|  |  | 
|  | /* @(#)k_sin.c 1.3 95/01/18 */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | #ifndef lint | 
|  | static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_sin.c,v 1.10 2005/11/02 13:06:49 bde Exp $"; | 
|  | #endif | 
|  |  | 
|  | /* __kernel_sin( x, y, iy) | 
|  | * kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 | 
|  | * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|  | * Input y is the tail of x. | 
|  | * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). | 
|  | * | 
|  | * Algorithm | 
|  | *	1. Since sin(-x) = -sin(x), we need only to consider positive x. | 
|  | *	2. Callers must return sin(-0) = -0 without calling here since our | 
|  | *	   odd polynomial is not evaluated in a way that preserves -0. | 
|  | *	   Callers may do the optimization sin(x) ~ x for tiny x. | 
|  | *	3. sin(x) is approximated by a polynomial of degree 13 on | 
|  | *	   [0,pi/4] | 
|  | *		  	         3            13 | 
|  | *	   	sin(x) ~ x + S1*x + ... + S6*x | 
|  | *	   where | 
|  | * | 
|  | * 	|sin(x)         2     4     6     8     10     12  |     -58 | 
|  | * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2 | 
|  | * 	|  x 					           | | 
|  | * | 
|  | *	4. sin(x+y) = sin(x) + sin'(x')*y | 
|  | *		    ~ sin(x) + (1-x*x/2)*y | 
|  | *	   For better accuracy, let | 
|  | *		     3      2      2      2      2 | 
|  | *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) | 
|  | *	   then                   3    2 | 
|  | *		sin(x) = x + (S1*x + (x *(r-y/2)+y)) | 
|  | */ | 
|  |  | 
|  | #include "math.h" | 
|  | #include "math_private.h" | 
|  |  | 
|  | static const double | 
|  | half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ | 
|  | S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ | 
|  | S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ | 
|  | S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ | 
|  | S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ | 
|  | S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ | 
|  | S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ | 
|  |  | 
|  | double | 
|  | __kernel_sin(double x, double y, int iy) | 
|  | { | 
|  | double z,r,v; | 
|  |  | 
|  | z	=  x*x; | 
|  | v	=  z*x; | 
|  | r	=  S2+z*(S3+z*(S4+z*(S5+z*S6))); | 
|  | if(iy==0) return x+v*(S1+z*r); | 
|  | else      return x-((z*(half*y-v*r)-y)-v*S1); | 
|  | } |