|  | /* @(#)s_atan.c 5.1 93/09/24 */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | #ifndef lint | 
|  | static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_atan.c,v 1.9 2003/07/23 04:53:46 peter Exp $"; | 
|  | #endif | 
|  |  | 
|  | /* atan(x) | 
|  | * Method | 
|  | *   1. Reduce x to positive by atan(x) = -atan(-x). | 
|  | *   2. According to the integer k=4t+0.25 chopped, t=x, the argument | 
|  | *      is further reduced to one of the following intervals and the | 
|  | *      arctangent of t is evaluated by the corresponding formula: | 
|  | * | 
|  | *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) | 
|  | *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) | 
|  | *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) | 
|  | *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) | 
|  | *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t ) | 
|  | * | 
|  | * Constants: | 
|  | * The hexadecimal values are the intended ones for the following | 
|  | * constants. The decimal values may be used, provided that the | 
|  | * compiler will convert from decimal to binary accurately enough | 
|  | * to produce the hexadecimal values shown. | 
|  | */ | 
|  |  | 
|  | #include "math.h" | 
|  | #include "math_private.h" | 
|  |  | 
|  | static const double atanhi[] = { | 
|  | 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ | 
|  | 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ | 
|  | 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ | 
|  | 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ | 
|  | }; | 
|  |  | 
|  | static const double atanlo[] = { | 
|  | 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ | 
|  | 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ | 
|  | 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ | 
|  | 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ | 
|  | }; | 
|  |  | 
|  | static const double aT[] = { | 
|  | 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ | 
|  | -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ | 
|  | 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ | 
|  | -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ | 
|  | 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ | 
|  | -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ | 
|  | 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ | 
|  | -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ | 
|  | 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ | 
|  | -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ | 
|  | 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ | 
|  | }; | 
|  |  | 
|  | static const double | 
|  | one   = 1.0, | 
|  | huge   = 1.0e300; | 
|  |  | 
|  | double | 
|  | atan(double x) | 
|  | { | 
|  | double w,s1,s2,z; | 
|  | int32_t ix,hx,id; | 
|  |  | 
|  | GET_HIGH_WORD(hx,x); | 
|  | ix = hx&0x7fffffff; | 
|  | if(ix>=0x44100000) {	/* if |x| >= 2^66 */ | 
|  | u_int32_t low; | 
|  | GET_LOW_WORD(low,x); | 
|  | if(ix>0x7ff00000|| | 
|  | (ix==0x7ff00000&&(low!=0))) | 
|  | return x+x;		/* NaN */ | 
|  | if(hx>0) return  atanhi[3]+atanlo[3]; | 
|  | else     return -atanhi[3]-atanlo[3]; | 
|  | } if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */ | 
|  | if (ix < 0x3e200000) {	/* |x| < 2^-29 */ | 
|  | if(huge+x>one) return x;	/* raise inexact */ | 
|  | } | 
|  | id = -1; | 
|  | } else { | 
|  | x = fabs(x); | 
|  | if (ix < 0x3ff30000) {		/* |x| < 1.1875 */ | 
|  | if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */ | 
|  | id = 0; x = (2.0*x-one)/(2.0+x); | 
|  | } else {			/* 11/16<=|x|< 19/16 */ | 
|  | id = 1; x  = (x-one)/(x+one); | 
|  | } | 
|  | } else { | 
|  | if (ix < 0x40038000) {	/* |x| < 2.4375 */ | 
|  | id = 2; x  = (x-1.5)/(one+1.5*x); | 
|  | } else {			/* 2.4375 <= |x| < 2^66 */ | 
|  | id = 3; x  = -1.0/x; | 
|  | } | 
|  | }} | 
|  | /* end of argument reduction */ | 
|  | z = x*x; | 
|  | w = z*z; | 
|  | /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ | 
|  | s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); | 
|  | s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); | 
|  | if (id<0) return x - x*(s1+s2); | 
|  | else { | 
|  | z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); | 
|  | return (hx<0)? -z:z; | 
|  | } | 
|  | } |