|  | /* @(#)k_tan.c 1.5 04/04/22 SMI */ | 
|  |  | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved. | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* INDENT OFF */ | 
|  | #ifndef lint | 
|  | static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tan.c,v 1.12 2005/11/02 14:01:45 bde Exp $"; | 
|  | #endif | 
|  |  | 
|  | /* __kernel_tan( x, y, k ) | 
|  | * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 | 
|  | * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|  | * Input y is the tail of x. | 
|  | * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned. | 
|  | * | 
|  | * Algorithm | 
|  | *	1. Since tan(-x) = -tan(x), we need only to consider positive x. | 
|  | *	2. Callers must return tan(-0) = -0 without calling here since our | 
|  | *	   odd polynomial is not evaluated in a way that preserves -0. | 
|  | *	   Callers may do the optimization tan(x) ~ x for tiny x. | 
|  | *	3. tan(x) is approximated by a odd polynomial of degree 27 on | 
|  | *	   [0,0.67434] | 
|  | *		  	         3             27 | 
|  | *	   	tan(x) ~ x + T1*x + ... + T13*x | 
|  | *	   where | 
|  | * | 
|  | * 	        |tan(x)         2     4            26   |     -59.2 | 
|  | * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2 | 
|  | * 	        |  x 					| | 
|  | * | 
|  | *	   Note: tan(x+y) = tan(x) + tan'(x)*y | 
|  | *		          ~ tan(x) + (1+x*x)*y | 
|  | *	   Therefore, for better accuracy in computing tan(x+y), let | 
|  | *		     3      2      2       2       2 | 
|  | *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) | 
|  | *	   then | 
|  | *		 		    3    2 | 
|  | *		tan(x+y) = x + (T1*x + (x *(r+y)+y)) | 
|  | * | 
|  | *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then | 
|  | *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) | 
|  | *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) | 
|  | */ | 
|  |  | 
|  | #include "math.h" | 
|  | #include "math_private.h" | 
|  | static const double xxx[] = { | 
|  | 3.33333333333334091986e-01,	/* 3FD55555, 55555563 */ | 
|  | 1.33333333333201242699e-01,	/* 3FC11111, 1110FE7A */ | 
|  | 5.39682539762260521377e-02,	/* 3FABA1BA, 1BB341FE */ | 
|  | 2.18694882948595424599e-02,	/* 3F9664F4, 8406D637 */ | 
|  | 8.86323982359930005737e-03,	/* 3F8226E3, E96E8493 */ | 
|  | 3.59207910759131235356e-03,	/* 3F6D6D22, C9560328 */ | 
|  | 1.45620945432529025516e-03,	/* 3F57DBC8, FEE08315 */ | 
|  | 5.88041240820264096874e-04,	/* 3F4344D8, F2F26501 */ | 
|  | 2.46463134818469906812e-04,	/* 3F3026F7, 1A8D1068 */ | 
|  | 7.81794442939557092300e-05,	/* 3F147E88, A03792A6 */ | 
|  | 7.14072491382608190305e-05,	/* 3F12B80F, 32F0A7E9 */ | 
|  | -1.85586374855275456654e-05,	/* BEF375CB, DB605373 */ | 
|  | 2.59073051863633712884e-05,	/* 3EFB2A70, 74BF7AD4 */ | 
|  | /* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */ | 
|  | /* pio4 */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */ | 
|  | /* pio4lo */	 3.06161699786838301793e-17	/* 3C81A626, 33145C07 */ | 
|  | }; | 
|  | #define	one	xxx[13] | 
|  | #define	pio4	xxx[14] | 
|  | #define	pio4lo	xxx[15] | 
|  | #define	T	xxx | 
|  | /* INDENT ON */ | 
|  |  | 
|  | double | 
|  | __kernel_tan(double x, double y, int iy) { | 
|  | double z, r, v, w, s; | 
|  | int32_t ix, hx; | 
|  |  | 
|  | GET_HIGH_WORD(hx,x); | 
|  | ix = hx & 0x7fffffff;			/* high word of |x| */ | 
|  | if (ix >= 0x3FE59428) {	/* |x| >= 0.6744 */ | 
|  | if (hx < 0) { | 
|  | x = -x; | 
|  | y = -y; | 
|  | } | 
|  | z = pio4 - x; | 
|  | w = pio4lo - y; | 
|  | x = z + w; | 
|  | y = 0.0; | 
|  | } | 
|  | z = x * x; | 
|  | w = z * z; | 
|  | /* | 
|  | * Break x^5*(T[1]+x^2*T[2]+...) into | 
|  | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + | 
|  | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) | 
|  | */ | 
|  | r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + | 
|  | w * T[11])))); | 
|  | v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + | 
|  | w * T[12]))))); | 
|  | s = z * x; | 
|  | r = y + z * (s * (r + v) + y); | 
|  | r += T[0] * s; | 
|  | w = x + r; | 
|  | if (ix >= 0x3FE59428) { | 
|  | v = (double) iy; | 
|  | return (double) (1 - ((hx >> 30) & 2)) * | 
|  | (v - 2.0 * (x - (w * w / (w + v) - r))); | 
|  | } | 
|  | if (iy == 1) | 
|  | return w; | 
|  | else { | 
|  | /* | 
|  | * if allow error up to 2 ulp, simply return | 
|  | * -1.0 / (x+r) here | 
|  | */ | 
|  | /* compute -1.0 / (x+r) accurately */ | 
|  | double a, t; | 
|  | z = w; | 
|  | SET_LOW_WORD(z,0); | 
|  | v = r - (z - x);	/* z+v = r+x */ | 
|  | t = a = -1.0 / w;	/* a = -1.0/w */ | 
|  | SET_LOW_WORD(t,0); | 
|  | s = 1.0 + t * z; | 
|  | return t + a * (s + t * v); | 
|  | } | 
|  | } |