | if (!attr || !pshared) | 
|  | return EINVAL; | 
|  |  | 
|  | *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED | 
|  | : PTHREAD_PROCESS_PRIVATE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_mutex_init(pthread_mutex_t *mutex, | 
|  | const pthread_mutexattr_t *attr) | 
|  | { | 
|  | int value = 0; | 
|  |  | 
|  | if (mutex == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | if (__predict_true(attr == NULL)) { | 
|  | mutex->value = MUTEX_TYPE_BITS_NORMAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((*attr & MUTEXATTR_SHARED_MASK) != 0) | 
|  | value |= MUTEX_SHARED_MASK; | 
|  |  | 
|  | switch (*attr & MUTEXATTR_TYPE_MASK) { | 
|  | case PTHREAD_MUTEX_NORMAL: | 
|  | value |= MUTEX_TYPE_BITS_NORMAL; | 
|  | break; | 
|  | case PTHREAD_MUTEX_RECURSIVE: | 
|  | value |= MUTEX_TYPE_BITS_RECURSIVE; | 
|  | break; | 
|  | case PTHREAD_MUTEX_ERRORCHECK: | 
|  | value |= MUTEX_TYPE_BITS_ERRORCHECK; | 
|  | break; | 
|  | default: | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | mutex->value = value; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Lock a non-recursive mutex. | 
|  | * | 
|  | * As noted above, there are three states: | 
|  | *   0 (unlocked, no contention) | 
|  | *   1 (locked, no contention) | 
|  | *   2 (locked, contention) | 
|  | * | 
|  | * Non-recursive mutexes don't use the thread-id or counter fields, and the | 
|  | * "type" value is zero, so the only bits that will be set are the ones in | 
|  | * the lock state field. | 
|  | */ | 
|  | static __inline__ void | 
|  | _normal_lock(pthread_mutex_t*  mutex, int shared) | 
|  | { | 
|  | /* convenience shortcuts */ | 
|  | const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  | /* | 
|  | * The common case is an unlocked mutex, so we begin by trying to | 
|  | * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED). | 
|  | * __bionic_cmpxchg() returns 0 if it made the swap successfully. | 
|  | * If the result is nonzero, this lock is already held by another thread. | 
|  | */ | 
|  | if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) { | 
|  | const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  | /* | 
|  | * We want to go to sleep until the mutex is available, which | 
|  | * requires promoting it to state 2 (CONTENDED). We need to | 
|  | * swap in the new state value and then wait until somebody wakes us up. | 
|  | * | 
|  | * __bionic_swap() returns the previous value.  We swap 2 in and | 
|  | * see if we got zero back; if so, we have acquired the lock.  If | 
|  | * not, another thread still holds the lock and we wait again. | 
|  | * | 
|  | * The second argument to the __futex_wait() call is compared | 
|  | * against the current value.  If it doesn't match, __futex_wait() | 
|  | * returns immediately (otherwise, it sleeps for a time specified | 
|  | * by the third argument; 0 means sleep forever).  This ensures | 
|  | * that the mutex is in state 2 when we go to sleep on it, which | 
|  | * guarantees a wake-up call. | 
|  | */ | 
|  | while (__bionic_swap(locked_contended, &mutex->value) != unlocked) | 
|  | __futex_wait_ex(&mutex->value, shared, locked_contended, 0); | 
|  | } | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a non-recursive mutex.  The caller is responsible for determining | 
|  | * that we are in fact the owner of this lock. | 
|  | */ | 
|  | static __inline__ void | 
|  | _normal_unlock(pthread_mutex_t*  mutex, int shared) | 
|  | { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  |  | 
|  | /* | 
|  | * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement | 
|  | * to release the lock.  __bionic_atomic_dec() returns the previous value; | 
|  | * if it wasn't 1 we have to do some additional work. | 
|  | */ | 
|  | if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) { | 
|  | /* | 
|  | * Start by releasing the lock.  The decrement changed it from | 
|  | * "contended lock" to "uncontended lock", which means we still | 
|  | * hold it, and anybody who tries to sneak in will push it back | 
|  | * to state 2. | 
|  | * | 
|  | * Once we set it to zero the lock is up for grabs.  We follow | 
|  | * this with a __futex_wake() to ensure that one of the waiting | 
|  | * threads has a chance to grab it. | 
|  | * | 
|  | * This doesn't cause a race with the swap/wait pair in | 
|  | * _normal_lock(), because the __futex_wait() call there will | 
|  | * return immediately if the mutex value isn't 2. | 
|  | */ | 
|  | mutex->value = shared; | 
|  |  | 
|  | /* | 
|  | * Wake up one waiting thread.  We don't know which thread will be | 
|  | * woken or when it'll start executing -- futexes make no guarantees | 
|  | * here.  There may not even be a thread waiting. | 
|  | * | 
|  | * The newly-woken thread will replace the 0 we just set above | 
|  | * with 2, which means that when it eventually releases the mutex | 
|  | * it will also call FUTEX_WAKE.  This results in one extra wake | 
|  | * call whenever a lock is contended, but lets us avoid forgetting | 
|  | * anyone without requiring us to track the number of sleepers. | 
|  | * | 
|  | * It's possible for another thread to sneak in and grab the lock | 
|  | * between the zero assignment above and the wake call below.  If | 
|  | * the new thread is "slow" and holds the lock for a while, we'll | 
|  | * wake up a sleeper, which will swap in a 2 and then go back to | 
|  | * sleep since the lock is still held.  If the new thread is "fast", | 
|  | * running to completion before we call wake, the thread we | 
|  | * eventually wake will find an unlocked mutex and will execute. | 
|  | * Either way we have correct behavior and nobody is orphaned on | 
|  | * the wait queue. | 
|  | */ | 
|  | __futex_wake_ex(&mutex->value, shared, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This common inlined function is used to increment the counter of an | 
|  | * errorcheck or recursive mutex. | 
|  | * | 
|  | * For errorcheck mutexes, it will return EDEADLK | 
|  | * If the counter overflows, it will return EAGAIN | 
|  | * Otherwise, it atomically increments the counter and returns 0 | 
|  | * after providing an acquire barrier. | 
|  | * | 
|  | * mtype is the current mutex type | 
|  | * mvalue is the current mutex value (already loaded) | 
|  | * mutex pointers to the mutex. | 
|  | */ | 
|  | static __inline__ __attribute__((always_inline)) int | 
|  | _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) | 
|  | { | 
|  | if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { | 
|  | /* trying to re-lock a mutex we already acquired */ | 
|  | return EDEADLK; | 
|  | } | 
|  |  | 
|  | /* Detect recursive lock overflow and return EAGAIN. | 
|  | * This is safe because only the owner thread can modify the | 
|  | * counter bits in the mutex value. | 
|  | */ | 
|  | if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) { | 
|  | return EAGAIN; | 
|  | } | 
|  |  | 
|  | /* We own the mutex, but other threads are able to change | 
|  | * the lower bits (e.g. promoting it to "contended"), so we | 
|  | * need to use an atomic cmpxchg loop to update the counter. | 
|  | */ | 
|  | for (;;) { | 
|  | /* increment counter, overflow was already checked */ | 
|  | int newval = mvalue + MUTEX_COUNTER_BITS_ONE; | 
|  | if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { | 
|  | /* mutex is still locked, not need for a memory barrier */ | 
|  | return 0; | 
|  | } | 
|  | /* the value was changed, this happens when another thread changes | 
|  | * the lower state bits from 1 to 2 to indicate contention. This | 
|  | * cannot change the counter, so simply reload and try again. | 
|  | */ | 
|  | mvalue = mutex->value; | 
|  | } | 
|  | } | 
|  |  | 
|  | __LIBC_HIDDEN__ | 
|  | int pthread_mutex_lock_impl(pthread_mutex_t *mutex) | 
|  | { | 
|  | int mvalue, mtype, tid, shared; | 
|  |  | 
|  | if (__predict_false(mutex == NULL)) | 
|  | return EINVAL; | 
|  |  | 
|  | mvalue = mutex->value; | 
|  | mtype = (mvalue & MUTEX_TYPE_MASK); | 
|  | shared = (mvalue & MUTEX_SHARED_MASK); | 
|  |  | 
|  | /* Handle normal case first */ | 
|  | if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { | 
|  | _normal_lock(mutex, shared); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do we already own this recursive or error-check mutex ? */ | 
|  | tid = __get_thread()->tid; | 
|  | if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) | 
|  | return _recursive_increment(mutex, mvalue, mtype); | 
|  |  | 
|  | /* Add in shared state to avoid extra 'or' operations below */ | 
|  | mtype |= shared; | 
|  |  | 
|  | /* First, if the mutex is unlocked, try to quickly acquire it. | 
|  | * In the optimistic case where this works, set the state to 1 to | 
|  | * indicate locked with no contention */ | 
|  | if (mvalue == mtype) { | 
|  | int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  | if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  | /* argh, the value changed, reload before entering the loop */ | 
|  | mvalue = mutex->value; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | int newval; | 
|  |  | 
|  | /* if the mutex is unlocked, its value should be 'mtype' and | 
|  | * we try to acquire it by setting its owner and state atomically. | 
|  | * NOTE: We put the state to 2 since we _know_ there is contention | 
|  | * when we are in this loop. This ensures all waiters will be | 
|  | * unlocked. | 
|  | */ | 
|  | if (mvalue == mtype) { | 
|  | newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  | /* TODO: Change this to __bionic_cmpxchg_acquire when we | 
|  | *        implement it to get rid of the explicit memory | 
|  | *        barrier below. | 
|  | */ | 
|  | if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { | 
|  | mvalue = mutex->value; | 
|  | continue; | 
|  | } | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* the mutex is already locked by another thread, if its state is 1 | 
|  | * we will change it to 2 to indicate contention. */ | 
|  | if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { | 
|  | newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */ | 
|  | if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { | 
|  | mvalue = mutex->value; | 
|  | continue; | 
|  | } | 
|  | mvalue = newval; | 
|  | } | 
|  |  | 
|  | /* wait until the mutex is unlocked */ | 
|  | __futex_wait_ex(&mutex->value, shared, mvalue, NULL); | 
|  |  | 
|  | mvalue = mutex->value; | 
|  | } | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | int pthread_mutex_lock(pthread_mutex_t *mutex) | 
|  | { | 
|  | int err = pthread_mutex_lock_impl(mutex); | 
|  | #ifdef PTHREAD_DEBUG | 
|  | if (PTHREAD_DEBUG_ENABLED) { | 
|  | if (!err) { | 
|  | pthread_debug_mutex_lock_check(mutex); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | __LIBC_HIDDEN__ | 
|  | int pthread_mutex_unlock_impl(pthread_mutex_t *mutex) | 
|  | { | 
|  | int mvalue, mtype, tid, shared; | 
|  |  | 
|  | if (__predict_false(mutex == NULL)) | 
|  | return EINVAL; | 
|  |  | 
|  | mvalue = mutex->value; | 
|  | mtype  = (mvalue & MUTEX_TYPE_MASK); | 
|  | shared = (mvalue & MUTEX_SHARED_MASK); | 
|  |  | 
|  | /* Handle common case first */ | 
|  | if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { | 
|  | _normal_unlock(mutex, shared); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do we already own this recursive or error-check mutex ? */ | 
|  | tid = __get_thread()->tid; | 
|  | if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) ) | 
|  | return EPERM; | 
|  |  | 
|  | /* If the counter is > 0, we can simply decrement it atomically. | 
|  | * Since other threads can mutate the lower state bits (and only the | 
|  | * lower state bits), use a cmpxchg to do it. | 
|  | */ | 
|  | if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) { | 
|  | for (;;) { | 
|  | int newval = mvalue - MUTEX_COUNTER_BITS_ONE; | 
|  | if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { | 
|  | /* success: we still own the mutex, so no memory barrier */ | 
|  | return 0; | 
|  | } | 
|  | /* the value changed, so reload and loop */ | 
|  | mvalue = mutex->value; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the counter is 0, so we're going to unlock the mutex by resetting | 
|  | * its value to 'unlocked'. We need to perform a swap in order | 
|  | * to read the current state, which will be 2 if there are waiters | 
|  | * to awake. | 
|  | * | 
|  | * TODO: Change this to __bionic_swap_release when we implement it | 
|  | *        to get rid of the explicit memory barrier below. | 
|  | */ | 
|  | ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */ | 
|  | mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value); | 
|  |  | 
|  | /* Wake one waiting thread, if any */ | 
|  | if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { | 
|  | __futex_wake_ex(&mutex->value, shared, 1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_mutex_unlock(pthread_mutex_t *mutex) | 
|  | { | 
|  | #ifdef PTHREAD_DEBUG | 
|  | if (PTHREAD_DEBUG_ENABLED) { | 
|  | pthread_debug_mutex_unlock_check(mutex); | 
|  | } | 
|  | #endif | 
|  | return pthread_mutex_unlock_impl(mutex); | 
|  | } | 
|  |  | 
|  | __LIBC_HIDDEN__ | 
|  | int pthread_mutex_trylock_impl(pthread_mutex_t *mutex) | 
|  | { | 
|  | int mvalue, mtype, tid, shared; | 
|  |  | 
|  | if (__predict_false(mutex == NULL)) | 
|  | return EINVAL; | 
|  |  | 
|  | mvalue = mutex->value; | 
|  | mtype  = (mvalue & MUTEX_TYPE_MASK); | 
|  | shared = (mvalue & MUTEX_SHARED_MASK); | 
|  |  | 
|  | /* Handle common case first */ | 
|  | if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) | 
|  | { | 
|  | if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED, | 
|  | shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED, | 
|  | &mutex->value) == 0) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return EBUSY; | 
|  | } | 
|  |  | 
|  | /* Do we already own this recursive or error-check mutex ? */ | 
|  | tid = __get_thread()->tid; | 
|  | if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) | 
|  | return _recursive_increment(mutex, mvalue, mtype); | 
|  |  | 
|  | /* Same as pthread_mutex_lock, except that we don't want to wait, and | 
|  | * the only operation that can succeed is a single cmpxchg to acquire the | 
|  | * lock if it is released / not owned by anyone. No need for a complex loop. | 
|  | */ | 
|  | mtype |= shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  |  | 
|  | if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return EBUSY; | 
|  | } | 
|  |  | 
|  | int pthread_mutex_trylock(pthread_mutex_t *mutex) | 
|  | { | 
|  | int err = pthread_mutex_trylock_impl(mutex); | 
|  | #ifdef PTHREAD_DEBUG | 
|  | if (PTHREAD_DEBUG_ENABLED) { | 
|  | if (!err) { | 
|  | pthread_debug_mutex_lock_check(mutex); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* initialize 'ts' with the difference between 'abstime' and the current time | 
|  | * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise. | 
|  | */ | 
|  | static int | 
|  | __timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock) | 
|  | { | 
|  | clock_gettime(clock, ts); | 
|  | ts->tv_sec  = abstime->tv_sec - ts->tv_sec; | 
|  | ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec; | 
|  | if (ts->tv_nsec < 0) { | 
|  | ts->tv_sec--; | 
|  | ts->tv_nsec += 1000000000; | 
|  | } | 
|  | if ((ts->tv_nsec < 0) || (ts->tv_sec < 0)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* initialize 'abstime' to the current time according to 'clock' plus 'msecs' | 
|  | * milliseconds. | 
|  | */ | 
|  | static void | 
|  | __timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock) | 
|  | { | 
|  | clock_gettime(clock, abstime); | 
|  | abstime->tv_sec  += msecs/1000; | 
|  | abstime->tv_nsec += (msecs%1000)*1000000; | 
|  | if (abstime->tv_nsec >= 1000000000) { | 
|  | abstime->tv_sec++; | 
|  | abstime->tv_nsec -= 1000000000; | 
|  | } | 
|  | } | 
|  |  | 
|  | __LIBC_HIDDEN__ | 
|  | int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs) | 
|  | { | 
|  | clockid_t        clock = CLOCK_MONOTONIC; | 
|  | struct timespec  abstime; | 
|  | struct timespec  ts; | 
|  | int               mvalue, mtype, tid, shared; | 
|  |  | 
|  | /* compute absolute expiration time */ | 
|  | __timespec_to_relative_msec(&abstime, msecs, clock); | 
|  |  | 
|  | if (__predict_false(mutex == NULL)) | 
|  | return EINVAL; | 
|  |  | 
|  | mvalue = mutex->value; | 
|  | mtype  = (mvalue & MUTEX_TYPE_MASK); | 
|  | shared = (mvalue & MUTEX_SHARED_MASK); | 
|  |  | 
|  | /* Handle common case first */ | 
|  | if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) | 
|  | { | 
|  | const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED; | 
|  | const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  | const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  |  | 
|  | /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */ | 
|  | if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* loop while needed */ | 
|  | while (__bionic_swap(locked_contended, &mutex->value) != unlocked) { | 
|  | if (__timespec_to_absolute(&ts, &abstime, clock) < 0) | 
|  | return EBUSY; | 
|  |  | 
|  | __futex_wait_ex(&mutex->value, shared, locked_contended, &ts); | 
|  | } | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do we already own this recursive or error-check mutex ? */ | 
|  | tid = __get_thread()->tid; | 
|  | if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) | 
|  | return _recursive_increment(mutex, mvalue, mtype); | 
|  |  | 
|  | /* the following implements the same loop than pthread_mutex_lock_impl | 
|  | * but adds checks to ensure that the operation never exceeds the | 
|  | * absolute expiration time. | 
|  | */ | 
|  | mtype |= shared; | 
|  |  | 
|  | /* first try a quick lock */ | 
|  | if (mvalue == mtype) { | 
|  | mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; | 
|  | if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  | mvalue = mutex->value; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | struct timespec ts; | 
|  |  | 
|  | /* if the value is 'unlocked', try to acquire it directly */ | 
|  | /* NOTE: put state to 2 since we know there is contention */ | 
|  | if (mvalue == mtype) /* unlocked */ { | 
|  | mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; | 
|  | if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  | /* the value changed before we could lock it. We need to check | 
|  | * the time to avoid livelocks, reload the value, then loop again. */ | 
|  | if (__timespec_to_absolute(&ts, &abstime, clock) < 0) | 
|  | return EBUSY; | 
|  |  | 
|  | mvalue = mutex->value; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* The value is locked. If 'uncontended', try to switch its state | 
|  | * to 'contented' to ensure we get woken up later. */ | 
|  | if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { | 
|  | int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); | 
|  | if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) { | 
|  | /* this failed because the value changed, reload it */ | 
|  | mvalue = mutex->value; | 
|  | } else { | 
|  | /* this succeeded, update mvalue */ | 
|  | mvalue = newval; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check time and update 'ts' */ | 
|  | if (__timespec_to_absolute(&ts, &abstime, clock) < 0) | 
|  | return EBUSY; | 
|  |  | 
|  | /* Only wait to be woken up if the state is '2', otherwise we'll | 
|  | * simply loop right now. This can happen when the second cmpxchg | 
|  | * in our loop failed because the mutex was unlocked by another | 
|  | * thread. | 
|  | */ | 
|  | if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { | 
|  | if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) { | 
|  | return EBUSY; | 
|  | } | 
|  | mvalue = mutex->value; | 
|  | } | 
|  | } | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs) | 
|  | { | 
|  | int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs); | 
|  | #ifdef PTHREAD_DEBUG | 
|  | if (PTHREAD_DEBUG_ENABLED) { | 
|  | if (!err) { | 
|  | pthread_debug_mutex_lock_check(mutex); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int pthread_mutex_destroy(pthread_mutex_t *mutex) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* use trylock to ensure that the mutex value is | 
|  | * valid and is not already locked. */ | 
|  | ret = pthread_mutex_trylock_impl(mutex); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | mutex->value = 0xdead10cc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | int pthread_condattr_init(pthread_condattr_t *attr) | 
|  | { | 
|  | if (attr == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | *attr = PTHREAD_PROCESS_PRIVATE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared) | 
|  | { | 
|  | if (attr == NULL || pshared == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | *pshared = *attr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared) | 
|  | { | 
|  | if (attr == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | if (pshared != PTHREAD_PROCESS_SHARED && | 
|  | pshared != PTHREAD_PROCESS_PRIVATE) | 
|  | return EINVAL; | 
|  |  | 
|  | *attr = pshared; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_condattr_destroy(pthread_condattr_t *attr) | 
|  | { | 
|  | if (attr == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | *attr = 0xdeada11d; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We use one bit in condition variable values as the 'shared' flag | 
|  | * The rest is a counter. | 
|  | */ | 
|  | #define COND_SHARED_MASK        0x0001 | 
|  | #define COND_COUNTER_INCREMENT  0x0002 | 
|  | #define COND_COUNTER_MASK       (~COND_SHARED_MASK) | 
|  |  | 
|  | #define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0) | 
|  |  | 
|  | /* XXX *technically* there is a race condition that could allow | 
|  | * XXX a signal to be missed.  If thread A is preempted in _wait() | 
|  | * XXX after unlocking the mutex and before waiting, and if other | 
|  | * XXX threads call signal or broadcast UINT_MAX/2 times (exactly), | 
|  | * XXX before thread A is scheduled again and calls futex_wait(), | 
|  | * XXX then the signal will be lost. | 
|  | */ | 
|  |  | 
|  | int pthread_cond_init(pthread_cond_t *cond, | 
|  | const pthread_condattr_t *attr) | 
|  | { | 
|  | if (cond == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | cond->value = 0; | 
|  |  | 
|  | if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED) | 
|  | cond->value |= COND_SHARED_MASK; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_cond_destroy(pthread_cond_t *cond) | 
|  | { | 
|  | if (cond == NULL) | 
|  | return EINVAL; | 
|  |  | 
|  | cond->value = 0xdeadc04d; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This function is used by pthread_cond_broadcast and | 
|  | * pthread_cond_signal to atomically decrement the counter | 
|  | * then wake-up 'counter' threads. | 
|  | */ | 
|  | static int | 
|  | __pthread_cond_pulse(pthread_cond_t *cond, int  counter) | 
|  | { | 
|  | long flags; | 
|  |  | 
|  | if (__predict_false(cond == NULL)) | 
|  | return EINVAL; | 
|  |  | 
|  | flags = (cond->value & ~COND_COUNTER_MASK); | 
|  | for (;;) { | 
|  | long oldval = cond->value; | 
|  | long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK) | 
|  | | flags; | 
|  | if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that all memory accesses previously made by this thread are | 
|  | * visible to the woken thread(s).  On the other side, the "wait" | 
|  | * code will issue any necessary barriers when locking the mutex. | 
|  | * | 
|  | * This may not strictly be necessary -- if the caller follows | 
|  | * recommended practice and holds the mutex before signaling the cond | 
|  | * var, the mutex ops will provide correct semantics.  If they don't | 
|  | * hold the mutex, they're subject to race conditions anyway. | 
|  | */ | 
|  | ANDROID_MEMBAR_FULL(); | 
|  |  | 
|  | __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pthread_cond_broadcast(pthread_cond_t *cond) | 
|  | { | 
|  | return __pthread_cond_pulse(cond, INT_MAX); | 
|  | } | 
|  |  | 
|  | int pthread_cond_signal(pthread_cond_t *cond) | 
|  | { | 
|  | return __pthread_cond_pulse(cond, 1); | 
|  | } | 
|  |  | 
|  | int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) | 
|  | { | 
|  | return pthread_cond_timedwait(cond, mutex, NULL); | 
|  | } | 
|  |  | 
|  | int __pthread_cond_timedwait_relative(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | const struct timespec *reltime) | 
|  | { | 
|  | int  status; | 
|  | int  oldvalue = cond->value; | 
|  |  | 
|  | pthread_mutex_unlock(mutex); | 
|  | status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime); | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | if (status == (-ETIMEDOUT)) return ETIMEDOUT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __pthread_cond_timedwait(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | const struct timespec *abstime, | 
|  | clockid_t clock) | 
|  | { | 
|  | struct timespec ts; | 
|  | struct timespec * tsp; | 
|  |  | 
|  | if (abstime != NULL) { | 
|  | if (__timespec_to_absolute(&ts, abstime, clock) < 0) | 
|  | return ETIMEDOUT; | 
|  | tsp = &ts; | 
|  | } else { | 
|  | tsp = NULL; | 
|  | } | 
|  |  | 
|  | return __pthread_cond_timedwait_relative(cond, mutex, tsp); | 
|  | } | 
|  |  | 
|  | int pthread_cond_timedwait(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | const struct timespec *abstime) | 
|  | { | 
|  | return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* this one exists only for backward binary compatibility */ | 
|  | int pthread_cond_timedwait_monotonic(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | const struct timespec *abstime) | 
|  | { | 
|  | return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC); | 
|  | } | 
|  |  | 
|  | int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | const struct timespec *abstime) | 
|  | { | 
|  | return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC); | 
|  | } | 
|  |  | 
|  | int pthread_cond_timedwait_relative_np(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | const struct timespec *reltime) | 
|  | { | 
|  | return __pthread_cond_timedwait_relative(cond, mutex, reltime); | 
|  | } | 
|  |  | 
|  | int pthread_cond_timeout_np(pthread_cond_t *cond, | 
|  | pthread_mutex_t * mutex, | 
|  | unsigned msecs) | 
|  | { | 
|  | struct timespec ts; | 
|  |  | 
|  | ts.tv_sec = msecs / 1000; | 
|  | ts.tv_nsec = (msecs % 1000) * 1000000; | 
|  |  | 
|  | return __pthread_cond_timedwait_relative(cond, mutex, &ts); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* NOTE: this implementation doesn't support a init function that throws a C++ exception | 
|  | *       or calls fork() | 
|  | */ | 
|  | int pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) ) | 
|  | { | 
|  | volatile pthread_once_t* ocptr = once_control; | 
|  |  | 
|  | /* PTHREAD_ONCE_INIT is 0, we use the following bit flags | 
|  | * | 
|  | *   bit 0 set  -> initialization is under way | 
|  | *   bit 1 set  -> initialization is complete | 
|  | */ | 
|  | #define ONCE_INITIALIZING           (1 << 0) | 
|  | #define ONCE_COMPLETED              (1 << 1) | 
|  |  | 
|  | /* First check if the once is already initialized. This will be the common | 
|  | * case and we want to make this as fast as possible. Note that this still | 
|  | * requires a load_acquire operation here to ensure that all the | 
|  | * stores performed by the initialization function are observable on | 
|  | * this CPU after we exit. | 
|  | */ | 
|  | if (__predict_true((*ocptr & ONCE_COMPLETED) != 0)) { | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | /* Try to atomically set the INITIALIZING flag. | 
|  | * This requires a cmpxchg loop, and we may need | 
|  | * to exit prematurely if we detect that | 
|  | * COMPLETED is now set. | 
|  | */ | 
|  | int32_t  oldval, newval; | 
|  |  | 
|  | do { | 
|  | oldval = *ocptr; | 
|  | if ((oldval & ONCE_COMPLETED) != 0) | 
|  | break; | 
|  |  | 
|  | newval = oldval | ONCE_INITIALIZING; | 
|  | } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0); | 
|  |  | 
|  | if ((oldval & ONCE_COMPLETED) != 0) { | 
|  | /* We detected that COMPLETED was set while in our loop */ | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((oldval & ONCE_INITIALIZING) == 0) { | 
|  | /* We got there first, we can jump out of the loop to | 
|  | * handle the initialization */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Another thread is running the initialization and hasn't completed | 
|  | * yet, so wait for it, then try again. */ | 
|  | __futex_wait_ex(ocptr, 0, oldval, NULL); | 
|  | } | 
|  |  | 
|  | /* call the initialization function. */ | 
|  | (*init_routine)(); | 
|  |  | 
|  | /* Do a store_release indicating that initialization is complete */ | 
|  | ANDROID_MEMBAR_FULL(); | 
|  | *ocptr = ONCE_COMPLETED; | 
|  |  | 
|  | /* Wake up any waiters, if any */ | 
|  | __futex_wake_ex(ocptr, 0, INT_MAX); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pid_t __pthread_gettid(pthread_t thid) { | 
|  | pthread_internal_t* thread = (pthread_internal_t*) thid; | 
|  | return thread->tid; | 
|  | } | 
|  |  | 
|  | int __pthread_settid(pthread_t thid, pid_t tid) { | 
|  | if (thid == 0) { | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | pthread_internal_t* thread = (pthread_internal_t*) thid; | 
|  | thread->tid = tid; | 
|  |  | 
|  | return 0; | 
|  | } |